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Abstract

Aims/ objectives: Using the concepts of the classical thermodynamics, we calculated in
this work, the thermodynamic potential of black holes in the presence of a constant externel
magnetic field present in the surrounding black hole. This calculation takes into account the
developments previously provided by (Hawking, Bekenstein, Davies and Straumann) on the
equations governing the dynamics of black holes,with an arbitrary value of the surface gravity κ.
Like the four classical thermodynamic Maxwell equations, we have developed, for black holes,
new twenty four fundamental equations. Among these equations, particular attention was given
to the calculation of specific heats CΩ,Φ,M and CJ,Q,B and the Mayer formula for a black hole
in the presence of magnetic field.
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1 Introduction

Black hole refers to hypothetical objects that astronomers have first imagined existed from the
theory of relativity and quantum theory. The discovery of pulsars identified with neutron stars,
whose existence had also been predicted by theory, made more credible the ”black holes” and gave
the signal for a real hunt for these strange stars, of much more difficult to detect their main property
- if they existent- is to emit no light and no electromagnetic radiation. In an ordinary star, the
gravitational force that pulls the material toward the center of the star is balanced by the pressure
of the hot gas of the central parts. When the star has consumed all its hydrogen, the thermal
pressure is negligible and there is no longer a quantum pressure, especially due to the electrons
under the Pauli exclusion principle, can not be too close to each other. If the mass of the star
is of the order of that of the sun, then it is the white dwarf status. If the mass is much higher,
the pressure of electrons can not balance the gravitation: electrons are absorbed by the protons
and, after a transformation may be explosive, there remains a superdense star formed mainly by
neutrons. The theory shows that beyond a mass equal to two or three times the solar mass, the
neutron star itself is unstable and continues to contract. When the star mass µ reaches to occupy
a region that size is less than the gravitational radius 2Gµ/c2, the black hole is formed. The
creation of such object is accompagnied by the formation of a non-trivial causal structure in the
space-time [1], and the best way, to study the geometrical and physical properties of such system,
is inevitably the use of the general relativity theory. The space of the black hole is in a state
of collapse, and a light beam that falls will not get out. An object of this kind is by definition
impossible to see: it is a black hole in the cosmos. In the cosmology theory and the general theory
of relativity, the black hole is defined as a region of space-time showing a strong gravitational pull
such as no particle or radiation can escape from it. In the framework of this theory, it is checked
that a gravitationally collapsing star of mass µ will shrink, in short time measured by an observer
on the surface, about a radius of magnitude equal to 2Gµ/c2. This radius is commonly known as
Schwarzschild radius of the black hole, at which the gravitational field becomes so strong that no
further radiation or anything else can escape to infinity. The boundary of the region from which
no escape is possible is called the event horizon. Sometimes, black holes can be considered like
ideal black bodies, as they reflect no light. Moreover, quantum field theory in curved space-time
predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a
temperature inversely proportional to its mass. The theoretical foundations of the subject of black
hole dynamics were laid by [2],[3], [4], and the systematic complete treatment is given by [5] and
later by [6] [7]. The state equation for the black hole, was given by [8], [9] using the pressure and
the volume in the first law of thermodynamics. Later, [10] has corrected the first law of black hole
thermodynamics. Hence, it is possible to develop black hole dynamic potentials using the black
hole parameters (µ, J, Q,M, κ, Ω ,Φ and B, the black hole mass, the angular momentum, the
electric charge, dipolar magnetic momentum, the surface gravity (the geometric surface at which
we have the gravity κ is constant at all), the angular velocity, the electric potential and the magnetic
field). The thermodynamics have been studied by many authors [2-7] but they not introduced the
magnetic field near boundary of the black hole. In this work, we have developed formula for the
specific heats [11] in considering the presence of the constant magnetic field near boundary of the
black hole.

Then, we have organized this paper as follows: in section 2 we summarize the main parameters
usefull to describe the black hole thermodynamics. Section 3 is devoted to derive the thermodynamic
potentials for the black hole with the surrounding externel magnetic field: the internal energy, the
free energy (Helmholtz energy), the enthalpy energy and Gibbs energy. For each potential, we have
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derive, like the Maxwell equations in classical thermodynamics, six relations between the physical
quantities for the black hole. A partiular attention was paid to derive the Mayer relation between
the specific heats CΩ,Φ,M and Cj,Q,B . A conclusion and a discussion are reported in the section 4.

2 Black Hole Parameters in Magnetic Field

The thermal radiation emitted by a black hole corresponds to a temperature given by [8],[9]

TH =
κh

2πkBc
. (2.1)

where h is the Planck constant, kB is the Boltzmann constant, c is the light velocity in vaccum and
κ is the surface gravity of the black hole given by

κ =
4π(r+c

2 −Gµ)

A
. (2.2)

where G is the universal gravitational constant, µ is the black hole mass and A is the area of the
event horizon of the black hole. r+ is the radial coordinate of the event horizon given by [12]

r+ =
1

c2
(Gµ+

√
G2µ2 − J2c2

µ2
−GQ2 − λ2B2). (2.3)

where µ, J , Q are the mass, the angular momentum and the electric charge of the black hole
respectively and B is the constant magnetic field, assumed to be constant, surrounding the black
hole in our subject, whereas λ is a coupling constant with (cm3/s2/Gauss) unit caracterising the
magnetic interaction between the black hole and the external magnetic field.

Beside TH and κ, the third important thermodynamical parameter of the black hole is the Bekenstein-
Hawking entropy given by

SBH =
kB
4l2Pl

A. (2.4)

such that A is the area of the event horizon of the black hole given by

A/4π = r+c
2 + (J/cµ)2

and lPl is the Planck’s length expressed by lPl =
√

Gh
c3
' 10−33cm. Replacing r+ by its expression

(3) in the expression of the area of the event A, we find

A =
4πG

c4

[
2Gµ2 −Q2 + 2

√
G2µ4 − J2c2 −Gµ2Q2 − λ2µ2B2

]
. (2.5)

For a general Kerr- Newman black hole, the angular rotation Ω is related to the angular momentum
J and the area of the event horizon A of the black hole by

Ω =
4πJ

µA
. (2.6)

the potential of the event horizon Φ is given by

Φ =
4πQr+

A
. (2.7)

Once the parameters, µ, J,Ω, Q,Φ, κ and B are defined, we are able to attack the Mayer formula by
using the first law (energy conservation) and the second law (entropy) of the classical thermodynamics.
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3 Black Hole Thermodynamics Immersed in Magnetic
Fiels

3.1 Internal energy and the first thermodynamics law

The interaction of the black hole with the surrounding fields and matter was widely studied by
[13], [14] , we focused here on the interaction with a constant magnetic field B. The first law of
thermodynamics, in differential form writes as

dE = d[µc2] =
κc2

8πG
dA+ ΩdJ + ΦdQ−MdB. (3.1)

where M is the magnetic dipole of the black hole. We must mention here from the equation (3.1)
that expresses the first law of thermodynamics, that the term (∼ κc2dA/G) is like the term TdS in
classical thermodynamics. This is due to the formulas (2.1) and (2.4). As κ is the gravity, its unit
is therefore that of the linear acceleration [m/s2], G unit is m3/kg/s2 and the unit of the area A
is m2. It is assumed that the black hole is near of the equilibrium states to the differences in the
area A of the event horizons, in the angular momentum J , in the charge Q and in the constant
external magnetic field B. Using the equation (3.1) as a perfect differential, we find

κc2

8πG
=

(
∂E

∂A

)
J,Q,B

. (3.2)

Ω =

(
∂E

∂J

)
A,Q,B

(3.3)

Φ =

(
∂E

∂Q

)
A,J,B

. (3.4)

and

M = −
(
∂E

∂B

)
A,J,Q

. (3.5)

Since dE is a perfect differential, we derive six relations connecting the different partial derivatives
of the parameters of the black hole:(

∂

∂J

(
∂E

∂A

)
J,Q,B

)
A,Q,B

=

(
∂

∂A

(
∂E

∂J

)
A,Q,B

)
J,Q,B

. (3.6)

Using eqs (3.2) and (3.3) we have the first relation(
∂κ

∂J

)
A,Q,B

=
8πG

c2

(
∂Ω

∂A

)
J,Q,B

. (3.7)

after that, we have (
∂

∂Q

(
∂E

∂A

)
J,Q,B

)
A,J,B

=

(
∂

∂A

(
∂E

∂Q

)
A,J,B

)
J,Q,B

. (3.8)

Using eqs (3.2) and (3.4) we get the second relation(
∂κ

∂Q

)
A,J,B

=
8πG

c2

(
∂Φ

∂A

)
J,Q,B

. (3.9)
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following, (
∂

∂Q

(
∂E

∂J

)
A,Q,B

)
A,J,B

=

(
∂

∂J

(
∂E

∂Q

)
A,J,B

)
J,Q,B

. (3.10)

Using eqs (3.3) and (3.4) we have the third relation(
∂Ω

∂Q

)
A,J,B

=

(
∂Φ

∂J

)
A,Q,B

. (3.11)

Next, we have (
∂

∂B

(
∂E

∂A

)
J,Q,B

)
A,Q,J

=

(
∂

∂A

(
∂E

∂B

)
A,Q,J

)
J,Q,B

. (3.12)

Using eqs (3.2) and (3.5) we have the fourth relation(
∂κ

∂B

)
A,Q,J

= −8πG

c2

(
∂M

∂A

)
J,Q,B

. (3.13)

Next, we have (
∂

∂Q

(
∂E

∂B

)
J,Q,A

)
A,J,B

=

(
∂

∂B

(
∂E

∂Q

)
A,J,B

)
J,Q,A

. (3.14)

Using eqs (3.4) and (3.5) we have the fifth relation(
∂M

∂Q

)
A,J,B

= −
(
∂Φ

∂B

)
J,Q,A

. (3.15)

finally we have, (
∂

∂B

(
∂E

∂J

)
A,Q,B

)
A,J,Q

=

(
∂

∂J

(
∂E

∂B

)
A,J,Q

)
J,Q,B

. (3.16)

Using eqs (3.3) and (3.5) we have the sixth relation(
∂Ω

∂B

)
A,J,Q

= −
(
∂M

∂J

)
A,Q,B

. (3.17)

3.2 Black hole free energy in magnetic field

Similarely to the classical thermodynamics, we define the free energy of the black hole as,

F = E −
(
κc2

G8π

)
A (3.18)

Therefore, for an arbitrary surface gravity κ, angular momentum J, charge Q, and magnetic field
B, the differential if the free energy is given by

dF = dE−
(
Ac2

G8π

)
dκ−

(
κc2

G8π

)
dA =

(
κc2

8πG

)
dA+ΩdJ+ΦdQ−MdB−

(
Ac2

G8π

)
dκ−

(
κc2

8πG

)
dA

or

dF = −
(
Ac2

G8π

)
dκ+ ΩdJ + ΦdQ−MdB (3.19)

The differential dF is then the amount that happens when a little change on: the surface gravity
κ, the angular momentum J, the charge Q and the magnetic field, occurs simultaniously. At this
stage, we can develop the calculation in each particular case: for example, when we are at a surface
gravity (defined for κ equal constant), then dF = ΩdJ + ΦdQ−MdB and similarly for the others
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variables, but this not the scope of the present work. As in the case of the internal energy, we use
the fact that dF is a perfect differential to find the following relations(

Ac2

G8π

)
= −

(
∂F

∂κ

)
J,Q,B

(3.20)

Ω =

(
∂F

∂J

)
κ,Q,B

. (3.21)

Φ =

(
∂F

∂Q

)
κ,J,B

. (3.22)

M = −
(
∂F

∂B

)
κ,J,Q

. (3.23)

Furthermore, six relations between the black hole parameters are(
∂Ω

∂Q

)
κ,J,B

=

(
∂Φ

∂J

)
κ,Q,B

. (3.24)(
∂M

∂Q

)
κ,J,B

= −
(
∂Φ

∂B

)
κ,Q,J

. (3.25)(
∂Ω

∂B

)
κ,J,Q

= −
(
∂M

∂J

)
κ,Q,B

. (3.26)(
∂Ω

∂κ

)
J,Q,B

= − c2

8πG

(
∂A

∂J

)
κ,Q,B

. (3.27)(
∂Φ

∂κ

)
J,Q,B

= − c2

8πG

(
∂A

∂Q

)
κ,J,B

. (3.28)(
∂M

∂κ

)
J,Q,B

= − c2

8πG

(
∂A

∂B

)
κ,J,Q

. (3.29)

3.3 Black hole enthalpy energy in magnetic field

The enthalpy of the black hole has given by,

H = E − ΩJ − ΦQ+MB (3.30)

Therefore,
dH = dE − ΩdJ − ΦdQ+MdB − JdΩ−QdΦ +BdM. (3.31)

or using eq. (3.1) we have

dH =
κc2

G8π
dA− JdΩ−QdΦ +BdM. (3.32)

Hence (
∂H

∂A

)
Ω,Φ,M

=
κc2

8πG
. (3.33)(

∂H

∂Ω

)
A,Φ,M

= −J. (3.34)(
∂H

∂Φ

)
A,Ω,M

= −Q. (3.35)

6



Dahbi and Meftah; BJMCS, 19(3), 1-12, 2016; Article no.BJMCS.29215

(
∂H

∂B

)
A,Ω,Φ

= M. (3.36)

Since dH is a perfect differential, six relations between the black hole parameters are given by the
following expressions (

∂κ

∂Ω

)
A,Φ,M

=
8πG

c2

(
∂J

∂A

)
Ω,Φ,M

. (3.37)(
∂κ

∂Φ

)
A,Ω,M

=
8πG

c2

(
∂Q

∂A

)
Ω,Φ,M

. (3.38)(
∂J

∂Φ

)
A,Ω,M

=

(
∂Q

∂Ω

)
A,Φ,M

. (3.39)(
∂κ

∂M

)
A,Φ,Ω

=
8πG

c2

(
∂B

∂A

)
Ω,Φ,M

. (3.40)(
∂B

∂Φ

)
A,Ω,M

= −
(
∂Q

∂M

)
Ω,Φ,A

. (3.41)(
∂J

∂M

)
A,J,Φ

= −
(
∂B

∂Ω

)
A,Φ,M

. (3.42)

3.4 Black hole gibbs energy in magnetic field

We define the free enthalpy Fg (Gibbs energy) as

Fg = H − κc2

8πG
A (3.43)

Therefore,

dFg = dH − (dκ)c2

8πG
A− κc2

8πG
dA. (3.44)

replacing the previous expression of dH, we find

dFg = − Ac
2

8πG
dκ− JdΩ−QdΦ +BdM. (3.45)

Next, we get (
∂Fg
∂κ

)
Ω,Φ,M

= − Ac
2

8πG
. (3.46)(

∂Fg
∂Ω

)
κ,Φ,M

= −J. (3.47)(
∂Fg
∂Φ

)
κ,Ω,M

= −Q. (3.48)

and (
∂Fg
∂M

)
κ,Ω,Φ

= B. (3.49)

Since dFg is a perfect differential we have the following six relations between the black hole
parameters (

∂A

∂Ω

)
κ,Φ,M

=
8πG

c2

(
∂J

∂κ

)
Ω,Φ,M

. (3.50)
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(
∂A

∂Φ

)
κ,Ω,M

=
8πG

c2

(
∂Q

∂κ

)
Ω,Φ,M

. (3.51)

(
∂J

∂Φ

)
κ,Ω,M

=

(
∂Q

∂Ω

)
κ,Φ,M

. (3.52)

(
∂A

∂M

)
κ,Φ,Ω

= −8πG

c2

(
∂B

∂κ

)
Ω,Φ,M

. (3.53)

(
∂B

∂Φ

)
κ,Ω,M

= −
(
∂Q

∂M

)
Ω,Φ,κ

. (3.54)

(
∂J

∂M

)
κ,J,Φ

= −
(
∂B

∂Ω

)
κ,Φ,M

. (3.55)

At all, as we have mentioned earlier, we have 24 fundamental black hole dynamic relations given by
eqs ((3.7), (3.9), (3.11), (3.13), (3.15), (3.17)), ((3.24)-(3.29)), ((3.37)-(3.42)) and ((3.50)-(3.55)).

We now proceed to deduce an equation involving a κc2

8πG
dA term, dubbed as the κ − dA equation

in short. We have

dA =

(
∂A

∂κ

)
Ω,Φ,M

dκ+

(
∂A

∂Ω

)
κ,Φ,M

dΩ +

(
∂A

∂Φ

)
κ,Ω,M

dΦ +

(
∂A

∂M

)
κ,Ω,Φ

dM (3.56)

κc2

8πG
dA =

κc2

8πG

[(
∂A

∂κ

)
Ω,Φ,M

dκ+

(
∂A

∂Ω

)
κ,Φ,M

dΩ +

(
∂A

∂Φ

)
κ,Ω,M

dΦ +

(
∂A

∂M

)
κ,Ω,Φ

dM

]
(3.57)

The specific heat of the black hole at constant, we define it for Ω , Φ and M are constants,

CΩ,Φ,M =
κc2

8πG

(
∂A

∂κ

)
Ω,Φ,M

(3.58)

we now using the fundamental relations viz., eqs (3.50) and (3.51) we have

κc2

8πG
dA = CΩ,Φ,Mdκ+ κ[

(
∂J

∂κ

)
Φ,M

dΩ +

(
∂Q

∂κ

)
Ω,M

dΦ +

(
∂B

∂κ

)
Ω,Φ

dM ] (3.59)

Correspondingly,

κc2

8πG
dA =

κc2

8πG

(
∂A

∂κ

)
J,Q,B

dκ+
κc2

8πG

(
∂A

∂J

)
κ,Q,B

dJ

+
κc2

8πG

(
∂A

∂Q

)
κ,J,B

dQ+
κc2

8πG

(
∂A

∂B

)
κ,J,Q

dB (3.60)

Now we define the specific heat at constant J,Q and B the same as

CJ,Q,B =
κc2

8πG

(
∂A

∂κ

)
J,Q,B

(3.61)
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3.5 Mayer’s formula

Using the perfect differential of area A(κ,Ω,Φ,M) as

dA =

(
∂A

∂κ

)
Ω,Φ,M

dκ+

(
∂A

∂Ω

)
κ,Φ,M

dΩ +

(
∂A

∂Φ

)
κ,Ω,M

dΦ +

(
∂A

∂M

)
κ,Ω,Φ

dM (3.62)

and in expressing the differentials dΩ, dΦ and dM as functions of κ, J , Q and B

dΩ =

(
∂Ω

∂κ

)
J,Q,B

dκ+

(
∂Ω

∂J

)
κ,Q,B

dJ +

(
∂Ω

∂Q

)
κ,J,B

dQ+

(
∂Ω

∂B

)
κ,J,Q

dB (3.63)

dΦ =

(
∂Φ

∂κ

)
J,Q,B

dκ+

(
∂Φ

∂J

)
κ,Q,B

dJ +

(
∂Φ

∂Q

)
κ,J,B

dQ+

(
∂Φ

∂B

)
κ,J,Q

dB (3.64)

dM =

(
∂M

∂κ

)
J,Q,B

dκ+

(
∂M

∂J

)
κ,Q,B

dJ +

(
∂M

∂Q

)
κ,J,B

dQ+

(
∂M

∂B

)
κ,J,Q

dB (3.65)

when replacing the three last differentials in the last expression of dA, we obtain

dA =

(
∂A

∂κ

)
Ω,Φ,M

dκ+(
∂A

∂Ω

)
κ,Φ,M

[

(
∂Ω

∂κ

)
J,Q,B

dκ+

(
∂Ω

∂J

)
κ,Q,B

dJ +

(
∂Ω

∂Q

)
κ,J,B

dQ+

(
∂Ω

∂B

)
κ,J,Q

dB] +(
∂A

∂Φ

)
κ,Ω,M

[

(
∂Φ

∂κ

)
J,Q,B

dκ+

(
∂Φ

∂J

)
κ,Q,B

dJ +

(
∂Φ

∂Q

)
κ,J,B

dQ+

(
∂Φ

∂B

)
κ,J,Q

dB] +(
∂A

∂M

)
κ,Ω,Φ

[

(
∂M

∂κ

)
J,Q,B

dκ+

(
∂M

∂J

)
κ,Q,B

dJ +

(
∂M

∂Q

)
κ,J,B

dQ+

(
∂M

∂B

)
κ,J,Q

dB]

= [

(
∂A

∂κ

)
Ω,Φ,M

+

(
∂A

∂Ω

)
κ,Φ,M

(
∂Ω

∂κ

)
J,Q,B

+

(
∂A

∂Φ

)
κ,Ω,M

(
∂Φ

∂κ

)
J,Q,B

+(
∂A

∂M

)
κ,Ω,Φ

(
∂M

∂κ

)
J,Q,B

]dκ+ (..) dJ + (..) dQ+ (..) dB (3.66)

comparing the last expression to the following (by identifying the coefficients of dκ)

dA =

(
∂A

∂κ

)
J,Q,B

dκ+

(
∂A

∂J

)
κ,Q,B

dJ +

(
∂A

∂Q

)
κ,J,B

dQ+

(
∂A

∂B

)
κ,J,Q

dB (3.67)

we can check immediately

(
∂A

∂κ

)
J,Q,B

=

(
∂A

∂κ

)
Ω,Φ,M

+

(
∂A

∂Ω

)
κ,Φ,M

(
∂Ω

∂κ

)
J,Q,B

+(
∂A

∂Φ

)
κ,Ω,M

(
∂Φ

∂κ

)
J,Q,B

+

(
∂A

∂M

)
κ,Ω,Φ

(
∂M

∂κ

)
J,Q,B

or by multiplying both sides of the last relation by κc2

8πG
, we find
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κc2

8πG

(
∂A

∂κ

)
J,Q,B

=
κc2

8πG

(
∂A

∂κ

)
Ω,Φ,M

+
κc2

8πG

(
∂A

∂Ω

)
κ,Φ,M

(
∂Ω

∂κ

)
J,Q,B

+

κc2

8πG

(
∂A

∂Φ

)
κ,Ω,M

(
∂Φ

∂κ

)
J,Q,B

+
κc2

8πG

(
∂A

∂M

)
κ,Ω,Φ

(
∂M

∂κ

)
J,Q,B

(3.68)

Because we have (see formulas 3.50, 3.51 and 3.53)

(
∂J

∂κ

)
Ω,Φ,M

=
c2

8πG

(
∂A

∂Ω

)
κ,Φ,M

(3.69)(
∂Q

∂κ

)
Ω,Φ,M

=
κc2

8πG

(
∂A

∂Φ

)
κ,Ω,M

(3.70)(
∂B

∂κ

)
Ω,Φ,M

= − c2

8πG

(
∂A

∂M

)
κ,Ω,Φ

(3.71)

CΩ,Φ,M =
κc2

8πG

(
∂A

∂κ

)
Ω,Φ,M

(3.72)

CJ,Q,B =
c2

8πG

(
∂A

∂κ

)
J,Q,B

(3.73)

then the Mayer formula for the black hole is given by

CΩ,Φ,M − CJ,Q,B =

κ[

(
∂J

∂κ

)
Ω,Φ,M

(
∂Ω

∂κ

)
J,Q,B

+

(
∂Q

∂κ

)
Ω,Φ,M

(
∂Φ

∂κ

)
J,Q,B

−
(
∂B

∂κ

)
Ω,Φ,M

(
∂M

∂κ

)
J,Q,B

] (3.74)

Due to the sign (-) in front of the last term in this relation, the sign of (CΩ,Φ,M −CJ,Q,B) may also
to change. This result can affects a main property of the radiation of black holes that states the
black hole specific heat to be negative [11]. Using the comparison between formulas (3.66, 3.67)
and by equaling the coefficients of the same differential in both formulas, we can also derive three
other important relations, relevant to the area of the event horizon:

(
∂A

∂J

)
κ,Q,B

=

8πG

c2
[

(
∂J

∂κ

)
Ω,Φ,M

(
∂Ω

∂J

)
κ,Q,B

+

(
∂Q

∂κ

)
Ω,Φ,M

(
∂Φ

∂J

)
κ,Q,B

−
(
∂B

∂κ

)
Ω,Φ,M

(
∂M

∂J

)
κ,Q,B

] (3.75)

(
∂A

∂Q

)
κ,J,B

=

8πG

c2
[

(
∂J

∂κ

)
Ω,Φ,M

(
∂Ω

∂Q

)
κ,J,B

+

(
∂Q

∂κ

)
Ω,Φ,M

(
∂Φ

∂Q

)
κ,J,B

−
(
∂B

∂κ

)
Ω,Φ,M

(
∂M

∂Q

)
κ,J,B

] (3.76)

(
∂A

∂B

)
κ,J,Q

=

8πG

c2
[

(
∂J

∂κ

)
Ω,Φ,M

(
∂Ω

∂B

)
κ,J,Q

+

(
∂Q

∂κ

)
Ω,Φ,M

(
∂Φ

∂B

)
κ,J,Q

−
(
∂B

∂κ

)
Ω,Φ,M

(
∂M

∂B

)
κ,J,Q

] (3.77)
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From the the definition of the black hole entropy (see equation 2.4), we have in the last equations
(3.74-76) derived the change of the entropy of the event horizon, when the parameters J, Q, B and
their conjugates Ω, Φ, M changes simultaniously with respect to the change of the surface gravity
κ, the angular momentum J, the electric charge Q and the magnetic field B.

4 Conclusion

In this work, we have developped the thermodynamics of the black hole. The new is, the calculation
of twenty four relations (like the four classical thermodynamic Maxwell equations) between the
black hole parameters. This is achieved by defining the thermodynamic potentials for the black
hole in the presence of a constant externel magnetic field present in the surrounding black hole.
These calculation takes into account the developments previously provided by Bekenstein on the
equations governing the dynamics of black holes for which the specific heats are negatives. In the
presence of an externel constant magnetic field, we show in this work, that the sign of the difference
CΩ,Φ,M−CJ,Q,B for the black hole can to change and then modifies a main property of the radiation
of the black hole.
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