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Abstract

In this paper some criteria for the oscillation of high order functional difference equation of the
form

∆2
(
r (n)

[
∆(m−2)y (n)

]α)
+ q (n) f [y (g (n))] = 0,

where

∞∑
s=n0

r−
1
α (s) <∞ and m > 1

is discussed. Examples are given to illustrate the results.
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1 Introduction

The notion of nonlinear difference equation was studied intensively by R. P. Agarwal [1] and
oscillatory properties were discussed by R. P. Agarwal et al.[2, 3, 4]. Difference equations find
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a lot of applications in the natural sciences, technology and population dynamics [5, 6, 7].

Recently there has been a lot of interest in the study of oscillatory behavior of solutions of nonlinear
difference equations. We can see this in [8-13]. Researchers carried out their researches on the
oscillatory and asymptotic behavior of solutions of linear higher order difference equations. During
the last two decades, many authors all over the world have taken keen interest in studying

oscillatory behavior of solutions of functional difference equations, due to its important applications
in the field of science and computers. Such equations have extensive application in economics,
physics, chemical technology, medicine, dynamic systems, optimal control and many other fields.
So, we consider the high order nonlinear functional difference equation of the form

∆2
(
r (n)

[
∆(m−2)y (n)

]α)
+ q (n) f [y (g (n))] = 0, (1.1)

where
∞∑

s=n0

r−
1
α (s) <∞. (1.2)

subject to the hypotheses:

(i) α is the ratio of any two positive odd integers.

(ii) {r (n)} , {q (n)} are real-valued positive sequences.

(iii) {g (n)} is a realvalued increasing sequence with g (n) < n, for n ≥ n0 and lim
n→∞

g (n) =∞.

(iv) f : R→ R is a continuous function such that xf (x) > 0 and f ′ (x) ≥ 0, for x 6= 0 and

−f (−xy) ≥ f (xy) ≥ f (x) f (y) , for xy > 0. (1.3)

Here ∆ is the forward difference operator defined by

∆y (n) = y (n+ 1)− y (n) .

By a solution of equation (1.1), we mean a real sequence {y (n)} which is defined for n ≥ min
i≥0
{g (i)}

and satisfies equation (1.1) for all large n. A solution {y (n)} is said to be oscillatory if it is neither
eventually positive nor eventually negative. Otherwise it is called non-oscillatory. A difference
equation is said to be oscillatory if all of its solutions are oscillatory. Otherwise, it is non-oscillatory.

Our aim in this paper is to obtain some oscillation criteria for the solution of equation (1.1). For
recent contributions to this study, we refer the reader to the papers [8-13] and the references cited
therein.

2 Main Results

In this section, we are interested to present some sufficient conditions for the oscillation of all
solutions of the equation (1.1).

Theorem 2.1. Assume that conditions (i)-(iv), (1.2) and (1.3) hold. If the first order delay
difference equation

∆u (n) + cq (n) f
[
(g (n)− n2)m−3] f

g(n)−1∑
s=n2

(
s

r (s)

) 1
α

 f [(u 1
α (g (n))

)]
= 0, (2.1)

for any constant c, 0 < c < 1 and for all N ≥ n0 is oscillatory, then the equation (1.1) is oscillatory.
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Proof. Let {y (n)} be a non-oscillatory solution of equation (1.1). Without loss of generality, assume
that y (n) > 0 and y (g (n)) > 0, for n ≥ n0 ≥ 0.
Then from (1.1), we can see that

∆2
(
r (n)

(
∆(m−2)y (n)

)α)
≤ 0, for n ≥ n0. (2.2)

There exists a n1 ≥ n0 such that
{

∆(m−2)y (n)
}

and{
∆
(
r (n)

(
∆(m−2)y (n)

)α)}
are eventually monotone and one-signed,

for n ≥ n1.

We consider the following four cases for n ≥ n1 and m > 1.

(i) ∆
(
r (n)

(
∆(m−2)y (n)

)α)
> 0 and ∆(m−2)y (n) < 0, for n ≥ n1.

(ii) ∆
(
r (n)

(
∆(m−2)y (n)

)α)
> 0 and ∆(m−2)y (n) > 0, for n ≥ n1.

(iii) ∆
(
r (n)

(
∆(m−2)y (n)

)α)
< 0 and ∆(m−2)y (n) > 0, for n ≥ n1.

(iv) ∆
(
r (n)

(
∆(m−2)y (n)

)α)
< 0 and ∆(m−2)y (n) < 0, for n ≥ n1.

Case (i): Since r (n)
(

∆(m−2)y (n)
)α

is increasing, for n ≥ s ≥ n1, we obtain

r (n)
(

∆(m−2)y (n)
)α
≥ r (s)

(
∆(m−2)y (s)

)α
.

That is,

r (s)
(

∆(m−2)y (s)
)α
≤ r (n)

(
∆(m−2)y (n)

)α
,

which implies,

∆(m−2)y (s) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(
1

r (s)

) 1
α

.

Summing the above inequality from n1 to n− 1, we get

∆(m−3)y (n)−∆(m−3)y (n1) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α
n−1∑
s=n1

(
1

r (s)

) 1
α

.

That is,

∆(m−3)y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α
n−1∑
s=n1

(
1

r (s)

) 1
α

+ ∆(m−3)y (n1) .

Since ∆(m−2)y (n) < 0, we have

∆(m−3)y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α
n−1∑
s=n1

(
1

r (s)

) 1
α

=
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(n− n1)

(
1

r (s)

) 1
α

.
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That is,

∆(m−3)y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(n− n1)

(
1

r (s)

) 1
α

.

Similarly, we can obtain

∆(m−4)y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(n− n1)2
(

1

r (s)

) 1
α

.

Proceeding like this, we get

∆y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(n− n1)m−3

(
1

r (s)

) 1
α

and

y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(n− n1)m−3
n−1∑
s=n1

(
1

r (s)

) 1
α

. (2.3)

From (1.2) and since ∆(m−2)y (n) < 0, we can see that y (n) → −∞ as n → ∞, which contradicts
our assumption that y (n) > 0.

Case (ii):
Let

z (n) = r (n)
(

∆(m−2)y (n)
)α

.

Then z (n) > 0. Since ∆z (n) is decreasing (from (2.2)), for n ≥ n1, we have

z (n)− z (n1) =

n−1∑
s=n1

∆z (s) ≥ (n− n1) ∆z (n) .

Then there exists a n2 ≥ n1 and a constant b, 0 < b < 1 such that

z (n) ≥ bn∆z (n) , for n ≥ n2,

which implies

r (n)
(

∆(m−2)y (n)
)α
≥ bn∆z (n) .

That is,

∆(m−2)y (n) ≥ b
1
α

(
n

r (n)

) 1
α

(∆z (n))
1
α , for n ≥ n2.

Summing the above inequality from n2 to n− 1, we get

∆(m−3)y (n) ≥ b
1
α (n− n2)

(
s

r (s)

) 1
α

(∆z (n))
1
α .

Similarly, we can obtain

∆y (n) ≥ b
1
α (n− n2)m−3

(
s

r (s)

) 1
α

(∆z (n))
1
α .
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Also,

y (n) ≥ b
1
α (n− n2)m−3

n−1∑
s=n2

(
s

r (s)

) 1
α

(∆z (n))
1
α .

There exists a n3 ≥ n2 such that

y (g (n)) ≥ b
1
α (g (n)− n2)m−3

g(n)−1∑
s=n2

(
s

r (s)

) 1
α

(∆z (g (n)))
1
α , for n ≥ n3. (2.4)

Using (2.4) and (1.3) in equation (1.1), we obtain

−∆2z (n) = q (n) f (y (g (n)))

≥ f
[
b

1
α

]
q (n) f

[
(g (n)− n2)m−3]

f

g(n)−1∑
s=n2

(
s

r (s)

) 1
α

 f [(∆z (g (n)))
1
α

]
, for n ≥ n3.

Setting u (n) = ∆z (n) > 0, for n ≥ n3 in the above inequality, we get

−∆u (n) ≥ f
[
b

1
α

]
q (n) f

[
(g (n)− n2)m−3]

f

g(n)−1∑
s=n2

(
s

r (s)

) 1
α

 f [(u 1
α (g (n))

)]
.

That is,

∆u (n) + cq (n) f
[
(g (n)− n2)m−3] f

g(n)−1∑
s=n2

(
s

r (s)

) 1
α

 f [(u 1
α (g (n))

)]
≤ 0, (2.5)

where c = f
(
b

1
α

)
, for n ≥ n3. Now the inequality (2.5) has eventually positive solution u (n).

By a well-known result (see [10], [13]), the difference equation (2.1) also has an eventually positive
solution which contradicts our assumption that (2.1) is oscillatory.

Case (iii):
This case cannot hold.
Let

z (n) = r (n)
(

∆(m−2)y (n)
)α

.

Then ∆z (n) < 0 and from (2.2), ∆2z (n) < 0.
Therefore

lim
n→∞

z (n) = −∞,

which is a contradiction to the fact that ∆(m−2)y (n) > 0.

Case (iv):

Since r (n)
(

∆(m−2)y (n)
)α

is decreasing, for s ≥ n ≥ n1, we get

r (s)
(

∆(m−2)y (s)
)α
≤ r (n)

(
∆(m−2)y (n)

)α
,
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which implies,

∆(m−2)y (s) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(
1

r (s)

) 1
α

.

Summing the above inequality from n1 to n− 1, we get

∆(m−3)y (n)−∆(m−3)y (n1) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α
n−1∑
s=n1

(
1

r (s)

) 1
α

.

That is,

∆(m−3)y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α
n−1∑
s=n1

(
1

r (s)

) 1
α

+ ∆(m−3)y (n1) .

Since ∆(m−2)y (n) < 0, we have

∆(m−3)y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α
n−1∑
s=n1

(
1

r (s)

) 1
α

=
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(n− n1)

(
1

r (s)

) 1
α

.

That is,

∆(m−3)y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(n− n1)

(
1

r (s)

) 1
α

.

Similarly, we can obtain

∆(m−4)y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(n− n1)2
(

1

r (s)

) 1
α

.

Proceeding like this, we get

∆y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(n− n1)m−3

(
1

r (s)

) 1
α

and

y (n) ≤
[
r (n)

(
∆(m−2)y (n)

)α] 1
α

(n− n1)m−3
n−1∑
s=n1

(
1

r (s)

) 1
α

. (2.6)

From (1.2) and since ∆(m−2)y (n) < 0, we can see that y (n) → −∞ as n → ∞, which contradicts
our assumption that y (n) > 0. This completes the proof.

The following examples are illustrative.

3 Example

Example 3.1. Consider the fourth order equation

∆2
(
n6 (∆2y (n)

)3)
+ 64

[
(n+ 2)6 − n6] y3 (n− 2) = 0. (3.1)

6
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Here r (n) = n6, α = 3 and m = 4.
Also,

n−1∑
s=n0

r−
1
α (s) =

n−1∑
s=n0

(
n6)− 1

3 =

n−1∑
s=n0

n−2 =

n−1∑
s=n0

1

n2
<∞

and g (n) = n− 2 < n.

We can easily see that all conditions of Theorem 2.1 are satisfied and hence all the solutions of
equation (3.1) are oscillatory.

One of such solution is y (n) = (−1)n.

Example 3.2. Consider the third order equation

∆2 (n9 (∆y (n))3
)

+ 216
[
729 (n+ 2)9 + 54 (n+ 1)9 + n9] y3 (n− 2) = 0. (3.2)

Here r (n) = n9, α = 3 and m = 3.
Also,

n−1∑
s=n0

r−
1
α (s) =

n−1∑
s=n0

(
n9)− 1

3 =

n−1∑
s=n0

n−3 =

n−1∑
s=n0

1

n3
<∞

and g (n) = n− 2 < n.

We can easily see that all conditions of Theorem 2.1 are satisfied and hence all the solutions of
equation (3.2) are oscillatory.

One of the solutions is y (n) = (−3)n

2
.

4 Conclusion

In this paper, we have proposed the comparison method for identifying oscillatory solutions of
higher order functional difference equations. This method compares first order equation which is
very simple. Moreover, the above examples reveal the efficiency of our method.
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