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Abstract

This paper presents some analytical considerations regahdirttynamical behavior of an access control
structure, based on the mathematical model associatedststitiicture. This structure type is largely
analyzed in the literature. A modern approach of thiscaire based on SMA (shape memory alloy) is
taken into account, because of some particular advantag&ue characteristics (superelastic effect, as
well as the single and double shape memory effects), dgropjpacity of noise and vibration, resistance
to fatigue, diversification of the control and commandsilailities.
The basic aim is the qualitative analysis of the mathiealanodel associated to this structure. Namely,
the dynamic system associated to the variation of thke andescribing the position of the access control
structure is analyzed from the influence of parametersigtant. The MAPLE11 soft is used in order [to
evaluate the behavior of the equation solution with regpebe parameters variation.
This analysis produces a data collection which is useful BmtHurther developing a fuzzy logic
controller for the active control of this access strieetand for further refinements of the mathematical
model associated to this structure type.
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1 Introduction

Memory Alloys (SMAs) are a class of smart materiast tpossess the ability to undergo shape change at
low temperature and retain this deformation until theyhaaed, at which point they return to their original
shape. SMAs present typical thermo-mechanical behavikespseudo-elasticity and shape memory effects
(one-way and two way). The cause is a martensitic phassformation between a high temperature parent
phase, austenite (A), and a low temperature phase, m&téli In the absence of stress, the start and
finish transformation temperatures are denoted Ms, Mfténsite start and martensite finish) and As, Af
(austenite start and austenite finish). Due to theiratsrproperties”, these materials are widely used in
practice. The structures using them have mechanical andtingsas, and also static and dynamic analysis

(1].

SMA related design is not easy. Several aspects mustrimdered before the final prototype takes place.
One of the major obstacles to overcome are the intertwirgggegires of shape memory alloys. Most of the
physical, electrical and mechanical aspects of shape mpatepend on each other and at some point design
decisions must be made to reduce the number of varis@dese of these correlations are: Force vs. Cycle
Times vs. Power; Stroke vs. Durability vs. Envelope Yfa#y Control Aspects and viability [2,3].

The SMA springs work as linear actuators by contraotiit great strength and speed when heated. These
springs actuators can be attached to barrier stes;tand can be activated to switch positions of the barrier
The active shape-change control of SMA spring can effegtimerease the efficiency of such a barrier at
several different regimes. SMAs exhibit a large tempeeadependence on the material shear modulus,
which increases from low to high temperature. Thereforthesemperature is increased the force exerted
by a shape memory element increases dramatically. Goesty, the determination of the transformation
temperatures is necessary to establish the real shahrlus values at these functional temperatures for a
high-quality design of SMA elements [4,5].

In order to determine the required transformation tempemtaf SMA spring, the Differential Thermal
Analysis (DTA) and Differential Scanning Calorimetry (OS methods were used [6]. Also,
Thermogravimetric Analysis (TG) was used to prove theiligiabf the alloys.

Starting from the dynamic calculus of the access cbstracture, in what follows there is realized an
analytical evaluation and computational testing for the mathemhatodel associated to this structure, using
MAPLE11 software. It is presented a particular type smhuof the differential equation associated to the
model, and the behavior of its trajectory, too. This woullg lederstanding the experimental standpoint:
taking into account that the SMA spring must develop, at tegiperature, the necessary force to lift the
barrier arm by S=12 mm, the questionhew large the intensity in spring can be, in order te filse access
arm in an imposed timeThe data obtained will be used for refining the expeamisign new conditions, on
one hand, and, on the other hand, will allow new qualgasipproaches for the associated mathematical
model.

2 Methodology

2.1 Dynamic Calculus for the Access Control Structte with SMA Actuator

In Fig. 1 is exhibited the mechanical model of the expertaiearrangement simulating the barrier. The
force is ensured by the SMA spring. At least for the tigigig of a certain motion of the barrier starting from
an resting position, the direction of this force cardmesidered as being vertical.

The nickel titanium alloys, used in the present resegeherally referred to as Nitinol, have compositions
of approximately 50 atomic %Ni/ 50 atomic % Ti.
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The features of the model are the following:

* We consider as known the ratio k=4@B

e The length of the barrier arm AB is L. The center of ntdgkis arm is noted C. We have AC = CB
e The barrier arm is considered as being kind of homogenousgihdits mass is notedm

¢ The external concentrated mass attached on the arsnbatlihd B is m

e We consider the case that k>0 and k< 0.5

e The current position of the arm is described by the génedecoordinate q

F

Fig. 1. Mechanical model of the experimental arrangement

Both the dynamic calculus and the mathematical moddbased on the Hamiltonian mechanics principles.
There are taken into account:

e The arm gravity force;
e The gravity force of the external weight (due to thessna);
e The SMA spring force, applied in A

The equilibrium condition for the arm is obtained in its ieatt position, by applying thes“Hamilton”
variational principle. The cayg = g describes a stable equilibrium status when:

ml-g-L-(%—k)+mz-g-L-(l—k)<k-L-F (1)
Also, the casiq = 3?” describes a stable equilibrium position if
1
mygL (z - k) +m,gL(1 — k) > kLF )

The system will develop some motion, but this motion will reokimd of uniform. We can study this motion
using, briefly, the Lagrange method. The kinetic energyestfstem, elementarily calculated, is:

T=qZ.M.[1+k.(k_1)]+q2.mZT'LZ.(1_k)z A3)

2 s
T . . .
Of course we hava = 0 which implies

LY = omy 12 [k G- D]+ my - 12+ (- B2 )
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Taking into account the generalized force Q [7], the nmattieal model of the motion will result from
applying the well-known Lagrange equality

L(3)-2=q (5)

dt \ag aq

Thus, the following differential equation is obtained:
Go{my 1Bk o= D] +my- 12 (1K) = )
1
cosq-[kLF—L-(E—k)-ml-g—L-(l—k)-mz-g]
Let us denote:

KLF =L-(3—k)-my-g—L-(1=k)-m,-g

my 12 [k (o= 1) +my - 12 (1 — k)2
(7

We have obviously=const. and, in the announced conditiohs; 0 [7]. Then the mathematical model
becomes:

g—A-cosq=0 (8)
2.2 Mathematical Approach. Methodology

The basic aim is to realize a computational testinthefdifferential equation (8) associated to the access
control structure, in order to get an analytical stamipfor the model and to use it in further analysis. The
study is in fact on an automated system studied in distine¢e which is based on the variation of the arm
angle in time, with respect to the parameters.

The methods are designed in two categories: analyticat@ngutational. It is used the MAPLE11 soft to
analyze the solution of the equation (8), with initial cowdisi imposed by experiment. This soft has a lot of
fast appliances both for solving and graphical analyzingdifftial equations [8].

2.2.1 Computational approach

It was used thedsolvé procedure for getting the solution of the Cauchy problesoeiated to the model.
The solution was asked in series form, taking into accoufitttae aim of getting some approximate
evaluations.

As a general ordinary differential equation (ODE) solvdsgolvé handles different types of ODE problems.
These include the following:

- Computing closed form solutions for a single ODEIs@lve/ODE, or a system of ODEs
(“dsolve/systeth

- Solving ODEs or a system of them with given initi@nditions - boundary value problems
(“dsolve/IC8).

- Computing formal power series solutions for a Imé€@DE with polynomial coefficients
(“dsolve/formal_seriés

- Computing formal solution for a linear ODE with polynial coefficients.
(“dsolve/formal_solutidi.

- Computing solutions using integral transforms - Lapkawe Fourier (8solve/integral_transforii.

- Computing numerical or series solutiondgtlve/seri€3 for ODEs or systems of ODEs.
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A special appliance is th®@DE Analyzer Assistana point-and-click interface to the ODE solver routines
With a lot of choices for interactive solving and plotting diffetial equations, it can compute numeric and
exact solutions and plot the solutions. The basic calling epges aredsolve[interactivg and
worksheet/interactive/dsolyand allow changing the simulation parameters in an interagtydq9,10].

2.2.2 Graphical approach

DETools [DePlot]- is an appliance which plots solutions to a system of diiteal equations. The basic
calling sequence is as follows:

DEplot (degns, vars, trange, options)
Parameters:

deqgns- list or set of first order ordinary differential edions, or a single differential equation of any
order;

dproc - a Maple procedure representation for first ordelinary differential equations, or a single
differential equation of any order;

vars - dependent variable, or list or set of dependent yasab
trange- range of the independent variable;
number- equation of the form 'number'=integer indicating the nundbetifferential equations when
degns is given as a function (dproc) instead of expressions;
options- (optional) equations of the form keyword=value;

Given a set or list of initial conditions, and a systdnfirst order differential equations or a single higher
order differential equatiorEplot plots solution curves, by numerical methods. This meanghbanitial

conditions of the problem must be given in standard form,ish#te function values and all derivatives up
to one less than the differential order of the differémtpation at the same point.

3 Results and Discussion

The analysis was made in the following experimental context

» The SMA spring must develop, at high temperature, the saceforce to lift the barrier arm by
S=12 mm

In this context, some reference experimental values weredevedi[6,7];

* m;=0,00642kg, r¥0,028688kg , k=0,1573373;
» aforce F=1.65N in order to get the motion started.

This context produced a valuejof 0.32.
3.1 The Solution of the Differential Equation

The barrier arm is rising in a very short time, so theatnical system associated to this phenomenon needs
an approach in discrete time, for few units. It was useddbelvé procedure for getting the solution of the
Cauchy problem associated to the model. The solution was askedeés form, taking into account a future
aim of getting some approximate evaluations.

In order to simplify the relations, the notation gq=x is usAlbo, taking into account that at t=0, the
controller is at resting, there were considered the foligwivo sets of initial conditions:
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(i) x(0.02) = 0.866803,D(x)(0.02) = 0.897666
(i) x(0.03) = 1.733863, D(x)(0.03) = 1.166965

Here D(x) denotes the first derivative for x(t).

The solution form for the cases i and ii, is depictecbievi's in Figs. 2 and 3.

ansl =x(1) = 866803 448833( 1 )

1000000 500000 50
2
i 4 cos[ 866803 ) (t— 1 )

25 1000000 50
149611 Sin( 866803 J (t—Ler(
3125000~ \ 1000000 50
8 COS( 866803 )Sin( 866803 j
1875 1000000 1000000
67150353963 COS( 866803 ))( _L)“Jr[
6250000000000\ 1000000 50

448833 COS( 866803 ]2 149611 Sin( 866803 Jz
195312500 1000000 195312500 1000000

30139294820275179 sin( 866803 J] (t_ 1 )5
15625000000000000000" (1000000 50

ro{(r-55))

Fig. 2. The solution of the Cauchy problem (8), in serierm. Case i of initial conditions

+

ans2 mx(r) = A133863 | 233303 (t_ 3 j
‘ 1000000 200000 100

+icos[ 1733863) (t_ 3 ]2
25 1000000 100
233393 . [ 1733863) (t 3 )3+[

100
8 COS( 1733863)Sin( 1733863]

1875 1000000 1000000
54472292449 COS( 1733863)) (t_ L]4+[
3000000000000\ 1000000 100
233393 Cos[ 1733863)2 L 233393 sin[ 1733863)2

78125000 1000000 234375000 '\ 1000000

12713451751549457 sin[ 1733863)) (t_ LJS
3000000000000000000” '\ 1000000

Ty

Fig. 3. The solution of the Cauchy problem (8), in serieform. Case ii of initial conditions

3750000 °{ 1000000 ) \©

It can be seen that in both simulation cases, the solutioarhasymptotic form with the same order 6, and a
quite complex expression. In the meantime, it must be mbtice formt —% andt —% respectively,
which appear in the series expressions above.

In order to collect more data about the solution behavioopgutational testing was realized, too.
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3.2 Graphical Comparative Analysis of the SolutiorBehavior

There were used two computational tools for comparingebelts: the interactive tool “ODEAnalyzer” and
the “DEPIot” appliance for the differential equations.

3.2.1 “ODE Analyzer” results

“ODE Analyzer” has a lot of choices for interactive sty and plotting differential equations. For the
present aim we choose the classic Runge-Kutta-Fehlbstiyg drder method, which has a good accuracy [9].
The interactive assistant shows the value of x(t) and thieatige D(x)(t) at a certain time, together with the
plot of the solution.

For a better comparison of the results, there were camsidee same two sets i and ii of initial conditions.
This matches with taking into account for the controller ,aendisplacement of 2mm and 4 mm,
corresponding to the action times of 0.02 and 0.03 sec respgct

Figs. 4 and 5 exhibit the interactive analysis for the stabes i and ii. There are exhibited in the same
frame both the plot and a value of x and D(x) at a certainenarithe interest is for the moment t=25.

=

X5 Schve Numesicaly -
Parsmeters Cutput
@ PungeduftsFehberg 4-5th order S Function velues &t = Schve

Dverk 7-53th order

Gaar ngie step extrapolation

Roserbrack stff 3-4th order

Lvermore stff o

TN

Bourdary Valoe Probiem scheer

Tavlor serms

babisigdaiaids

Modfed Extended BOF Implct

Fomd 2ep mwrhods Show Magie comrands

Absciute:  1.000000e-07 def ik

Fig. 4. The case i of analysis for the solution

3.2.2 “DE Plot” results

For this analysis we need the variables domain. Therefoe variables calculated domain is the following:

t =0..25,x = 0..5.207963
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The last value for x corresponding to a displacement of 1Zanthe controller arm. The simulations were
realized for the above cases i and ii, too. Further, theeinfle of increasing and decreasing time was taken
into account. In the following, the cases are labelefiigomes.

=

B Sohoe Humenced, e
Far smeters Qutpg

@ PurgedugraFeblerg 4-5h crder Show funchon valbes &t t =
Fa
Overk 7-8th order 1=
x = 17.7429031245397404 ot

Gor S 2249 EoRrapolation |0 x' = ,397519989174250466
Rosenbrock stff 3-4th order

Lvermore st sciy< teratrve g4

Scurdery Yaue Probiem saiver 1

Taykor sargs o= core 2 |

Modfied Extended BDF Implat

Fued Sep methods Shows Magle commands

Sbsolutre: 100000007 def gt

Fig. 5. The case ii of solution analysis

x(t)

Fig. 6. The case i of initial conditions, t=0..25



lonescu et al.; BIMCS, 11(3): 1-13, 2015; ArticeBUMCS.19280

af)

Fig. 7. The case i, t=0..55

)

Fig. 8. The case i, t=0..15
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0

Fig. 9. The case ii of simulation, t=0..25

1)

Fig. 10. The case ii, t=0..55

10
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EA%

Fig. 11. The case ii, t=0..15

Looking at the above analysis, there issue special remarks.

1.

In the first part of analysis, the interactive dasisproduced quite different values for the time
derivative in the cases i and ii. The negative valueshi®itime derivative indicates that the barrier
arm is rising up and then coming down, in the time t=28&wasked in the interactive frame. This is
feasible from the experimental design standpoint.

For all that, a next aim is rising up: to realize a ¢siest analysis of the solution of the equation
(8), taking into account the complicated asymptotic formt,0&$ presented in Figs. 2 and 3. A
closer and refined analysis of this nonlinear differemtplation would produce useful data for the
model.

The solution trajectory changes its allure in botHysmatypes, in the second case ii, comparing to
the first case i. This allows us to consider this modabdel sensitive to initial conditionand the
fact is matched from experimental standpoint, sinceobli@omena in the spring acts in a very short
time, and therefore is not obvious to control it. Frame plots it seems that the maximum
displacement could be reached until 10 sec, and thisligblee from the experimental design
standpoint.

The trajectory trend for larger time units provitlattafter a small time the arm restarts its activity
Is the case of Fig. 7, corresponding to the firstipatar case — when the trajectory prepares to start
again a cycle, and Fig. 10, corresponding to the secaathpéer case — when the trend is relaxed.
This fact confirms the periodicity of the barrier adihvand allows the further study of initial value
problem [10].

The DEplot appliance is good in giving information about the influenédirae units on the
trajectory behavior, and this is helping the experimedealgn standpoint. In Maple we can realize
simulations with the time units as large as needed [@f]the other hand)DEAnalyserallows
refining the parameters as needed. Therefore, anothermmexs to test the dynamic system for
anotheri, from computational standpoint [12], and to take into accoumtrésults in future
experiment designs. The further data would provide infaomatbout future analytical issues, one
of which is the following: could bg an invariant for the equation (8)?

11
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5. The action time is very important in the experiment.[T3iis fact is exhibited also in the above
computational analysis, referring to the modificatiébnhe trajectory trend — “steep” and “relaxed”
respectively, in the plots. Our model is validated in d@i@aear case given by= 0.32 and the time
t=0..25, matched from experimentally design standpongimRhe pictures it can be seen that in the
proposed conditions the barrier arm realizes a complete mowvéig tip and back down. In the
same conditions, the solution of the model can be andlytidaduced, as presented in above
section 3.1, and that completes the validation.

4 Conclusion

In this paper it is realized an analytical evaluation eochputational testing for the mathematical model
associated to the access control structure with SMA@pTihe conclusion has two parts: on one hand, the
solution of the model is hard to approach by hand. Toexét is necessary to refine the analytical methods
for approach. On the other hand, the computational approachiteghia model sensitive to initial
conditions. Therefore, further tests of the model aressary, taking into account the influence of all SMA
spring parameters. A next aim is to consider the oelaliip between the temperature and the electric
intensity in the spring, and their influence on the analysiolution of the model.
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