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Abstract 
 

There are two basic problems in the qualitative theory of planar nonlinear differential equations, namely 
the center focus and the limit cycle. The decision problem of the center focus is also the premise and 
foundation of the study on the limit cycle. Therefore, the study of the center focus and the limit cycle 
constitutes an independent branch of mathematics. 
So far, many methods have been tried to settle the problems of the center focus of the polynomial system. 
However, the center focus problem of high degree polynomial systems has not been completely solved. In 
this paper, we use the Poincaré method to study the center focus problem of the five periodic differential 
equation. Then we use the Alwash-Lloyd method [1,2,3] to derive the center conditions for this 
differential system. 
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LEMMA [2]. Consider the Abel differential equation [4] 
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Where,    tAtA  and    tBtB  , ( is a positive constant). The origin is a center for the two-

dimensional system if and only if all solutions of the Abel equation starting near the origin are periodic with 

period 2 . In this case, we say that 0x  is a center for the Abel equation. The origin is a center when the 
coefficients satisfy the following condition 
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Where )(tu  is a periodic function of period 2 , 11, BA  are continuous functions. This condition is called 

the composition condition [5-8]. 
 
Consider the fifth polynomial system 
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with   ij

nji

ji
ijn PyxPyxP ,, 



  are real constants. In this paper, we give a short proof to the following result of 

[1,9]. 
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Proof.  The system (3) in polar coordinates r  and   becomes 
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With, 
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The origin is a center for (3) if and only if the polynomial differential equation  
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have periodic-2 solution in a neighborhood of .0r  
 

Let  cr ,  be solution of (7) with )10(),0(  cccr  .We write 
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Where,   101 a  and   .2,00  nan  

 

The origin is a center for (5) if and only if 
 Znnaa n ,2,0)2(,1)2(1  . 

 
Substituting (8) into (7)  
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Equating the coefficients of c  yield 
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Solving (9) gives 
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We know .0)2()2()2()2()2( 86432   aaaaa  

 

A bar over a function denotes its indefinite integral. 
 

The three necessary conditions for a center are 0)2(,0)2( 75   aa  and   .029 a  
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We have  
 

condition (Ⅰ): ,033 042240  PPP                                       

 

condition (Ⅱ): ,0)())(( 311301104004

2

01

2

10  PPPPPPPP     

 

and  
 

condition (Ⅲ): .0)( 22011031

2

0113

2

10011040

4

0104

4

10  PPPPPPPPPPPPP             

 



 
 
 

Jingyi; ARJOM, 10(4): 1-5, 2018; Article no.ARJOM.43884 
 
 
 

4 
 
 

We prove that three conditions are also sufficient. Suppose these conditions hold: )(
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If and only if 
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Substituting 1  and 3  into (12), we have  
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It is known from condition (Ⅱ) and condition (Ⅲ) that the above equation is constant . 
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