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ABSTRACT
This study aimed to develop a novel deep learning model for 
reliable quantification of dentinal tubule occlusions instead of 
manual assessment techniques, and the performance of the 
model was compared to other methods in the literature. Ninety- 
six dentin samples were cut and prepared with desensitizing 
agents to occlude dentinal tubules on different levels. After 
obtaining images via scanning electron microscope (SEM), 
2793 single dentinal tubule images with 48 × 48 resolution 
were segmented and labeled. Data augmentation techniques 
were applied for improvement in the learning rate. The aug-
mented data having a total of 10700 images belonging to five 
classes were used as the network training dataset. The proposed 
convolutional neural network (CNN) is a class of deep learning 
model and was able to classify the degree of dentinal tubule 
occlusions into five classes with an overall accuracy rate of 
90.24%. This paper primarily focuses on developing a CNN archi-
tecture for detecting the level of dentin tubule occlusions 
imaged by SEM. The results showed that the proposed CNN 
architecture is an immensely successful alternative and allowed 
for objective and automatic classification of segmented dentinal 
tubule images.
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Introduction

Dentine is capped and protected by hard-calcified tissue, enamel. The damage, 
wear, or decay of enamel tissue cannot regenerate itself because it does not 
contain any living cells. Chronic trauma from tooth brushing, parafunctional 
habits, periodontal diseases, and acidic dietary components causes weakened 
and degraded enamel (Miglani, Aggarwal, and Ahuja 2010). Thus, it can no 
longer protect the sensitive dentine underneath and leads to pain and 
sensitivity.

Dentine hypersensitivity (DH) has been defined as a short, sharp pain when 
the dentinal tubules of a vital tooth are exposed to thermal, evaporative, tactile 
osmotic, and/or chemical stimuli that cannot be described by any other dental 
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defect or pathology (Addy 2002). The most widely accepted theory for pain 
mechanism in DH was proposed by Brännström, Lindén, and Aström (1967). 
According to this hydrodynamic theory, exposed dentinal tubules to the oral 
environment under certain stimuli allow the movement of tubule fluid, which 
indirectly stimulates the extremities of pulp nerves and causes DH.

The prevalence of DH was reported as 41.9% for seven countries; thus, 
patient preventive therapies and clinical management of DH is an important 
area (Nicola Xania West et al. 2013). A broad range of oral care products with 
various active agents are available for home or professional use (Addy 2005), 
and there is no consensus has been reached for the treatment of DH (Costa 
et al. 2014). Two primary strategies used in the treatment process of DH: 
blocking neural activity at the pulpal tissue and physical occlusion of dentinal 
tubules. The first nerve desensitization strategy uses potassium-based therapy 
to interfere with neural transmission. The second DH treatment approach 
includes physical occlusion and/or sealing of dentinal tubules, thus decreasing 
the fluid flow within dentinal tubules (Miglani, Aggarwal, and Ahuja 2010). 
Theoretically, a decrease in dentine permeability (DP) is considered useful for 
DH treatment (Costa et al. 2014).

Counting and evaluating dentinal tubule occlusions on SEM images has 
been employed in many studies for a statistical measure of DP (Jones et al. 
2015; Nicola X. West et al. 2018). It is impractical and time-consuming to 
count and grade dentinal tubules manually, so computer-aided analysis is 
crucial to avoid wrong interpretations and measurements. Automated analysis 
of dentinal tubule occlusions is one of the less frequently studied topics, 
although digital image processing techniques and machine learning methods 
have generated very successful results in various branches of medicine 
(Cireşan et al. 2013; Yang et al. 2016).

In one of the experimental studies in the literature that uses digital image 
processing technique, Ciocca et al. (2007) presented an analysis program to 
count the number of dentinal tubules and compute the area. The program 
extracts contours and analyses SEM images. The program mainly includes the 
following steps: extraction of images, noise removal, histogram equalization, 
enhancing contrast, counting tubule numbers, and computing the intended 
area in µm (Addy 2002; Ciocca et al. 2007). Olley et al. (2014) developed 
a computer-assisted analysis program for the quantification of patent dentinal 
tubules on tandem scanning microscopy (TSM) and SEM images. Their 
algorithm counts any circular patent dentinal tubules with a greater diameter 
than 0.83 µm. The correlation value of the patent tubule number between 
computer analysis and expert was found (≥0.8) on SEM and TSM images.

As can be seen, the studies were mostly concentrated on counting the 
number of tubules or calculating tubule areas. There is no doubt that auto-
matic classification would ease the process of labeling thousands of dentin 
tubule images for investigations about DH.
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The use of artificial intelligence on images used in studies in dentistry and 
medicine has increased in recent years (Badrigilan et al. 2021; Fourcade and 
Khonsari 2019; Takada 2016). To the authors’ best knowledge, no studies were 
found utilizing Deep Learning (DL) algorithms about the classification of 
dentinal tubule occlusions on SEM images. On the contrary, it needs more effort 
to develop robust and effective methods to overcome time-consuming processes, 
manual counting errors, and classification variabilities. In particular, DL algo-
rithms, in particular, CNN, can negate the disadvantages of conventional ana-
lysis methods and offer high success rates for image classification (Ker et al. 
2017). The idea behind this method was firstly introduced by Fukushima, 
Miyake, and Ito (1983); then, the emergence of CNN for deep learning was 
started with the demonstration of LeNet-5 by LeCun et al. (1998). In 2012, 
AlexNet architecture achieved great success by scaling the insights of LeNet into 
a much sizable neural network in the ImageNet competition (Alex, Sutskever, 
and Hinton 2012). Accordingly, the improved architecture allows learning much 
more complex objects and object hierarchies with the help of computing power.

The study presented herein aims to develop a digital image analysis system 
by bringing usage of the CNN method on segmented dentinal tubule images. 
The study quantifies and classifies segmented dentinal tubule images into five 
different occlusion levels by developed CNN model as a novel method.

Materials and Methods

Sample Preparation

The study was approved by the Ethics Committee of Karabuk University 
(2021/531, 4/8/2021) and the patients submitted a signed informed consent 
prior to their inclusion in the study. Total of 96 third molar teeth, which were 
extracted for periodontal or orthodontic reasons, were included for the study. 
All of them were free of caries and restorations. Just after the extraction, teeth 
were rinsed off all organic matter in a fume hood and stored in an aqueous 
solution of 0.15 M NaCl at 4°C for two weeks.

After coronal sectioning, dentin disc extraction was made perpendicular to 
the long axis of the tooth using a water-cooled, low-wheel-speed adjusted 
(Secotom-50, Struers, Copenhagen, Denmark) cutting device with a diamond 
disc (Ø 125 mm × 0.35 mm × 12.7 mm, 33°C) (Figure 1). The dentin discs were 
kept apart from coronal enamel and pulp horns and had a thickness of 1.05 mm 
±0.18. All dentin disc samples were subjected to a metallographic procedure to 
obtain a uniform surface, grinding with SiC paper [200, 300, 400, and 600 grits] 
(Metkon Discs, Metkon, Bursa, Turkey) and polishing with 3 µm diamond paste.

Following the metallographic procedure, dentine discs were rinsed with 
distilled water and sonicated for 20 minutes to eliminate foreign substances. 
Then, the dentine discs were etched in a petri dish with 37.5% 
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orthophosphoric acid solution (i-dental; Medicinos Linjia UAB, Lithuania) for 
30 seconds to open the dentinal tubules. After opening the dentinal tubules, 
the discs were rinsed with distilled water again and sonicated using an ultra-
sonic cleaner (Ultrasonic Cleaner, Alex Machine, Istanbul, Turkey) for 10 min 
to remove orthophosphoric acid residue.

Application of Desensitizing Agents

Desensitizing agents used in this study are for the management of dentin 
hypersensitivity by occluding patent dentinal tubules. Dentinal discs were 
divided into six groups, each having 16 discs. Following the manufacturer’s 
directions, the first two groups of discs were applied with an in-office product 
Teethmate® and SmartProtect®. The third, fourth, and fifth groups were 
applied with Novamin®, arginine-calcium carbonate, and 1.4% potassium- 
oxalate. The sixth group was considered as a control, and samples in this 
group were only kept in NaCl solution without being treated with any agents. 
All the samples were placed in a 6% C6H8O7 – citric acid (pH = 2.1) solution 
in a petri dish for a minute and then rinsed in saline for 2 min. Each applied 
agent had various effects on occluding dentinal tubules (Cummins 2010; 
Pradeep and Sharma 2010). Creating different levels of dentinal occlusion 
provided more discriminative information for the dataset.

Figure 1. Extraction of dentin discs from a human third molar tooth.
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SEM Image Analysis

After applying the test agents, dentine discs were sputter-coated with a layer of 
Au-Pd alloy (Q150R Rotary-Pumped Sputter Coater, Quorum, East Sussex, 
United Kingdom) in a vacuum environment to improve imaging of the samples. 
The images were obtained by SEM (Carl Zeiss Ultra Plus Gemini FE-SEM, Zeiss, 
Oberkochen, Germany). Surface morphology was evaluated with the acquired 
images were taken on a random zone with 3000x magnification. Since each test 
agent has a different occlusion effect on dentinal tubules, collected images had 
a more significant number of useful features for the created neural network.

Validation

2793 individual dentin tubule images obtained from dentin discs were saved in 
48 × 48 resolution in grayscale form. As previous research suggests that 
dentinal tubule occlusions ranked using a visual scoring index of 1 to 5 
(Chen et al. 2015; Ryan C. Olley et al. 2012; Kunam et al. 2016). According 
to the scoring index: (L1) unoccluded (0%, no tubule occlusion); (L2) mostly 
unoccluded (<25% of tubules occluded); (L3) partially occluded (25–<50% of 
tubules occluded); (L4) mostly occluded (50–<100% of tubules occluded); (L5) 
occluded (100% of tubules occluded).

Afterward, dentinal tubule occlusions within all the groups were assessed 
into five classes by two independent and blinded experts. Cohen’s kappa test 
was carried out to measure agreement between experts qualitatively. 
Examiners showed that an agreement of >0.80 indicates a strong level of 
agreement (McHugh 2012). The classes’ data distribution must be balanced 
to each other to perform a proper classification with deep learning methods. 
Otherwise, the performance of most standard algorithms significantly reduced 
to provide accurate classification (Haibo and Garcia 2009). Under-sampling is 
one of the solutions to overcome this problem. In this study, the images 
obtained from dentin discs have a high number of L1 and L5 data compared 
to the other three classes. Therefore, 560 of them were randomly chosen to 
balance the data count to other classes. L2, L3, and L4ʹs data count of other 
classes include 558, 558, 559 images, respectively. Then, the dataset was split 
into training (85%) and test set (15%).

Data Augmentation

Limited datasets are one of the challenges that reduce the generalization 
performance of deep learning models. When big data is supplied, image 
analysis tasks with CNN are very powerful, especially in the medical field 
(Esteva et al. 2017; Gulshan et al. 2016). Data augmentation is one of the 
techniques that help to solve this problem. In this technique, slightly modified 
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copies of original data were generated to increase the diversity of the training 
dataset and amount of data. Thus, the model can extract more features and 
improve the learning rate.

Simple image-based data augmentation generally performs well and increases 
the performance of computer vision applications (Connor and Khoshgoftaar 
2019). In this study, various geometric transformations (Rotation, Shearing, 
Flipping, Scaling) have been applied to expand the number of dentinal tubule 
images (Figure 2). A total of 10700 images are obtained by augmentation and 
used in training the CNN. Sample images of each class and the properties of the 
generated dataset belonging to each class are given in Table 1.

Convolutional Neural Networks

The architecture of CNN was biologically inspired by the organization of the 
Visual Cortex (Fukushima 1988; Hubel and Wiesel 1968). Particularly, the 
structure of the visual system behaves in such a way as to encode visual 

Figure 2. Example images of before and after data augmentation process.

Table 1. Properties of the generated dataset.
Property\Class L1 L2 L3 L4 L5 Total

Sample Image

Number of Samples 560 558 558 559 560 2793
Training Set 428 427 427 428 427 2137
Data Augmentation 2140 2140 2140 2140 2140 10700
Validation Set 48 47 47 47 49 237
Test Set 84 84 84 84 84 420
Number of Channels 1
Resolution 48 × 48
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relations layer by layer. Each layer gradually represents more specific features 
(Hubel and Wiesel 1962). CNN is designed to emulate the same organizational 
behavior. CNN is a type of deep learning model, and they are one of the most 
powerful tools to do image recognition, classifications, segmentation, and 
many more tasks (Girshick et al. 2014; Ren et al. 2017; Sermanet et al. 2014). 
Each input image passes through a series of building blocks to classify relevant 
objects. Building blocks are the sequence of layers used to assign weights and 
biases to neurons.

The convolutional layer, non-linearity layer, pooling layer, and fully con-
nected layer are the typical elements of CNN architecture (Albawi, Abed 
Mohammed, and Al-Zawi 2017). Convolution is the first and fundamental 
layer that performs feature learning through filter matrices. It is 
a mathematical operation that takes two inputs as an image matrix and filter. 
Moving the filter through the entire image will give a convolved feature map. 
Thus, applying multiple filters produces multiple convolved feature maps. The 
non-linearity layer comes after the convolution layer for adjusting the output. 
This layer introduces the network with non-linearity and applies activation 
functions such as tanh, sigmoid, or Rectified Linear Unit (ReLU). The pooling 
layer is a down-sampling operation to reduce computational complexity and 
avoid over-fitting (Albawi, Abed Mohammed, and Al-Zawi 2017). The fully 
connected layer flattens the values of previous layers by turning them into 
a vector. Each neuron in one fully connected layer was connected to all neurons 
in the next layer. Over a series of epochs, CNN tries to learn correct weights for 
neurons, and the validation test gives an idea about the success of the network.

Proposed Architecture

Adjusting the best performing CNN architecture and optimal neural network 
hyper-parameters remains empirical. Thus, choosing the best performing 
CNN for a given problem is quite challenging and directly affects the network’s 
success. For example, a wider network may lead to more expressive results, but 
it is much more computationally expensive. On the other hand, if the network 
is too shallow, the correct features may not be learned. To keep the computa-
tional burden acceptable, the number of convolution layers, length of strides, 
and size of filters taken into consideration while designing the network. In this 
manner, various experiments have been conducted by tweaking hyper- 
parameters to choose the best performing network. The proposed architecture 
is given in Figure 3.

In the first and second convolution layers, 48 × 48 single-channel grays-
cale images were scanned with 16 different 3 × 3 kernels and a stride of 1 to 
obtain a high receptive field. Small kernel size with more layers allows 
mapping more complex features than fewer layers with a larger kernel. 
Padding value was determined as same for whole convolutional layers to 

e2094446-2590 A. DURU ET AL.



extract more information that lies on the edge of the images. Then, the ReLU 
activation function is applied after all the convolution layers and given in 
Equation. 1. 

f xð Þ¼ max 0; xð Þ
if x > 0;
0 otherwise:

n
(1) 

After the layers of convolution operation, the max pool layer summarized 
activation maps, keeping the number of parameters low. Thus, 16 different 
16 × 16 feature maps were obtained, and the dropout layer with a rate of 0.2 
comes to prevent overfitting by randomly activating and deactivating 
selected neurons. Just as the beginning of the proposed architecture, the 
fifth and sixth layers includes similar convolution operation with a kernel 
size of 5 × 5 and ReLU activation function. This operation provides a con-
stant number of parameters while increasing the receptive field and the 
number of obtained features. Moreover, repeated application of convolution 
operation has been used in many state-of-the-art models, such as VGG16 
(Simonyan and Zisserman 2015) and AlexNet (Alex, Sutskever, and Hinton 
2012).

The seventh layer includes the max pool operation, and the size of the 
feature maps was reduced again. Dropout was applied with a rate of 0.8 after 
the second max pool layer. In the classification part of the architecture, the 
resulting kernels were flattened and connected to 256 fully connected neurons 
with a dropout rate of 0.5 and then connected to five neurons to classify five 
different occlusion levels. Details of the proposed structure of the network 
parameters are given in Table 2.

The optimizer shapes the model into the most accurate possible form by 
changing the weights and preventing local minimum phenomena. Adaptive 
Moment Estimation (ADAM) (Kingma and Jimmy 2015) optimizer was used 
to find global minimum value with a fixed learning rate of 0.001. Since more 
than two-class label classification is required in the present study, the SoftMax 
activation function was chosen in the network’s output layer. The formula is 
given in Equation. 2. 

Figure 3. The proposed CNN architecture.
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σ bxð Þi ¼
e xi

�jexj
(2) 

The function takes an input vector x to calculate normalized probabilities for 
each class within the range of [0,1]. The elements of an output vector add up to 
1, and j represents the class count. In this manner, the predicted class will have 
the highest probability value out of all the classes. One-hot-encoded target 
vectors represent the expected multinomial probability for each class (five in 
this study). The encoded vector takes 1 for the correct label and 0 for other 
classes. To get the total loss, the error rate between the expected and estimated 
output was calculated using the cross-entropy function presented in Equation. 
3. t represents the ground truth vector. The error rate helps to update the 
network for better estimations. 

CE ¼ �
X

I
ti logðσðbxiÞÞ (3) 

Batch size is the other hyperparameter used while training the network. This 
value refers to the number of training images in one each forward/backward 
iteration. Although a large batch size could lower the loss value, smaller values 
lead to converging quickly with a noise cost in the training process. The batch 
size and epoch were defined as 256 and 300, respectively. An epoch refers that 
the entire dataset is passed both forward and backward one time. After each 
forward propagation, the total error was calculated for each set, and weight 
updates are done via backpropagation, and the optimizer tries to minimize the 
loss until convergence. Besides, the training data set was split randomly in 
a 90:10 ratio to compose the training and validation dataset. Thus, the network 
takes 10700 images, in sets of 256, pass through in each epoch for training the 
model. For the rest of the images, a validation dataset was used to evaluate and 
pick a model considering the success rate. Different sets of images were used in 
each epoch by shuffling the training data. The primary purpose behind shuf-
fling is to prevent the network from overfitting and have accurate classification 
results. The number of obtained trainable parameters is 566,773.

Table 2. The detail of the proposed CNN architecture trained on 48 × 48 grayscale images.
Layer Type Kernel Stride Padding Activation Rate Output Shape Parameters

Convolution 3 × 3 1 same ReLU - 48 × 48 × 16 160
Convolution 3 × 3 1 same ReLU - 48 × 48 × 16 2320
Max-Pooling 3 × 3 3 - - - 16 × 16 × 16 -
Dropout - - - - 0.2 16 × 16 × 16 -
Convolution 5 × 5 1 same ReLU - 16 × 16 × 32 12,832
Convolution 5 × 5 1 same ReLU - 16 × 16 × 32 25,632
Max-Pooling 2 × 2 2 - - - 8 × 8 × 32 -
Dropout - - - - 0.8 8 × 8 × 32 -
Flatten - - - - - 1 × 1 × 2048 -
Fully-Connected - - - - - 1 × 1 × 256 524,544
Dropout - - - - 0.5 1 × 1 × 256 -
Fully-Connected - - - SoftMax - 1 × 1 × 5 1285
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Results

It is commonly accepted that a well-trained network should maximize 
not only training accuracy but also validation accuracy. If validation 
accuracy starts to decrease, the trained network is overfitting to the 
training data meaning that the model loses its generalization capability. 
Thus, various regularization and normalization techniques are applied to 
achieve high performance. Figure 4 shows all the training and validation 
accuracy rates when the network was in the learning process. After the 
learning phase, the highest validation accuracy was 89.17% at the 256th 
epoch, chosen as the network’s optimum parameters.

The network’s effectiveness was studied by consulting the network with 
test data, and the overall classification accuracy was 90.24%. As can be 
seen in Figure 5, the confusion matrix visualizes the combinations of 
actual/predicted classes that were generated to analyze the network’s 
performance with statistical metrics in terms of sensitivity, specificity, 
precision, and accuracy. The obtained classification report is given in 
Table 3.

The results were demonstrated that the model is robust and performs 
well for classification tasks. As confirmed by the confusion matrix results, 
the false predictions that the model produced mostly belongs to the L3 
class. A total of 41 out of 420 dentinal tubule images were wrongly 
classified. However, when these misclassified images were investigated in 
detail, they are relatively close to the predicted class; even experts may fail 
to spot the difference.

Figure 4. Training and validation accuracy rates.
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Discussion

Producing accurate, repeatable, and consistent classification results are crucial for 
the reliability of the statistical analysis. Image processing techniques and machine 
learning algorithms can also be useful for assessing dentinal tubules, but success 
rates highly depend on the chosen parameters. On the other hand, deep learning, 
especially CNN, showed excellent performance for classification tasks.

In this study, different desensitizers are applied to dentin discs to include 
different levels of dentin occlusion images. Data augmentation provided 
variation in the training data. Image variability not only increases learning 
performance but also enhances the generalization capability of the network. 
Since each pixel includes essential features, the proposed CNN architecture 
included four layers of convolution operation to benefit from every feature as 
much as possible. These features on the images were the most crucial factor 
that affects the discrimination among the classes, thus the success rate. 
However, the success rate could only reach a certain extent because the data 
augmentation technique produces new data by applying various transforma-
tions to the original images. The test dataset, including all classes of dentinal 
tubule images, was classified into five classes with 90.24% accuracy. Since these 
images are not seen by the network before, it gives objective results about the 
classification.

Empty (L1) or fully occluded (L5) dentin tubules were easier to predict 
than the other three classes. As shown in Figure 5, the confusion matrix 
shows that L1 and L5 classes’ performances were higher than others. On the 
other hand, mostly unoccluded (L2) partially occluded (L3), and mostly 

Figure 5. Confusion matrix with and without normalization.

Table 3. Classification report of the test results.
Sens.(%) Spec.(%) Prec.(%) Acc.(%)

L1 96.43 99.00 96.43 98.44
L2 88.10 97.44 90.24 95.47
L3 83.33 95.37 82.35 92.89
L4 86.90 96.53 86.90 94.51
L5 96.43 98.68 95.29 98.19
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occluded (L4) classes were difficult to separate from each other because 
images in neighbor classes were very similar. Therefore, training with 
a higher number of original data with more discriminative features would 
help increase each class’s success rate. When a given dataset is small, 
Transfer Learning (TL) methods are useful and can effectively adapt new 
data with high success rates (Tajbakhsh et al. 2016). In TL, gained knowledge 
from a previous task is reused for solving a different but related custom 
problem. Weight values of the convolutional layers are preserved in the 
feature extraction phase and linked to a modified number of output layers 
to classify a new dataset. Thus, obtained weights and previously learned 
feature extraction capability from a different dataset could be transferred 
to a new task. On the other hand, Fine Tuning (FT) is an approach to the TL 

Figure 6. Adapted strategies for TL and FT applications.
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method. In this method, some of the layers or the entire convolutional layers 
are trained again, and weights of the unfrozen layers are updated in each 
epoch to better adapt the network to the new dataset.

In this manner, four pre-trained models, VGG16 (Simonyan and Zisserman 
2015), ResNet50 (Kaiming et al. 2016), XCeption (Chollet 2017), and 
MobileNet (Howard et al. 2017), were performed to examine their perfor-
mances with the study dataset. Since the layers of given models are arranged 
for 3-channel images, data in the existing channel was reproduced for the 
remaining two channels, and the dataset was resized for specified input 
dimensions. After the preparation of the dataset, two methods were adopted 
for the application of pre-trained models. ImageNet dataset was used for all 
the weight initializations of the methods (Deng et al. 2009). In the TL method, 
all the feature extraction layers were preserved by freezing the convolutional 
base. The final convolutional layer was then flattened and connected to two 
dense layers containing 256 and 5 neurons.

In the FT method, initial layers were kept frozen again, but later convolu-
tional layers were included in the training process since they detect more 
distinguishing features. The final convolutional layer was then flattened and 
connected to two dense layers containing 256 and 5 neurons again. The overall 
visualization of both adapted strategies is given in Figure 6.

The FT method adapted better to new samples than the TL method because 
of the increase in trainable layers (Figure 7). The best validation accuracy of 
84.16% was obtained from VGG-16 architecture with FT. On the other hand, 
none of the TL methods could overtake the FT method. Although the FT 

Figure 7. Validation rates of TL and FT methods.

e2094446-2596 A. DURU ET AL.



method achieved higher validation rates, all the results stayed behind the 
proposed CNN method trained from scratch. The root cause of performance 
decrease in learning rate can be explained by the inclusion of irrelevant 
samples from the source dataset, which is also called negative transfer. 
A decrease in the similarity between the target domain and the ImageNet 
dataset affected the learning adversely.

Conclusions

Investigations on dentin tubules are crucial for improvements in dental care, and 
the use of SEM combined with CNN eases the analysis process. Through 
analyzes carried on dentin tubules, it is possible to inspect the effect of the 
applied product. In this regard, measuring the occlusion degree of dentin tubules 
gives essential information about the applied product. Therefore, automatic 
analysis is a critical requirement in this field to reduce these negative impacts. 
Image processing techniques can achieve good classification results with correct 
parameters, but they can easily be affected by impurities or noise on the image 
resulting in lower accuracy rates. Deep learning, especially CNN, is a perfect fit 
to overcome the mentioned issues and automate dentinal tubules’ assessment 
process. Furthermore, automatic analysis benefits from being independent of an 
examiner while being time-efficient. Since CNN can learn and classify a broad 
range of data, noisy images can also be classified with high accuracy.

In this study, a novel CNN architecture was presented for the classification 
of dentinal tubule occlusions. 2793 segmented dentin tubule images split into 
two parts so that 85% training and 15% testing dataset. The data augmentation 
technique was applied only to the training dataset to extract more features 
from each image. After the training process, test data not seen by the network 
was fed into the trained model, and the overall accuracy was found to be 
90.24%. The proposed architecture has shown the ability to capture dentinal 
tubule occlusions’ specific features and classify them accordingly. The overall 
proposed method is practical to use in terms of time efficiency, objectiveness, 
and high classification accuracy rates.
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