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Abstract

In the current era of time-domain astronomy, it is increasingly important to have rigorous, data-driven models for
classifying transients, including supernovae. We present the first application of principal component analysis to the
photospheric spectra of stripped-envelope core-collapse supernovae. We use one of the largest compiled optical
data sets of stripped-envelope supernovae, containing 160 SNe and 1551 spectra. We find that the first five
principal components capture 79% of the variance of our spectral sample, which contains the main families of
stripped supernovae: Ib, IIb, Ic, and broad-lined Ic. We develop a quantitative, data-driven classification method
using a support vector machine, and explore stripped-envelope supernovae classification as a function of phase
relative to V-band maximum light. Our classification method naturally identifies “transition” supernovae and
supernovae with contested labels, which we discuss in detail. We find that the stripped-envelope supernovae types
are most distinguishable in the later phase ranges of 10±5 days and 15±5 days relative to V-band maximum,
and we discuss the implications of our findings for current and future surveys such as Zwicky Transient Factory
and Large Synoptic Survey Telescope.
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1. Introduction

Supernova classification is a longstanding challenge in the
astronomical community. The first spectral classification of
supernovae (SNe) was introduced by Minkowski (1941), who
defined two classes, Type I (hydrogen absent) versus Type II
(hydrogen present). This broad criterion is still in use today,
and multiple subclasses were added as the number of SNe
spectra increased and spectral differences were observed (for a
comprehensive review of SNe classification see Filippenko
1997; Gal-Yam 2017). In this work, we focus on stripped-
envelope core-collapse supernovae (SESNe; Clocchiatti et al.
1997), which are the deaths of massive (>8Me) stars that have
lost part or all of their outer hydrogen and helium layers. The
diversity of the amount of these elements remaining in the outer
envelopes of the stellar progenitors at the time of explosion is
the likely explanation for the classification into three major
SNe classes: Type Ib (spectra that have conspicuous He
features), Type IIb (spectra showing strong H at early phases,
He features at later phases), and Type Ic (no prominent H nor
He features in spectra). For a more detailed review of SESNe
see Filippenko et al. (1993), Matheson et al. (2001), Woosley
et al. (2002), Modjaz et al. (2014), and Liu et al. (2016). Over
the past 20 yr, the class of broad-lined SNe Ic (Ic-bl) has
emerged with members showing spectra devoid of strong lines
of H and He, but with broad lines that indicate expansion
velocities between 15,000 and 20,000 km s−1 (Modjaz et al. 2016;

Prentice & Mazzali 2017; Sahu et al. 2018). In addition, the Ic-bl
type is the only SN type associated with long-duration gamma-ray
bursts (for reviews see Woosley & Bloom 2006; Modjaz 2011;
Cano et al. 2017).
Current SESNe classification methods can be grouped

broadly into two categories: template matching and specific
feature techniques. The most used template-matching algo-
rithms are the Supernova Identification code (SNID; Blondin &
Tonry 2007) and Superfit (Howell et al. 2005). These codes
match new spectra to a library of previously classified
supernovae using cross-correlation and chi-squared statistics,
respectively, yielding a quantitative measure of similarity
between spectra of previously known SNe and the spectrum of
a new transient. By incorporating more than just the best match
into a classification scheme (e.g., Quimby et al. 2018), template
matching can distinguish the major SESNe classes. However,
template matching has some downsides. It is difficult to gain
physical insight into stellar progenitors from a simple similarity
measure. In addition, template-matching classification methods
do not directly yield a physical understanding of the differences
between different classes. The second category of classification
techniques focuses on characterizing specific spectral features
(i.e., line depth or width and line intensity or velocity) at
particular wavelengths (Prentice & Mazzali 2017; Sun & Gal-
Yam 2017). These specific feature techniques allow for more
physical interpretation than template matching, but they do not
use all of the information available in a spectrum.
In this paper, we propose a new classification technique for

SESNe using principal component analysis (PCA) combined
with support vector machine (SVM). PCA is a dimensionality
reduction algorithm that linearly transforms data in order to
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capture as much information as possible in the smallest number
of transformed features, called principal components (PCs).
PCA has been previously applied to attempt to understand the
diversity of SNe Ia subtypes (Cormier & Davis 2011; Sasdelli
et al. 2014) and nebular phase superluminous supernovae
(Nicholl et al. 2019), but this is the first application of PCA to
SESNe in the photospheric phase. After applying a PCA
decomposition to our SESNe spectral data set, we use a
multiclass linear SVM, a supervised learning method, to
classify our SNe. This work is the first application of such
machine-learning techniques to spectroscopically classifying
SESNe.

Our PCA and SVM based algorithm allows continuous,
quantitative classification that reflects the physical properties of
SESNe stellar progenitors. Instead of the traditional SN
classification with four discreet classes (IIb, Ib, Ic, Ic-bl), our
classification method facilitates better understanding of which
SNe are representative of their class, and which are “transition”
objects, and comparison between the SESNe mean spectra and
our constructed eigenspectra allows us to physically interpret
our results. New and upcoming data releases by the Berkeley
group (Shivvers et al. 2018) and the Palomar Transient Factory
(PTF; Fremling et al. 2018; Taddia et al. 2018), and new
transient observing projects like the Zwicky Transient Factory
(ZTF; Bellm et al. 2019) and the Large Synoptic Survey
Telescope (LSST; Ivezic et al. 2008) will drastically increase
the number of SESNe spectra. In this new data-rich context, a
continuous and data-driven classifier will be crucial for
addressing some of the most interesting outstanding questions
pertaining to SESNe.

2. SESNe Spectral Data Set

In this section, we describe the spectral data set used in this
work and the preprocessing applied to the data before our
analysis is performed. We expand the SESNe spectral library
produced and compiled in Modjaz et al. (2014), Liu & Modjaz
(2014), Liu et al. (2016), and Modjaz et al. (2016) to include
available spectra from SNe published through 2018 August.
We use the same criteria for inclusion of new data as Liu et al.
(2016): well-typed SNe with light curves for which a date of
maximum can be extracted. The data set contains 160 SNe and
1551 spectra. We exclude SNe Ib-n, SNe Ib-Ca, superluminous
supernovae, and SNe that transition between normal and
excluded types. We restrict the spectra in our sample to the
optical wavelength range 4000–7000Å since the vast majority
of our SNe have observed fluxes in this wavelength range,
and this range contains features of both H and He that drive
the classification. For newly added SN spectra obtained from
the literature or directly from authors, we follow the same
preprocessing steps detailed in Liu et al. (2016) that were used
in subsequent papers of our group (Liu et al. 2016; Modjaz
et al. 2016). The preprocessing is briefly summarized as
follows: when newly added spectra lack a date of V-band
maximum (but do have a date of maximum in other bands), we
convert their date of maximum to the V band using the process
described by Bianco et al. (2014). Spectra are redshift corrected
when necessary, and the continuum removal and normalization
(spectra are scaled by their means to have relative fluxes) is
performed with tools within the SNID framework (Blondin &
Tonry 2007). In the few cases where telluric lines are present in
the spectra, the tellurics are removed using linear interpolation
consistent with the procedure in Liu et al. (2016). Small gaps in

the spectra are similarly interpolated before a fourier-based
smoothing is applied (Liu et al. 2016). The bandpass filter used
by SNID for classification purposes is not applied. A summary
of our data set can be found in Table 1, and the SNID templates
of the newly added SNe are released on our GitHub page.7

3. Methods

In this section, we present a brief background on the two
machine-learning methods used in our analysis, PCA and SVM,
as well as details on our specific application. For both methods,
we use the scikit-learn8 implementation (Pedregosa et al.
2011). For a detailed review of PCA theory see Pearson (1901)
and Jolliffe (2011), and for a detailed review of SVM theory
see Vapnik (1998). Our research is reproducible: all code and
raw data are accessible on GitHub.9

3.1. PCA—Derivation of Eigenspectra

PCA is a dimensionality reduction technique based on
singular value decomposition of a data matrix. The principal
components are the eigenvectors of the covariance matrix of
the data, and are therefore orthonormal. Each PC is a linear
combination of the original data features (normalized fluxes)
and therefore has the same wavelength range as our original
data. We therefore use the term “eigenspectra” to describe the
PCs and discuss their physical interpretation in Section 4. The
eigenspectra are ordered according to how much variance from
the mean of the data set each component captures. Thus,
the original spectra can be projected onto a subset of the
eigenspectra while maximizing the amount of information
retained. Figure 1 shows the cumulative amount of variance of
the entire data set captured as a function of the number of PCs.
The first five eigenspectra contain 79% of the variance.
Figure 2 shows an example supernova, SN2011ei (type IIb),
reconstructed using increasingly larger numbers of eigenspec-
tra. In the top panel, only the first five eigenspectra are used,
and the large-scale spectral features are almost entirely
reconstructed. For the purpose of classification, we mostly
care about the large-scale features, so considering only the first
five eigenspectra of our PCA decomposition is a good first step
to reduce the complexity of the problem.
Since SNe change over time, in this work we apply a PCA

decomposition to four different phase ranges of spectra: 0±5,
5±5, 10±5, and 15±5 days relative to the V-band
maximum. We present and discuss in detail the eigenspectra
for the phase range tVmax=15±5 days in Section 4.1. The
time dependence of the eigenspectra as a function of phase is
discussed in Section 4.2, but in general we find that there is
very little change in the large-scale features of a given
eigenspectrum over time.

3.2. SVM—A New Approach to SESNe Classification

For each of the four phase ranges in this work, we train a
multiclass linear SVM without class weights and using the L2
(i.e., “squared hinge”) loss function on the 2D projection of
SESNe spectra onto each pair of the first 10 eigenspectra in
order to understand which eigenspectra are most useful for
classification. Specifically, we use the LinearSVC class from

7 https://github.com/nyusngroup/SESNtemple/tree/master/SNIDtemplates
8 https://scikit-learn.org/stable/index.html
9 https://github.com/nyusngroup/SESNspectraPCA
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scikit-learn, which implements SVM classification using
LIBLINEAR (Fan et al. 2008) and employs the “one-versus-
rest” approach to multiclass labeling and the “winner-take-all”
approach to multiclass predictions: a binary linear SVM is
trained to distinguish each class of SESNe from the rest of the
population, and these binary classifiers are combined to make
final decisions on predicting the labels of new data. Each binary
SVM determines the optimal hyperplane that separates one
class from the rest of the data. For each 2D projection, we
randomly generate multiple train-test splits of the data (a
random subset of 70% of the data is used to train the SVM,
while the remaining 30% is used to test the ability of the SVM
to accurately predict SNe classes). Using multiple train-test
splits on each 2D projection allows us to report a mean test
score for the SVM and to gain insight into the uncertainty of

Table 1
SESNe Data Set (Includes Compilations from L&M14,a L16,a M16,a and New Additions Below)

Phasea Ib IIb Ic Ic-bl
( )N N,SNe Spec ( )N N,SNe Spec ( )N N,SNe Spec ( )N N,SNe Spec

0±5 (28, 81) (21, 62) (27, 79) (17, 74)
5±5 (22, 68) (19, 54) (21, 61) (17, 59)
10±5 (23, 54) (18, 41) (21, 47) (15, 36)
15±5 (19, 44) (17, 35) (18, 40) (13, 30)

New SNe (Added to Liu et al. Sample)
SN Name SN Type Phasesa References

SN2010as IIb −14, −13, −12, −11, −10, −9, −9, −9, −9, −8, −8, −8, −6, −6, −6, −5, −5, −5, 6, 19, (+6) F14
SN2011hs IIb −9, −8, −8, −7, −6, −5, −5, −5, 4, 5, 8, 25, 25, 26, 27, 28, 28, 53, 58, (+4) B14
SN2012aub Ib −6, −1, 10, 21, 33, 48, 57, 67, 73, (+2) T13
SN2012P IIb −11, −8, −7, −2, 1, 8, 26, 29, 31, (+1) F12
SN2013df IIb −14, −11, −4, −4, −4, 0, 4, 11 S16,C16
SN2013ge Ic −15, −14, −13, −4, −3, 5, 6, 12, 13, 15, 16, 19, 30, 33, 34, D16

37, 38, 40, 43, 44, 46, 46, 62, 65, 67, 70, 70, 71, (+9)
SN2014ad Ic-bl 27, 27, 37, 37 YG12
LSQ14efd Ic −12, −11, −4, −4, −4, 4, 4, 17, 17, 17, 23, 23, 23, 32, 32, 32, 32 S15
iPTF15dtg Ic −16, −2, 6, 15, 45, 64, 78, (+1) T16
SN2016coi Ic-bl −13, −10, −8, −2, −1, 0, 2, 6, 7, 10, 23, 24, 30, 42, 62, 85, (+3) P18
SN2016gkg IIb −18, −18, −18, −17, −16, −15, −14, −11, −10, −7, −5, −1, −1, 0, 1, 15 T17
SN2017ein Ic −7, 12, 15, 18, 22, 38, 47, 51, 53 VD18

Notes.
a Phases are rounded to the nearest integer and are in rest frame, relative to the date of V-band maximum. The number of nebular phase spectra (phase >90 days) are
included in parentheses, but they are not used in our analysis.
b The spectra of SN2012au could not be included in our PCA analysis because they were too noisy.
References.L&M14—Liu & Modjaz (2014), L16—Liu et al. (2016), M16—Modjaz et al. (2016), F14—Folatelli et al. (2014), B14—Bufano et al. (2014), T13—
Takaki et al. (2013), F12—Fremling et al. (2016), S16—Szalai et al. (2016), C16—Childress et al. (2016), D16—Drout et al. (2016), YG12—Yaron & Gal-Yam
(2012), S15—Smartt et al. (2015), T16—Taddia et al. (2016), P18—Prentice et al. (2018), T17—Tartaglia et al. (2017), VD18—Van Dyk et al. (2018).

Figure 1. Cumulative fraction of variance of the entire SESNe data set captured
by nPC eigenspectra. The first five eigenspectra capture 79% of the sample
variance.

Figure 2. Reconstructions of the spectrum of SN type IIb SN2011ei
(Milisavljevic et al. 2013) at phase =t 13Vmax days. An increasing number of
eigenspectra (nPC) is used to reconstruct the original spectrum from top to
bottom. As nPC increases, more features are captured, but five eigenspectra
already capture the H and He features (indicated by shaded regions).
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the SVM linear decision boundaries. The results of our SVM
classification are discussed in Section 5.

4. Physical Interpretations of Eigenspectra

One of the major benefits of our PCA and SVM based
classification method is that we can physically interpret the
eigenspectra using mean spectra of each of the SESNe classes.
This allows us to understand why the SVM identifies certain
eigenspectra as better classifiers than others, and how this
behavior changes as a function of phase.

4.1. Comparing Eigenspectra to SESNe Mean Spectra

The first few eigenspectra are the most important building
blocks for reconstructing a spectrum from our data set.
Therefore, in order to understand any strong eigenspectra
features, we compare the first five eigenspectra for the phase
range tVmax=15±5 days to the mean spectra for each of the
four SESNe types, presented in Liu et al. (2016) and Modjaz
et al. (2016). The first five eigenspectra are plotted in Figure 3,
along with the mean spectra for the four SESN subtypes. The
principal components are naturally normalized, and we choose

the sign of each component to properly represent the absorption
features they capture. We highlight a few important features of
each of the first five eigenspectra:

1. PC1 has a strong trough that lines up with the He I5876
absorption feature present in both type IIb and Ib mean
spectra, as well as the absorption feature in the Ic mean
spectrum (the cause of which is debated; Dessart &
Hillier 2010).

2. PC2 matches the Ic mean spectra closely up to
λ≈5500Å.

3. PC3 has small troughs in the Hα and Hβ regions in
addition to a stronger trough in the He I5876 region.

4. PC4 has strong troughs in the Hα and Hβ regions, but
lacks a strong He I5876 feature.

5. Due to the broadening of their features, SNe Ic-bl are
effectively nearly featureless spectra, which result in a
much smoother average spectrum than any of the first
five PCs.

These similarities between the eigenspectra and the SESNe
mean spectra provide an excellent context to interpret the SVM

Figure 3. Comparison of the first five eigenspectra at phase tVmax=15±5 days, constructed using data of all SESNe types, with the mean spectra (Liu et al. 2016;
Modjaz et al. 2016) for types SNe IIb (upper left), Ib (upper right), Ic-bl (lower left), and Ic (lower right). The eigenspectra are scaled by a factor of 2 and sign choice is
made to facilitate comparing the relative structure of the principal components vs. the mean spectra. PC1 and PC3 have a strong trough that lines up with the He I5876
absorption feature in types IIb and Ib SNe. PC4 has strong troughs that line up with the Hα and Hβ absorption features in the type IIb mean spectrum.
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classification. From Figure 3, we see that all of the SESNe
types except Ic-bl have an absorption feature near λ≈5876Å
(although this feature is most likely not due to helium for the Ic
type). Moreover, as shown in Liu et al. (2016), this feature
exists in the IIb, Ib, and Ic mean spectra even at early phases.
Therefore we conclude that PCA generates eigenspectra that
match previously identified important SESNe spectral features.

4.2. Time Evolution of Eigenspectra

In Section 4.1 we present the eigenspectra only for the phase
range tVmax=15±5 days because we find the SESNe types to
be maximally separated at this phase, as we show in Section 5.
Here we discuss how the eigenspectra change as a function of
time. We have calculated and compared the first five
eigenspectra for each of the phase ranges 0±5 days,
5±5 days, 10±5 days, and 15±5 days, relative to the
V-band date of max. We find that there is very little change for
a given eigenspectrum across different phases. However, there
is a slight change in the ordering of the first five eigenspectra
between the later phase ranges and the tVmax=0±5 day phase
range. Figure 4 shows that PC5 at phase tVmax=0±5 days
corresponds (i.e., is most similar) to PC3 of the later phase
ranges, and PC3 at phase tVmax=0±5 corresponds to PC4 of
the later phases. In the later phase ranges, PC3 is the
eigenspectrum with weak troughs in the Hα and Hβ regions
and a strong trough in the He I5876 region. Thus, it is not
surprising that this eigenspectrum captures less variance of the
sample in the earliest phase range. Liu et al. (2016) showed that
the pseudo-equivalent line width (pEW) of He I5876 in SNe
types IIb and Ib are at their lowest values near the V-band
maximum and increase over time. PC4 in the later phases,
which consists of two strong troughs at the Hα and Hβ

wavelengths, is more highly ranked in the tVmax=0±5 phase
range because the Hα absorption feature is very strong in type
IIb spectra even at early phases.

5. SVM Classification Results

Our goal is to create a method that reproduces the standard
empirical classification scheme that classifies SNe spectra using
the H and He features. We apply SVM to every 2D projection
of the first 10 eigenspectra (following the procedure in Bianco
et al. 2016), and we find that the highest test scores (see
Section 3.2) are always associated with a pair of the top five
eigenspectra. These results are consistent with both Figures 1
and 2, where the first five eigenspectra are sufficient to capture
79% of the spectral variance in our sample and reproduce the
spectrum of SN2011ei, respectively. In Figure 5, each panel
corresponds to a different phase range, and in each panel we
show the 2D plane that leads to the highest classification score.
In the case where one phase range has multiple optimal planes
(i.e., test scores are consistent within 1σ), we choose the
eigenspectra pair to be physically consistent with PC1 versus
PC3 at late times (i.e., =t 10, 15Vmax days) because this pair of
eigenspectra produces the highest SVM test score across all
phases and the least amount of overlap of the 1σ contours of the
PCA coefficients for the different SESN classes. We find that
we can recreate the SNID labels of our data set. Furthermore, we
find that the optimal phase ranges for classifying SESNe are
tVmax=10±5 days and tVmax=15±5 days, as opposed to at
maximum light (tVmax=0±5 days). This is important in a
future that, with the advent of LSST, will see an overwhelming
number of SN discoveries, and a radical pressure on the urgency of
spectroscopic follow-up for classification. Lowering the pressure
on immediate follow-up for one type of transient (SESNe)
alleviates pressure on the follow-up facilities altogether.

5.1. Classification in the PC1 versus PC3 Projection

Figure 5 shows the two-dimensional projection of our
SESNe spectra onto the optimal eigenspectra pairs that
maximally separate subclasses: PC1 versus PC3 for =tVmax

  5 5, 10 5, 15 5 days, and PC1 versus PC5 for tVmax=
0±5 days (as we described in Section 4.2, PC5 at tVmax=
0±5 corresponds to PC3 in the later phase ranges). The
colored regions illustrate the linear SVM decision boundaries.
Boundaries for 50 different 70%–30% train-test splits of the
data are shown, thus assessing the statistical robustness of
the decision boundaries. The SVM test score, a measure of the
accuracy of the classification, is indicated in each figure panel,
including uncertainties generated from the 50 train-test splits.
Colored ellipses in each panel represent the 1 standard deviation
(1σ) contours of the PC coefficients for the different SESNe
types. We have not included SNe Ib-pec (e.g., SN2007uy,
SN2009er Modjaz et al. 2014) nor SNe Ic-pec (e.g., SN2005ek
Drout et al. 2013) in the calculation of the ellipses (but we do
show the data points of these peculiar subtypes).
Both SVM test score and the 1σ contours allow us to

evaluate the success of our classifying scheme. The highest
SVM test scores (.71±.10 and .70±.11) are achieved at
tVmax=10±5 and 15±5 days, respectively. These scores,
however, are statistically consistent at the 1σ or 2σlevel with
the lower test scores of the earlier phases. Nonetheless, the
SESN classes are more compactly clustered and separated at
later times as shown by the 1σ contours that are maximally

Figure 4. Change in eigenspectrum order between tVmax=0±5 days vs. later
phase ranges. PC5 at early times is equivalent to PC3 at later times as they
capture the same features: Hα, Hβ, and He I5876 as discussed in Section 4.1.
Similarly, PC3 at early times is equivalent to PC4 at later times because they
both primarily capture Hα and Hβ absorption. Otherwise, the important large-
scale features do not change with time.
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separated at these later phases. Therefore, we find that the
optimal time for classifying SESNe spectra is later than
( =  t 10 5, 15 5Vmax days) rather than at or near peak
( =  t 0 5, 5 5Vmax days).

PC1 is a poor choice of eigenspectrum for SESNe
classification at early times because the He I5876 absorption
feature in Ic, IIb, and Ib spectra has not had time to strengthen.
In the phase ranges tVmax=10±5 and tVmax=15±5 days,
PC1 and PC3 both become more effective at distinguishing
between SESNe spectral types, with less overlap in the 1σ
contours and a higher SVM test score. In particular, we find
that the PC1 coefficients of SNe types IIb and Ib increase
(while SNe Ic PC1 coefficients remain relatively unchanged) as
phase increases. Since PC1 captures the strong feature at
λ≈5600–5800Å, which is due to He in SNe Ib and IIb, this

behavior is consistent with Liu et al. (2016), which found that
the pseudo-equivalent width (pEW) of the He I absorption
features in SNe types IIb and Ib increases as a function of
phase. Figure 5 also shows that as phase increases, PC3
becomes better at distinguishing between SNe types IIb (green
region) and Ib (blue region). Specifically, the SNe type IIb PC3
coefficients systematically increase with increasing phase.
Since PC3 captures the Hα and Hβ features, this behavior is
consistent with the strengthening of the Hβ absorption feature
in SNe IIb mean spectra shown in Liu et al. (2016).
The SNe Ic-bl region (gray) is reasonably well separated

from the other SESNe types at all phases in Figure 5. However,
note that the Ic-bl data and the corresponding 1 standard
deviation contour is centered near the origin in every panel.
Moreover, we find the PC coefficients of the SNe Ic-bl to be

Figure 5. Each panel shows the SESNe classification regions and linear decision boundaries for each SVM train-test split of the data. Ellipses represent the 1 standard
deviation contour of the PC coefficients for each SESN type (excluding the peculiar SNe SN2007uy, SN2009er, and SN2005ek). Outliers of more than 2 standard
deviations from the mean are marked with stars. The phase range tVmax is labeled in the upper left of each panel, along with the mean SVM test score. PC1 vs. PC3
provides the highest SVM test score for each phase range except tVmax=0±5 where PC1 vs. PC2 has a slightly ( s<1 ) higher SVM test score but very similar 1σ
contour and SVM region overlap. Upper left:(tVmax=0±5 days). There is large overlap between the IIb (green), Ib (blue), and Ic (orange) 1σ contours, and between
the SVM IIb and Ib region, and the IIb and Ic region (as indicated by the region boundaries changing significantly for different train-test splits and the colors bleeding
into each other). Upper right:(tVmax=5±5 days). As tVmax=0±5 days, there is overlap between the IIb, Ib, and Ic 1σ contours, and the corresponding SVM
regions. Lower left:(tVmax=10±5 days). The IIb, Ib, Ic, and Ic-bl 1σ contours are completely separated. Each colored SVM region is well defined and stable for
different train-test splits, and the SVM test score is highest. The Ic (orange) SVM region has collapsed and the IIb (green) SVM region has expanded. Lower tight:
(tVmax=15±5 days). SESNe type 1σ contours are well separated and the SVM regions are stable. The data used to create this figure are available.
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clustered around zero in every two-dimensional projection of
the first five eigenspectra. This is expected because the SNe Ic-
bl mean spectra do not have a strong absorption feature due to
He I5876, even if it were highly broadened (Modjaz et al.
2016).

5.2. Transition Supernovae and Type Outliers in PCA Space

One major benefit of our work is that the PC coefficients of
the SESNe in our sample are continuous, and therefore well
suited for capturing the physical continuity of chemical
abundances in SNe ejecta. This behavior is particularly useful
for objectively identifying “transition” SNe, which often have
debated classification in the literature due to spectra that
resemble more than one SESN type. Our method also identifies
outliers in a particular class that are extreme versions of the
SESN type, but not “transition” SNe. In Figure 5 we label all
SNe in each panel that are more than 2 standard deviation
outliers and discuss them below.

5.2.1. Type Ib Outliers

Figure 5 shows two SNe Ib that are consistently strong
outliers: SN2007uy and SN2009er. These two supernovae
either appear within the SNe Ic-bl (gray) region or close to the
SVM decision boundary separating the Ic-bl and Ib regions
(note that if SN2007uy or SN2009er does not appear in a panel
of Figure 5, it is because we have no spectra in the
corresponding phase range). SN2007uy and SN2009er have
been previously identified in the literature (Modjaz et al. 2014)
as peculiar members of the Ib class. Modjaz et al. showed that
SN2007uy and SN2009er have broader features at higher
velocities than normal SNe Ib spectra, in agreement with our
results. We also find that SN1990I, SN1998dt, and SN2004gq
are consistent outliers toward the Ic-bl region, although to
lesser degrees than SN2007uy and SN2009er. Elmhamdi et al.
(2004) have previously identified SN1990I as having high
velocity features atypical of a normal SN Ib, and Modjaz et al.
(2014) show that SN2004gq and SN1990I both have high
absorption velocity He features compared to other SNe Ib
spectra. The outliers SN1990I, SN1998dt, and SN2004gq may
form a continuum of SN Ib spectra with higher than normal
Doppler shifts, while SN2007uy and SN2009er indicate the
possibility for a continuum of SNe Ib spectra with varying
amounts of line blending. SN1999ex was initially classified as
an SN Ic, then changed to an SN Ib/c due to moderate He I
absorption features (Hamuy et al. 2002). More recently,
SN1999ex has been classified as an SN Ib (Modjaz et al.
2014). We identify SN1999ex as an outlier in multiple 2D
projections of PCA space, indicating that it is not a standard SN
Ib nor a standard SN Ic.

We also identify SN1990U, SN2007kj, and SN2007Y as
outliers in Figure 5. SN1990U (found in the green SN IIb
region) has previously been considered as an SN Ic (Matheson
et al. 2001) and more recently as an SN Ib (Modjaz et al. 2014).
Although we identify SN1990U as an outlier SN Ib in the PC1
versus PC3 projection, in the other projections it is an SN Ib,
and in no projection is SN1990U located in the standard SN Ic
region. Therefore, our results support the reclassification of
SN1990U as an SN Ib by Modjaz et al. (2014). SN2007kj was
previously classified as an SN Ib/c “transition” object
(Leloudas et al. 2011) and more recently as an SN Ib (Modjaz
et al. 2014). We find that SN2007kj would be considered a

strong outlier as an SN Ic in every 2D projection of the first five
eigenspectra, while it is consistent with being a standard SN Ib
in multiple 2D projections (not shown) other than PC1 versus
PC3. Therefore we support the reclassification of SN2007kj as
an SN Ib by Modjaz et al. (2014). SN2007Y has been classified
both as an SN IIb (Folatelli et al. 2014) and an SN Ib (Liu et al.
2016). In the PC1 versus PC3 2D projection, we find that
SN2007Y falls in the IIb region, consistent with Folatelli et al.
(2014), who argued that SN2007Y is an SN IIb due to the
strength and velocity of the He I5876 feature. However, in
another 2D projection (not shown), namely, PC1 versus PC4
(strong Hα and Hβ features) at phases =  t 5 5, 15Vmax

5 days, we find that SN2007Y falls in the Ib region, in
agreement with Liu et al. (2016), who found that the H feature
evolution of SN2007Y was consistent with SN Ib spectra.
Thus, our classification method captures the debate over the
correct type for SN2007Y.

5.2.2. Type IIb Outliers

In Figure 5 we label the following outlier SNe IIb:
SN2010as, SN2011ei, and SN2016gkg. At early times,
SN2010as appears on the decision boundary between types
Ic (orange) and IIb (green), which is consistent with Folatelli
et al. (2014), who found that SN2010as exhibits weaker than
normal He features at early times, in addition to weak H
features. SN2011ei is a strong outlier in the PC1 versus PC3
2D projection. Milisavljevic et al. (2013) showed that
SN2011ei evolves quickly, losing its H features within a week
after the V-band maximum, to resemble a type Ib spectrum
characterized by helium features. Figure 5 illustrates this
evolution, with SN2011ei initially a standard IIb at phase
tVmax=0±5 days, then subsequently moving to the Ib region.
However, Liu et al. (2016) showed that the Hα equivalent
width evolves differently for type IIb and Ib spectra (including
SN2011ei), so SN2011ei is distinguishable as an SN IIb even at
late times. When we consider the PC1 versus PC4 (strong Hα
feature) 2D projections (not shown) at the later phase ranges

=   t 5 5, 10 5, 15 5Vmax days, we find SN2011ei to be
consistently within the IIb (green) region in agreement with Liu
et al. (2016). SN2016gkg is classified as an SN IIb due to its
Hα absorption, but Tartaglia et al. (2017) showed that
SN2016gkg exhibits stronger than normal helium features
even at early times, similar to an SN Ib. Figure 5 captures this
behavior, showing SN2016gkg as a strong outlier in the Ib
(blue) region at tVmax=0±5 days, but a more normal SN Ib in
other 2D projections (not shown).

5.2.3. Type Ic/Ic-bl Outliers

We identify three Ic outliers, SN1990B, SN1994I, SN2005az,
and six Ic-bl outliers, SN2002ap, SN2007bg, SN2007ru,
SN2010ay, SN2010bh, and SN2016coi in Figure 5. SN1990B
is currently considered an SN Ic; however, it was initially
classified as an SN Ib (Clocchiatti et al. 2001), which is
consistent with our results in Figure 5. SN1994I is one of only a
few SN Ic with many spectra taken over a range of wavelength
regimes (e.g., Filippenko et al. 1995; Richmond et al. 1996;
Immler et al. 1998), and it is considered a prototypical SN Ic.
However, we find that SN1994I is considered an outlier in many
2D PCA projections, at multiple phases, as illustrated in
Figure 5. Our results indicate that SN1994I may not be a
prototypical SN Ic, confirming the spectroscopic analysis of
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Modjaz et al. (2016) and the photometric analysis of Drout et al.
(2011) and Bianco et al. (2014). SN2005az was initially
classified as both an SN Ic (Aldering et al. 2005) and an SN
Ib (Quimby et al. 2005). Recently SN2005az has been classified
as an SN Ic (Kelly & Kirshner 2012) using SNID based on the
updated SESNe library from Modjaz et al. (2014) and Liu et al.
(2016). We find that SN2005az is inconsistent with being an SN
Ib in the majority of 2D projections, and when it is consistent
with belonging to the Ib or IIb class, this is due to large overlap
of the Ic and Ib/IIb regions at tVmax=0±5 days. Meanwhile,
there are some PCA 2D projections (PC2 versus PC4; not
shown) where SN2005az is located within the SN Ic one
standard deviation contour, so we support the classification of
SN2005az as an SN Ic.

SN2002ap is claimed to be a relatively low energy SN Ic-bl
compared to normal SNe Ic-bl events (Mazzali et al. 2002) and
has been classified as a normal SN Ic from radio observations
(Berger et al. 2002). We find that SN2002ap is indeed a
potential transition object between the Ic and Ic-bl regions in
Figure 5. Although SN2007bg is identified as an outlier at
phase tVmax=5±5 days, it is well within the Ic-bl SVM region
(gray), and it no longer fulfills the outlier criterion at later
phases, in agreement with the literature view that SN2007bg is
a standard SN Ic-bl (Young et al. 2010). Similarly, although
SN2007ru is marked as an outlier in the lower left panel of
Figure 5, it is well within the SN Ic-bl SVM region and
considered a standard SN Ic-bl (Sahu et al. 2009). SN2010bh is
considered a standard SN Ic-bl, although with slightly higher
inferred explosion energy than other standard Ic-bl SNe
(Chornock et al. 2010). At late times (bottom right) of
Figure 5, we find that SN2010ay is a strong SN Ic-bl outlier
well within the Ic-bl region. SN2010ay is a particularly
interesting Ic-bl because it has been proposed that SN2010ay
was associated with an off-axis low-luminosity gamma-ray
burst, due to its high absorption velocity, high peak luminosity,
and low metallicity (Sanders et al. 2012), combined with a lack
of observed gamma-rays. SN2016coi has broad spectral
features in addition to a strong absorption feature generally
attributed to He I in the literature (Prentice et al. 2018), setting
it apart from normal Ic-bl SNe. We find that SN2016coi is
located right at the SVM boundary between the Ic-bl and Ib
regions consistent with SN2016coi being similar to the SN Ib
class.

6. Summary and Future Work

In this work, we have shown that PCA is a useful tool as a
first step toward a data-driven classification method for SESNe
types. We used multiclass linear SVMs to explore different
projections of SESNe spectra onto eigenspectra and found that
the SESNe types are more distinguishable in the later phase
ranges » -t 10 15Vmax days relative to the V-band maximum,
rather than at peak light. We recommend that spectral follow-
up of ZTF and LSST supernovae take these considerations into
account. In addition, our classification method naturally
provides a continuous, quantifiable method for characterizing
“transition” SNe based on distance to class boundaries or
centroids. We showed that our classification method identified
both “transition” SNe and SNe with debated types previously
identified in the literature, and we interpreted these SNe using
our PCA eigenspectra and our SVM classification regions.

PCA is clearly a promising dimensionality reduction tool for
SESNe, and there are many future projects that would use the
work presented here as a starting point. In particular, the
probability of a supernova’s membership in one of the SESNe
types could be calculated using the distance from its PCA
projection to an SVM decision boundary. This provides a
quantitative understanding of “transition” SNe like the type
Ibc’s, and should especially be explored as a function of phase.
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