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Abstract

Recently, machine learning methods have presented a viable solution for the automated classification of image-
based data in various research fields and business applications. Scientists require a fast and reliable solution in
order to handle increasingly large amounts of astronomical data. However, so far astronomers have been mainly
classifying variable starlight curves based on various pre-computed statistics and light curve parameters. In this
work we use an image-based Convolutional Neural Network to classify the different types of variable stars. We use
images of phase-folded light curves from the Optical Gravitational Lensing Experiment (OGLE)-III survey for
training, validating, and testing, and use OGLE-IV survey as an independent data set for testing. After the training
phase, our neural network was able to classify the different types between 80% and 99%, and 77%—-98%, accuracy

for OGLE-III and OGLE-IV, respectively.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Anomalous Cepheid variable stars
(2106); Eclipsing binary stars (444); Delta Scuti variable stars (370); RR Lyrae variable stars (1410); Periodic
variable stars (1213); Type II Cepheid variable stars (2124); Convolutional neural networks (1938); Sky surveys
(1464); Classification (1907); Light curve classification (1954)

1. Introduction

Most recent space-borne (e.g., Kepler, see Borucki et al. 2010;
Gaia, see Gaia Collaboration et al. 2016; Transiting Exoplanet
Survey Satellite (TESS), see Ricker et al. 2014) and ground-based
sky surveys (e.g., Sloan Digital Sky Survey (SDSS), see Gunn
et al. 2006; and the Vera C. Rubin Observatory (previously
referred to as the Large Synoptic Survey Telescope), see Ivezié
et al. 2019) generate substantial amounts of data, resulting in new
challenges in data processing. This data requires analysis with fast
and effective automated computer programming techniques. As a
consequence, several machine learning algorithms have become
popular in astronomy.

The automatic classification of variable stars using machine
learning methods mostly uses photometric data sets where objects
are represented by their light curves. The classical approach of
variable star classification relies on carefully selected features of
the light curves, such as statistical metrics (like mean, standard
deviation, kurtosis, skewness; see e.g., Nun et al. 2015), Fourier-
decomposition (Kim & Bailer-Jones 2016), or color information
(Miller et al. 2015). Classifiers can be trained on manually
designed (Pashchenko et al. 2018; Hosenie et al. 2019) or
computer-selected features (Becker et al. 2020; Johnston et al.
2020) using known types of variable stars. Another option for
classifying light curves utilizes non-labeled data, which is called
unsupervised learning. This method clusters similar objects into
groups instead of labeling them individually (Mackenzie et al.
2016; Valenzuela & Pichara 2018).

Image-based classification is now a part of our everyday life:
we use it in our phones, social network applications, cars, etc.
Convolutional neural networks (CNNs; LeCun et al. 1999)—a
class of deep neural networks (NNs)—can distinguish between
humans, animals, and various objects. If CNNs are well trained,

they can learn very fine features of an image (e.g., face
recognition); therefore, this kind of technology is now widely
used in many scientific fields such as geology, biology, or even in
medicine to recognize tumors and other diseases in the human
body (e.g., Alqudah et al. 2020). Recently, CNNs have been
successfully applied to astronomical problems as well: real /bogus
separation (Gieseke et al. 2017), cold gas study in galaxies
(Dawson et al. 2020), supernova classification (Moller & de
Boissiere 2020), LIGO data classification (George et al. 2018),
and exoplanet candidate classification (Osborn et al. 2020). Hon
et al. (2018b) trained a convolutional network on 2D images of
red giant power spectra to detect solar-like oscillations, and later
used the method to classify the evolutionary states of red giants
observed by Kepler (Hon et al. 2018a). Carrasco-Davis et al.
(2019) designed a recurrent CNN to classify astronomical objects
using image sequences; however, their approach does not
compute the light curves themselves.

An approach that is similar to ours was used by Mahabal
et al. (2017), who transformed the raw light curves into dmdt
space and mapped the results onto 2D images. These images
were then classified using a CNN. Moreover, two other works
also took advantage of NNs to classify variables stars. Aguirre
et al. (2019) used a recurrent NN that was fed by the light curve
measurements one by one as individual points. Aguirre et al.
(2019) calculated the difference between consecutive measure-
ment times and magnitude values, and classified the resulted
pair of 1D vectors using a CNN. However, the automatic
classification of variable stars, which is fully based on the
photometric light curves that are represented as images, to our
knowledge has not been performed.

In this work, we present the first results of an image-based
classification of phase-folded light curves of periodic variable
stars with our deep NN architecture trained and validated on the
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Optical Gravitational Lensing Experiment (OGLE)-III and
tested on OGLE-III and independently on OGLE-IV databases
(Udalski et al. 2008, 2015). The goal of our work was to test if
we are able to classify the phase-folded light curve images,
focusing only on the shape of the light curves and neglecting
period information. This idea is very similar to the way human
perception works when a traditional astronomer visually
evaluates a light curve, i.e., deciding based on distinctive
features and patterns. In this study we demonstrate that a deep
NN trained with light curve images can effectively used for
classification.

This Letter is structured as follows: in Section 2 we discuss
our data selection and handling, in Section 3 we present our
NN and data sampling, and in Sections 4 to 6 we show and
conclude our results.

2. Data

The aim of our project is to provide an effective and reliable
solution for classifying variable stars by means of an image-
based classification technique. As a first step, we restrict
ourselves to using only periodic variable stars, so that images
of phase-folded light curves can be used. Therefore, we need a
data set that is classified in a reliable way and contains enough
observations to create well-sampled phase-folded light curves.

2.1. Observational Data

Many catalogs of variable stars are available in the literature.
Among these, OGLE (Udalski et al. 2015) provides one of the
most extensive data sets, as it contains a sufficient number of
labels and labeled samples to train and test our NNs. This
survey is in its fourth phase, and has been operating since 1992.

OGLE observes the inner Galactic Bulge, the Magellanic
Clouds, and the Galactic disk. Observations are obtained in the
V- and I-bands; as the latter has about 10 times more data
points, we chose to work with the /-band data only.

The obtained light curves mostly have high signal-to-noise
ratios and their types are confirmed by experts, which makes
the sample very reliable. The OGLE-III catalog lists more than
450,000 variable stars. Along the photometric data, the catalog
includes basic parameters of the objects (such as coordinates,
periods, mean magnitudes, amplitudes, and parameters of the
Fourier light curve decomposition), which can be used to our
data preparation process.

The main variable star classes are divided into several sub-
classes. However, in order to have homogeneous data, we only
focused on five different main variable star types observed in
the Large Magellanic Cloud (LMC) field during OGLE-IIIL. The
chosen types were the following: Anomalous Cepheids (ACep;
Soszyniski et al. 2008), ¢ Scutis (DSct; Poleski et al. 2010),
eclipsing binaries (ECL; Graczyk et al. 2011), RR Lyrae stars
(RRLyr; Soszynski et al. 2009), and Type IT Cepheids (T2Cep;
Soszynski et al. 2008). The number of objects of each variable
types is listed in Table 1.

We converted the measured magnitudes of a given star into
flux values with a zero-point of 25, then normalized this data
with the maximum brightness. Using the epochs and periods
from the OGLE catalog, the light curves have been phase-
folded and transformed into 8bit images with a size of
128 x 128 pixels, with a black background and white plotted
dots (see Figure 1). In case of pulsating variables we used the
pulsation periods, while for ECL we used the orbital periods
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Figure 1. Gallery of phase-folded light curve images of different types of
variables stars in OGLE-IIL. The phases are in the [0..2] interval. From top to
bottom: ACep, DSct, ECL, RRLyr, and T2Cep. In case of pulsating variables
the light curves are phase-folded by their pulsation periods, while ECL are
folded by the orbital periods (i.e., twice the formal periods).

Table 1
Number of Variable Stars in the Original and in the Augmented Data Set
Non-augmented Augmented
ACep 83 25,000
DSct 2696 25,000
ECL 26,121 25,000
RRLyr 24,904 25,000
T2Cep 203 25,000
Total 54,007 125,000

(i.e., twice the formal periods) to phase-fold the light curves.
Only the raw data were used, without sigma clipping and
measurement error handling. In order to ensure that all of the
representative light curve shapes were covered, the phased light
curves are plotted in the [0..2] phase interval. These images
served as the basis of our training sample.

One other purpose of our research was to know how well our
trained model works with other observational data. This is why
we generated light curves from the OGLE-IV database.
Unfortunately, 6 Scuti stars have not been published yet, so
we only used ACep (Soszyniski et al. 2015), ECL (Pawlak et al.
2016), RRLyr (Soszynski et al. 2016), and T2Cep (Soszyriski
et al. 2018). The subtypes were not separated, and we used the
same method for image generation.

2.2. Data Augmentation

A highly unbalanced number of representatives in different
classes, which is the case here (as can seen in Table 1), may
cause false machine learning output; therefore, data augmenta-
tion was crucial in the pre-processing phase. The basic data
augmentation methods usually use, e.g., Gaussian noise, elastic
transform, random brightness, or contrast changes (see, e.g.,
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Shorten & Khoshgoftaar 2019); the images can also be
mirrored or rotated. These methods allow us to create more
duplicates, and work well when classifying everyday objects:
the reflection of a cat in a mirror is still a cat—however, this is
not true for light curves.

To increase the sample of under-represented classes,
randomly generated noise was sampled from a Gaussian
distribution with zero mean and standard deviation equal to the
given measured error then added to the original light curves.
The augmented training data contained 125,000 images, 25,000
from each variable star type (the number of ECL was reduced).
We took precautions to ensure that the training, testing, and
validating sets contained non-overlapping samples of the
generated dummy light curves, i.e., for one given star the
original light curve and its generated dummy multiples were
used only in one of the aforementioned steps.

3. Methods and Models
3.1. DarkNet

In order to investigate the effectiveness of a CNN on
classifying the folded light curves, first we tested DarkNet
(Redmon 2013-2016), a GPU-supported open-source software.
We used a built-in, very simple convolutional NN for the first
training of our data. This was originally created for the CIFAR-
10 data set,” which is a test to classify images from 10 different
classes of freely downloadable 28 x 28 pixel images of cars,
dogs, cats, ships, etc.

Our first training package was not augmented, so the classes
had varying amounts of data. This set contained 54,007 images;
see Table 1.

Training a deep NN requires a vast amount of computational
time and capacity. To be able to test our first deep NN on
simple desktop computers, we created a much smaller image
package. The first training was conducted with fewer than
500 images, but it took 1.5 hr to complete it. We used a high-
performance computer, containing four Tesla V100 GPUs,
for this task. Although the first results using the DarkNet
framework were promising, due to the poor documentation the
complexity of architecting a network and the required time to
preprocess data to match the format with the DarkNet
requirements, we decided to move to a more user-friendly
framework.

3.2. TensorFlow/Keras

As the DarkNet package is poorly documented and not being
maintained, we compiled a new NN based on the TensorFlow/
Keras framework. TensorFlow (Abadi et al. 2015) is a free and
open-source framework that is widely used in different
machine learning applications. Keras (Chollet et al. 2018) is
an open-source, high-level language and NN library for
creating deep NNs with ease and has been officially supported
in the TensorFlow core library since 2017. As a first step we
recreated the previous CNN, now in Keras, using Python
programming language. During the testing phase we used
TensorBoard (Abadi et al. 2015) to visualize the differences
and track the changes in training loss and accuracy.

3 https: //www.cs.toronto.edu/~kriz/cifar.html

Szklenar et al.

3.3. Our CNN

Convolutional networks use convolution instead of general
matrix multiplication in their layers. A typical network
architecture uses a mixture of convolutional, pooling, and fully
connected layers. Additionally, dropout layers can be added for
regularization purposes. CNNs set the weights for the filter
kernels during the learning process instead of using pre-set
kernels as in, e.g., early optical character recognition solutions:
this independence from prior knowledge gives them great
flexibility and the ability to recognize features on different
spatial scales in their consecutive layers.

Figure 2 shows a schematic view of our CNN. Our model has
a conventional structure: it consists of two convolutional, one
dropout, and one pooling layer, in all four blocks. The resolution
of input images is 128 x 128 pixels; the first two convolutional
layers use a 16 x 16 pixels width convolutional window
(known as “kernel/filtersize”), with 1 pixel stride to run through
the images. After this step, the second, third, and fourth
pair of convolutional layers use 8 x 8,4 x 4, and 2 x 2 pixel
wide windows, respectively. This way, our model can learn the
low-level features in the beginning of the training process and
the high-level features during the last convolutional layers as
well. All convolutional layers use Rectified Linear Unit (ReLU)
activation.® The output of the last convolution block is flattened
and sent to a network of fully connected layers (dense layers).
The last one is a softmax layer, which is used to normalize
the output and hence yields predictions (numbers between
0 and 1) for all the five possible output labels. All together, the
total number of trainable parameters is 1,615,685. The tested
hyperparameters and the final chosen ones are listed in Table 2.

3.3.1. Convolutional Layers

The input for the convolutional layer is a tensor with the
shape of the image height, width, and depth. When data is
passing through this layer it becomes abstracted by a feature
map. During this step a filter matrix—or kernel—of a given
size is convolved with parts of the image by moving it with a
given stride until the whole image is traversed. These layers
can detect low-level features in the first steps, but can extract
high-level features in later stages.

3.3.2. Pooling Layers

The pooling layer is responsible for reducing the spatial size
of the convolved image. It reduces the required computational
power and is also important for the extraction of dominant
features of the image. We used maximum pooling in our
model, which returns the maximum value from each portion of
an image: it selects important features as well as reduces noise.

3.3.3. Fully Connected Layers

Fully connected layers (also known as dense layers) are
responsible for the classification process as they can learn the
nonlinear combinations of the high-level features represented
by the convolutional layers. As a final step, we use a softmax
classification (basically a generalized version of a sigmoid
function for multiple outputs), which classifies our images into
separate classes of variable stars.

5 f(x) = max(0, x).


https://www.cs.toronto.edu/~kriz/cifar.html

THE ASTROPHYSICAL JOURNAL LETTERS, 897:L12 (8pp), 2020 July 1

Conv2D

Szklenar et al.

Flatten
Dropout  Dense
TL + 1 ’Soffmux
Conv2D " Pooling . H dl
Dense D€nse

Figure 2. Schematic of the architecture of the designed CNN.

Table 2
Hyperparameters of Our CNN

Parameter Tested Values Chosen Value
Architecture
Starting convolution window [8 x 8, 16 x 16
16 x 16, 32 x 32]
Convolution stride 1 1
Convolution padding 0 0
Convolution activation ReLU ReLU
Dropout probability [0.1-0.5] 0.2
Pooling type MaxPooling MaxPooling
Pooling size [2 x 2,3 x 3] 2 x2
Number of convolution layers 8 8
Number of pooling layers 4 4
Number of fully connected 4 4
layers
Fully connected activation ReLU ReLU
function
Optimization
Batch size [32, 64] 64
Learning rate [1073-1077] 107
Optimizer [SGD, Adam

RMSProp, Adam]

Loss function Categorical crossentropy

3.3.4. Spatial Dropout

Data augmentation is crucial for a well-functioning deep NN
in the preprocess phase (see Section 2.2). However, data
augmentation alone is not always enough. One serious obstacle
in applied machine learning is overfitting. A model is
considered overfitted when it learns the features and their
noise with high precision, but it poorly fits a new, unseen data
set. To be able to avoid it, one of the options is using dropout
layers. Dropout layers randomly neglect the output of a number
of randomly selected neurons during training; in our case this
was 20%. We used spatial dropout layers, which drop not just
the nodes but the entire feature maps as well. These feature
maps were not used by the next pooling process. Dropout
layers offer a computationally cheap and remarkably effective
regularization method to reduce overfitting and improve
generalization error in deep NNs. It helped us to be able to
run the training much longer, so that we could achieve very
high accuracy.

3.4. Optimizers and Learning Rate

We tested Stochastic Gradient Descent (SGD), Root Mean
Square Propagation (RMSProp), and Adaptive Moment
estimation (Adam) optimizers with various setups. After
thorough testing we chose Adam as the optimizer in our
model. For the learning rate we tested various values between
103 and 10~7; in our model we chose a very low rate of 10°°.

3.5. EarlyStopping

We built in an EarlyStopping callback into the training
method. This particular one monitors the change of the
validation loss value, which is a key parameter, by catching
the signs of overfitting. In this case if the validation loss does
not decrease by 1074, the callback runs for an additional seven
epochs, stop the training process, and save the best weight for
further testing.

3.6. Random Forest Classifier

To compare our results with a method that only uses pre-
computer features, we also trained a Random Forest (RF)
classifier (Breiman 2001). RF is a machine learning algorithm
that uses labeled (supervised) data and ensembles the results of
several decision trees to classify the input into several classes.
Here we use the RF that is implemented in the scikit-
learn package (Pedregosa et al. 2011).

The training set was created from the amplitude (A) and
Ry = Ay /Ay, ¢y = ¢, — 2¢, Fourier-parameters of the origi-
nal sample available in the OGLE-III database. The testing set
consists of the same parameters using both OGLE-III and
OGLE-IV databases. As these values for ECL are not present in
the catalog, we calculate them utilizing the periods from the
OGLE database. To balance the number of samples in the five
classes, we sampled dummy parameters from Gaussian
distributions with means and standard deviations equal to the
original parameters and 1073 (for A), 1074 (for Ry1, ¢o1),
respectively. The ratio of training and testing sample was
80%—20%.

To get a robust, reproducible result and to prevent
overfitting, we used 1000 trees in the “forest,” set the
maximum depth of each tree to 10, the minimum number of
samples required to split an internal node to 10, the minimum
number of feature per lead node to five, and the random state
to 40.
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Table 3
Number of Images Used in the Various Steps
Survey Training Validation Testing
OGLE-III 87,500 18,750 18,750
OGLE-1V e S 10,000

3.7. Evaluation Metrics

The performance of a trained machine learning algorithm
can be quantitatively characterized through several evaluation
metrics. The metric where the input and predicted class labels
are plotted against each other is called a confusion matrix,
where the predicted class is indicated in each column and the
actual class in each row. This method allows us to visualize the
number of true/false positives and negatives. In the best-case
scenario, if the matrix is normalized to unity, we expect the
confusion matrix to be purely diagonal, with non-zero elements
on the diagonal, and zero elements otherwise.

Precision is defined as

Precision = L, (1)
TP + FP
where TP is the number of true positives and FP is the number
of false positives. Precision shows that how precise the final
model is out of those predicted positive, i.e., how many of
predicted positives are actual positive.
Recall is defined as
Recall = L, 2)
TP + FN
where TP is the number of true positives and FN is the number
of false negatives. Recall shows how many of the actual
positives are labeled by the model as true positives.

From the last two metrics the F1 score can be calculated,

which is the harmonic average of the precision and recall:
Precision - Recall

F1=2- — . 3)
Precision + Recall

The F1 score can measure the accuracy of the model, which
returns a value between 0 and 1, where the latter corresponds to
a better model.

4. Results
4.1. Training and Validation

Our final data set contained 125,000 images, 25,000 from
each type. This data set was subdivided into three different
parts (70%—15%—15%), choosing images without any overlap
for training, validation, and testing purposes, respectively. The
number of images used for training was 87,500, and 18,750
were used for validation (see Table 3). The process that goes
through these two phases (training and validation) is called an
epoch. We used GPU-accelerated computers provided by the
MTA Cloud’ and the Konkoly Observatory for this research.
Each training and validation epoch took about 290s on a
NVidia Tesla K80 GPU-supported computer and 62s with a
NVidia GeForce RTX 2080 Ti GPU card. Accuracy and loss
values were constantly monitored. An EarlyStopping callback

7 https://cloud.mta.hu
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Figure 3. Accuracy and loss of the training and validation process. Orange
curve: training accuracy, red curve: validation accuracy. Blue curve: training
loss, green curve: validation loss.
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Figure 4. Test results from the OGLE-III data.

stopped the training process after 173 full epochs. Inspecting
the log files in TensorBoard showed no overfitting, after epoch
173 we reached 98.5% training accuracy for the complete
model (see Figure 3).

4.2. Testing the Model

We made two separate prediction tests on our model. The
first one ran on the previously mentioned OGLE-III data.

Our original data set was divided randomly into three
different parts: 87,500 images were used for training, 18,750
for validation, and the remaining 18,750 light curve images
were for testing purposes. This test data set contained 3750
images from each variable star type and the test method ran
through all light curves, using the weights from our trained
model. We received a predicted label for each image, and at the
end of the test we could see how well our model was working
with the OGLE-III LMC data (see Figure 4).

For our second test we generated 10,000 augmented samples
(2500 from each type) from the OGLE-IV database (see
Table 3). The method was the same as before: we made
predictions on each image, using the weights from the trained
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ACEP DSCT ECL RRLYR T2CEP
ACEP 76.9 11 0.0 15.3 6.7
DSCT 0.0 0.0 0.0 0.0 0.0
ECL 0.0 2.0 97.5 0.4 0.1
RRLYR 29 3.0
T2CEP 4.3 2.4

Figure 5. Test results from the OGLE-IV data.

network (see Figure 5 and Table 5). Comparing the two
confusion matrices, it is clearly visible that our trained model
works well and can classify variable stars from a different
database.

Tables 4 and 5 show that a CNN trained on phase-folded
light curves can classify variable stars with very high accuracy.
Based on our results, we conclude that our model can
efficiently distinguish between the ECL and periodic variables
like RR Lyrae stars. However, we note that due to similar light
curve shapes and noise features, and due to the fact that we
refrained from using the period as an input parameter, we
received false predictions for the pulsating stars in our second
test. ACep, RRLyr, and T2Cep stars were especially vulnerable
to false prediction, while DSct stars were not available for
OGLE-1V, as previously mentioned.

In this research we focused only on the light curve shapes,
but it will be possible in the future to insert other data (most
importantly, the period) into a more complex multi-channel
network that could handle more inputs, image, and numerical
data as well.

5. Discussion

Our method uses a relatively new approach to classify the
light curves of periodic variable stars; unlike similar NNs, we
neither use the time stamps of the measurements directly nor do
we transform the light curves into another space. Instead, we
look only at the light curve shape characteristics, which is
achieved by phase-folding to increase the sampling within a
cycle to be able to describe the shape more precisely. To
compare our results with a more traditional method, we trained
an RF algorithm using amplitudes and R, ¢,, Fourier-
parameters that best characterize the light curve shapes.
Comparing Figure 4 to Table 4, and Figure 5 to Table 5, i.e.,
OGLE-III and OGLE-IV results, respectively, we can see that
overall our CNN algorithm predicts better. Two cases where
the CNN performs worse are the OGLE-III ACep and T2Cep
classes; however, as we conduct a transfer learning, i.e., test
these methods on the independent OGLE-IV data set, we find
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Table 4
Classification Report for the Five Classes in the OGLE-III Data Set
Precision Recall F1 Score
ACep 0.803/0.93 0.972/0.95 0.879/0.94
DSct 0.939/0.87 0.949/0.89 0.944/0.88
ECL 0.987/0.98 0.992/0.95 0.989/0.96
RRLyr 0.959/0.88 0.702/0.86 0.810/0.87
T2Cep 0.795/0.96 0.966/0.96 0.872/0.96
Average 0.897/0.92 0.916/0.92 0.899/0.92

Note. Numbers correspond to the CNN and RF trainings, respectively. The
confusion matrix for this report is shown in Figure 4.

Table 5

Classification Report for the Five Classes in the OGLE-IV Data Set
Precision Recall F1 Score
ACep 0.769/0.89 0.914/0.62 0.835/0.73

DSect
ECL 0.975/0.96 0.994/0.94 0.984/0.95
RRLyr 0.916/0.72 0.790/0.90 0.849/0.80
T2Cep 0.841/0.99 0.900/0.75 0.870/0.85
Average 0.875/0.89 0.900/0.80 0.885/0.83

Note. Numbers correspond to the CNN and RF trainings, respectively. The
confusion matrix for this report is shown in Figure 5.

that our CNN gives similar results as before, while RF gives
worse results by 15%—16% for the mentioned classes.

The quality of training sets is an important aspect to note. As
described in Section 2, we did not clear our sample, i.e., we
included outliers and low-quality data, which makes the
training more realistic and a harder task for the CNN to learn
the weights. However, these bad values have a subtle impact on
the calculation of Fourier-parameters, making the RF result
more boosted.

Anomalous Cepheids are relatively larger mass (1-2 M)
variable stars that lie in the classical instability strip. They
follow a period—luminosity relation, and their luminosity is
between that of classical and Typell Cepheids. They are
pulsating in the fundamental mode or the first overtone with a
period shorter than 2 days. Their light curve is characterized by
a steeper ascending branch that is followed by a shallower
descending branch. Usually a bump is present at the bottom of
the ascending branch. These features make it very hard or
nearly impossible to distinguish them from RR Lyrae stars
without known distances, i.e., their absolute brightness.

One of the main goals of our work is to see whether a CNN
can distinguish Anomalous Cepheids from other variable stars
based only on light curve characteristics. From Figure 4 and
Table 6 we can see that our CNN was able to well classify the
80.2%, while the RF, which is based on pre-computed features,
well classified the 95.46% of ACeps in the OGLE-III sample.
As expected, the majority of the misclassifications are labeled
as RR Lyrae stars (17.3% and 4.5%). These results show that
there are hints of differences that make it possible to separate
ACeps without known distances. Regarding our work, it is
interesting that the CNN classifies ACeps about 15% worse
than the RF. However, if we test these methods using the
independent OGLE-IV database (see Figure 5 and Table 5), our
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Table 6
Classification Report for the Five Classes in the OGLE-III Data Set of the RF
Method

Szklenar et al.

Table 7
Classification Report for the 5 Classes in the OGLE-IV Data Set of the RF
Method

Predicted Class
ACep DSct ECL RRLyr T2Cep

Predicted Class
ACep DSct ECL RRLyr T2Cep

True class ACep 95.46 0.08 0.00 4.46 0.00 True class ACep 62.02 9.41 0.00 28.57 0.00
DSct 0.86 89.26 1.85 5.46 2.57 DSct
ECL 0.00 391 95.11 0.14 0.85 ECL 0.00 4.92 94.06 0.14 0.89
RRLyr 4.50 7.85 0.42 86.45 0.77 RRLyr 4.62 5.16 0.07 89.92 0.24
T2Cep 2.12 0.89 0.00 1.46 95.53 T2Cep 3.03 11.67 4.20 6.52 74.57

CNN still performs near 80% (76.9%), while the performance ) Table8

of RF drops down to 62% (see Table 7). However, this Approximate Computational Runtimes in Minutes

decrease is not entirely surprising, as RFs are restricted to Survey Preprocess Training Testing

predict within the range of input parameters, i.e., they are not OGLEIL 265 167/61 2812

useful for transfer learning. 125.000 ima

. . . ) ges
These results mean that image-based CNN classification may OGLE-IV 30 23/5

take place in applications where the training set slightly differs
from the data set on which the prediction will be made.

6. Conclusions and Future Prospects

In this work we trained a deep NN to distinguish different
types of variable stars based on light curve images generated
from the OGLE-III database. To be able to do this, we
generated a data-augmented image data set, containing equal
amounts of images from the chosen five types of variable stars.
After thorough testing, a CNN was created that learned the
different light curve features with high level of accuracy.

We demonstrated that image-based variable star classifica-
tion is a viable option using a CNN. This type of machine
learning method can learn both the high- and low-level features
of a folded variable starlight curve (explanation: the variable
star, i.e., a special class of stars, has a light curve, i.e., the
change in brightness as a function of time) with high level of
accuracy, in our case between 80% and 99%, based on OGLE-
III data. It is clearly visible from our results that additional data
(e.g., period) could increase the classification accuracy. We are
working on a multi-channel network where additional impor-
tant parameters can be added as input; this way, we expect that
the classification accuracy of different variable star types will
continue to increase. Our future plans also include generating
light curve images for all variable stars in the OGLE-III LMC
and Small Magellanic Cloud fields using their subtypes
available (e.g., RRab/RRc/RRd instead of RRLyr) as well.
This way we would have a vast amount of training data, and
our model could be more specific and reliable.

Training and testing a CNN requires vast amount of
computational time and capacity. We used GPU-accelerated
computers in this research. However, making predictions (i.e.,
classification itself) is possible with the saved weight file on
any commercial computers. Predicting a label for one image
takes just a fraction of a second (e.g., 0.13s on a simple
laptop), meaning that predictions even on large amount of light
curve images can be made in a very short time (see Table 8).

A novel way of variable star classification would make a
difference in the interpretation of the billions of light curves
available today (and more to come). The Zwicky Transient
Facility (ZTF; Masci et al. 2018) produced ~1 billion light
curves with more than 20 data points at different epochs, and
this number is growing continually. The All-Sky Automated
Survey for Supernovae (ASAS-SN; Shappee et al. 2014;

10,000 images

Note. Numbers correspond to the NVidia Tesla K80, and NVIDIA RTX 2080
Ti GPU cards, respectively.

Kochanek et al. 2017) database currently contains 61.5 million
light curves, out of which 666,500 objects were found to be
variables. At least 62,500 of them have unreliable classifica-
tions. The First Catalog of Variable Stars Measured by ATLAS
(ATLAS-VAR; Heinze et al. 2018) has already detected
4.7 million variable objects, but only 214,000 of them received
specific classifications. TESS (Ricker et al. 2015) is in its
second year of operations and keeps collecting excellent quality
data from space with high cadence, like Gaia (Gaia Collabora-
tion et al. 2016) does for billions of sources on the entire sky
with lower cadence, and only a small fraction of them is
classified accurately (below 1%, see e.g., Molndr et al. 2018;
Gaia Collaboration et al. 2019; Marton et al. 2019). Future
surveys, like the Rubin Observatory Legacy Survey of Space
and Time (LSST; Ivezi¢ et al. 2019) will further increase the
number of objects with available time series data. One can see
that astronomy needs accurate and efficient methods to rapidly
analyze and classify variable objects in the sky. In the
upcoming papers of this series we will explore further light
curve data with the ultimate goal of providing such methods
using image-based classification.
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Walt et al. 2011), Pandas (McKinney 2010), Scikit-learn
(Pedregosa et al. 2011), Tensorflow (Abadi et al. 2015), Keras
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