
*Corresponding author: E-mail: shouthiris@gmail.com;

Asian Journal of Research in Computer Science

2(3): 1-5, 2018; Article no.AJRCOS.46136

A Comparative Analysis of Looping Structures:
Comparison of ‘While’ Loop and ‘Do-While’

Loop in the C++ Language

P. Shouthiri1* and N. Thushika1

1
Department of Mathematics, Eastern University, Sri Lanka.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the

final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2018/v2i328752
Editor(s):

(1) Dr. Xiao-Guang Lyu, School of Science, Huaihai Institute of Technology, P.R. China.
(2) Dr. Peter Ayuba, Senior Lecturer, Faculty of Science, Department of Mathematical Sciences, Kaduna State University,

Nigeria.
Reviewers:

(1) Iroju Olaronke, Adeyemi College of Education, Nigeria.
(2) Anthony (tony) Spiteri Staines, University of Malta, Malta.

(3) Oladele, Matthias Omotayo, The Federal Polytechnic, Nigeria.
(4) M. Bhanu Sridhar, GVP College of Engineering for Women, India.

(5) Pasupuleti Venkata Siva Kumar, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering &Technology, India.
Complete Peer review History: http://www.sdiarticle3.com/review-history/46136

Received 20 October 2018
Accepted 02 January 2019

Published 17 January 2019

ABSTRACT

Looping is one of the fundamental logical instructions used for repeating a block of statements. All
programming languages are used looping structures to simplify the programs. Loops are supported
by all modern programming languages, though their implementations and syntax may differ. This
paper compares the two types of looping structures while and do-while using the compile time and
runtime of the given programs to improve the efficiency of the programs. It is found that for small
number of iterations while is efficient in runtime and do-while is efficient in compile time, the
difference in total execution time may not be considerable. But given any large number of
iterations, the difference is noticeable.

Keywords: Loop; while loop; do-while loop; compile time; run time.

Original Research Article

Shouthiri and Thushika; AJRCOS, 2(3): 1-5, 2018; Article no.AJRCOS.46136

2

1. INTRODUCTION

A computer can process a program in one of the
following ways in sequence, selectively, by
making a choice as a branch, repetitively, by
executing a statement again and again, using a
structure called a loop; or by calling a function.

The most common control structures used in
programming languages are selection and
repetition. In selection, the program executes
particular statements depending on different
Boolean condition(s). In repetition, the program
repeats particular statements a certain number of
times based on different condition(s).

Loops are among the most elementary and
powerful programming concepts in computer
programming. In computer science, a loop is a
programming structure that repeats a sequence
of instructions until a specific condition is met.
Loops have been part of programming since the
beginning of structured code in assembly
language. In the earliest form using GOTO
statements in assembly code, it is has now
evolved to much simpler logical abstractions like
‘while’ and ‘for’ loops [1].

All Loops are supported and executed by all
current programming languages, however it is
obvious that, their syntax and implementation
may differ. Three of the most common types of
loops are the ‘while’ loop, ‘do-while’ loop and the
‘for’ loop [1].

Loops generally have three parameters:

● Initialize the loop control variable:

Initialization should occur before the loop
starts.

● Test the loop control variable: Testing is
done within the parenthesis of the loop
statement.

● Update the loop control variable: Updating
is done somewhere inside the loop, usually
as the last statement with in the loop.

The control variable initialization, though
optional, is the condition that the loop must
satisfy before it can begin with the first iteration
of the loop. The variable update is optional in a
looping structure [2].

The most significant parameter for a looping
structure is the running condition. If the condition
of running is correct or ‘true’ then the loop
continues with the following iteration. Here, this

condition is also optional, however, leaving this
condition blank leads to the loop becoming an
infinite loop. When the running condition
statement returns incorrect or ‘false’, the next
iteration is not begun and the loop statement is
exited. This means that the code is allowed to
proceed with the first statement occurring
immediately after the loop statement.

The efficiency of a computer program highly
depends on its run time and its compile time.
Runtime is the duration of time when a program
is running. It starts when a program is opened
and ends with the program are quit. Compile time
is the point at which a program is converted from
source code to machine code. So, there is a
need for comparing different looping structures in
order to write efficient programs in computer
science [3]. Presently, there are no enough
comparisons made between ‘while’ and ‘do-
while’ loops. This paper makes a comparison
between the ‘while’ loop and ‘do-while’ loop to
improve the efficiency of the programs.

2. WHILE LOOP

In most computer programming languages, a
while loop is a control flow statement that allows
code to be executed repeatedly based on a given
Boolean condition. A ‘While’ Loop is used to
repeat a specific block of code an unknown
number of times, until a condition is met.

The while construct consists of a block of code
and a boolean condition.

while (boolean condition){
//statements
}

The boolean condition is evaluated, and if the
boolean condition is true, the code within the
block is executed. This repeats until the boolean
condition becomes false. Because the while loop
checks the boolean condition before the block is
executed, the control structure is often also
known as a pre-test loop [4].

3. DO-WHILE LOOP

A do-while loop is a control flow statement that
executes a block of code at least once, and then
repeatedly executes the block, or not, depending
on a given boolean condition at the end of the
block.

The do while construct consists of a block of
code and a condition.

Shouthiri and Thushika; AJRCOS, 2(3): 1-5, 2018; Article no.AJRCOS.46136

3

do {
// statements;
}while (boolean condition);

First, the code within the block is executed, and
then the condition is evaluated. If the condition is
true the code within the block is executed again.
This repeats until the condition becomes false
[4]. Because do while loops check the condition
after the block is executed, the control structure
is often also known as a post-test loop.

Fig. 1. Flowchart of while loop

Fig. 2. Flowchart of do-while loop

4. COMPARISON OF WHILE AND DO-
WHILE

Both while and do-while loops are the iteration
statement, if we want it first, the condition should
be verified, and then the statements inside the
loop must execute then the while loop is used. If
you want to test the termination condition at the
end of the loop, then the do-while loop is used.

Significant Differences Between while and do-
while Loop:

1. The while loop checks the condition at the
opening of the loop and if the condition is
fulfilled statement inside the loop, is
executed. In do-while loop, the condition is
checked after the execution of all
statements in the body of the loop [5].

2. If the condition in a while loop is false, a
single statement inside the loop is not
executed [5], and if the condition in ‘do-
while’ loop is false then also the body of
the loop is executed at least once then
only the condition is tested accordingly.

5. RESULTS AND FINDINGS

For comparing the execution time of while loop
with the do-while loop, we checked the compile
time and execution time of the programs which
have written using while and do-while loop. Ten
C++ programs were compared to analyze while
and do-while loop.

1. Display even numbers from 1 – 100 (P1)
2. Display numbers from 100 to 0 in reverse

order (P2)
3. Print the series 100, 95, 90, up to 5 (P3)
4. Find the given number is Prime or not (P4)
5. Find all square-numbers between 0 to

1000 (P5)
6. Display the reverse of given five-digit

number (P6)
7. Display all numbers between 0 to 100

which are divisible by three and five (P7)
8. Display factorial of a given number (P8)
9. Find sum of odd numbers between two

entered numbers (P9)
10. Display the series of Fibonacci for given

number (P10)

Above programs written in DevCpp using while
and do-while looping structures individually and
the complilation time and running time were
observed. Those values are tabulated in the
Table 1.

The programs P1, P2, P3, to P10 which are
written in C++ programming language are used
to calculate the execution time and the compile
time of the while and do-while loop. To calculate
the compile time and execution time, DevCpp
Integrated Development Environment (IDE) was
used. According to the result compile time of the
while is greater than do-while, but execution time
of the while is less than do-while loop.

Shouthiri and Thushika; AJRCOS, 2(3): 1-5, 2018; Article no.AJRCOS.46136

4

Table 1. Comparison of compile time and
running time of the while and do-while loops

Program
no.

Compilation
Time (s)

Running
Time (s)

While do-
while

While do-
while

P1 0.17 0.17 0.0488 0.0606
P2 0.19 0.19 0.1341 0.1593
P3 0.20 0.19 0.0235 0.0819
P4 0.21 0.19 2.0340 2.4620
P5 0.11 0.10 0.0073 0.0095
P6 0.13 0.13 0.0061 0.0167
P7 0.12 0.10 0.0065 0.0075
P8 0.18 0.17 1.4660 1.5790
P9 0.19 0.20 2.5580 2.7660
P10 0.19 0.18 1.5380 1.8650

Fig. 3. Comparison of compile time of while
and do-while loop

Fig. 4. Comparison of run time of while and
do-while loop

Total execution time of the while and do-while
loops were calculated by the sum of respective
compile time and run time [6]. According to the
comparison It is found that for small number of
iterations while is efficient in runtime and do-
while is efficient in compile time, the difference in
total execution time may not be considerable. But

for any given huge amount of iterations, the
difference is fairly noticeable.

Table 2. Comparison of total execution time

of the while and do-while loops

Program no. Total execution time

Time(s)

While Do-while

P1 0.2188 0.2306

P2 0.3241 0.3493

P3 0.2235 0.2719

P4 2.2440 2.6520

P5 0.1173 0.1095

P6 0.1361 0.1467

P7 0.1265 0.1075

P8 1.6460 1.7490

P9 2.7480 2.9660

P10 1.7280 2.0450

Fig. 5. Comparison of total execution time of
while and do-while loop

6. CONCLUSION

These looping features enable programmers to
develop concise programs containing repetitive
processes that could otherwise require an
excessive number of statements. It enables us to
repeat a specific section of code or statement
without the use of go to statements [7]. On some
instances, it might be necessary to execute the
body of the loop before the test is performed.
Both while loop and do-while loops are the
iteration statement, if we want that first, the
condition should be clearly verified, and then the
statements inside the loop must execute then the
while loop is used. In order to test the termination
condition at the end of the loop, then the do-while
loop is used. Loops allow to repeat a block of
code multiple times.
Both while and do-while are relatively similar in
that both check a condition and execute the loop

Shouthiri and Thushika; AJRCOS, 2(3): 1-5, 2018; Article no.AJRCOS.46136

5

body if it evaluated to true but they have one key
difference. That is, a while loop’s condition is
checked before each iteration, the loop condition
for do-while, however, it is checked at the end of
each iteration. So, it is obvious that a do-
while loop is always executed at least once. It is
conceivable, and in some cases desirable, for
the condition to always evaluate to true, creating
an infinite loop. When such a loop is created
intentionally, there is usually another control
structure like break statement that allows
termination of the loop.

7. FUTURE WORK

Looping control structures fully depends on ‘for’
loop, ‘while’ loop and ‘do-while’ loop. ‘For’ loop is
more flexible to write as initialization, test
condition, updating loop control variable all are
written after ‘for’ keyword. So as a future work we
are going to compare ‘for’ loop with ‘While’ and
‘Do-While’ loops with their processing time in
order to increase a program’s efficient to elicit
effective program techniques.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES
1. Stroustrup B. Programming, 2

nd
 ed. Upper

Saddle River (New Jersey): Addison-
Wesley; 2015.

2. Malik D. Introduction to C++ programming.
3

rd
 Ed. Boston, MA: Course Technology,

Cengage Learning; 2009.

3. En.wikipedia.org. Compile time; 2018.

Available:https://en.wikipedia.org/wiki/Com
pile_ time

[Accessed 10 Dec, 2018]

4. Asagba PO. Understanding C++
programming, Port Harcourt, Gitelle Press
(Nig.) Ltd. 2002;157-175.

5. Hubbard JR. Programming with C++
Schaum’s Outlines, New York, McGraw-
Hill Companies, Inc. 2009;273–299.

6. Larson E. Program analysis too loopy? Set
the loops aside. 11th IEEE International
Working Conference on Source Code
Analysis and Manipulation (SCAM).
September 25-26, 2011;15-24.

7. Asagba, Prince Oghenekaro. A
comparative analysis of structured and
object-oriented programming methods.
Journal of Applied Sciences and
Environmental Management. 2008;12(4):
41-46.

© 2018 Shouthiri and Thushika; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle3.com/review-history/46136

