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ABSTRACT 
 

Aims: The aim of this paper is to investigate group decision making based on induced 
generalized uncertain linguistic aggregation operators 
Study Design: In this paper, we propose some new operational laws of linguistic 
variables and uncertain linguistic variables on the basis of the extended triangular conorm 
and triangular norm, study their properties and relationships. 
Place and Duration of Study: The existing operational laws of linguistic variables and 
uncertain linguistic variables may have some drawbacks. 
Methodology: Based on new operational laws of linguistic variables and uncertain 
linguistic variables, we develop two new uncertain linguistic aggregation operators 
including the induced generalized uncertain linguistic ordered weighted averaging 
(IGULOWA) operator and induced generalized uncertain linguistic ordered weighted 
geometric (IGULOWG) operator. 
Results: Some desirable properties and special cases of the IGULOWA and IGULOWG 
operators are studied, and then, the IGULOWA and IGULOWG operators are utilized to 
develop an approach for multiple attribute group decision making with uncertain linguistic 
information. 
Conclusion: A practical application of the developed approach to an investment problem 
is given. 
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1. INTRODUCTION  
 
The aim of multiple attribute group decision making (MAGDM) is to find the most desirable 
alternative(s) from a given alternative set according to the preferences provided by a group 
of experts. In some MAGDM problems, the decision information about alternatives is usually 
uncertain or fuzzy due to the increasing complexity of the socio-economic environment and 
the vagueness of inherent subjective nature of human thinking [1-3]; thus, it may be 
appropriate and sufficient to assess the information in a qualitative form rather than a 
quantitative form. For example, when evaluating a house’s cost, linguistic variables such as 
‘‘high’’, ‘‘medium’’, and ‘‘low’’ are usually used, and when evaluating a house’s design, 
linguistic variables like ‘‘good’’, ‘‘medium’’, and ‘‘bad’’ can be frequently used. In addition, in 
many real-word problems, the input linguistic arguments may not match any of the original 
linguistic labels, or may be located between two of them [4]. For example, when evaluating 
the ‘‘comfort’’ of a car, an expert may provide his/her opinion with uncertain linguistic 
variable like ‘‘between ‘fair’ and ‘good’’’ [4]. To aggregate linguistic information and uncertain 
linguistic information, Xu [5-8] defined some operational laws of linguistic variables and 
uncertain linguistic variables, and based on which, a variety of linguistic aggregation 
operators and uncertain linguistic aggregation operators have been developed in the past 
few decades, such as the linguistic weighted averaging (LWA) operator [9], the extended 
geometric mean (EGM) operator [10], extended ordered weighted geometric (EOWG) 
operator [10], extended arithmetical averaging (EAA) operator [10], extended ordered 
weighted averaging (EOWA) operator [10], linguistic weighted arithmetic averaging (LWAA) 
operator [11,12], linguistic weighted geometric averaging (LWGA) operator [5], linguistic 
ordered weighted geometric averaging (LOWGA) operator [5], linguistic hybrid geometric 
averaging (LHGA) operator [5], linguistic generalized power average (LGPA) operator [13], 
weighted linguistic generalized power average (WLGPA) operator [13], linguistic generalized 
power ordered weighted average (LGPOWA) operator [13], linguistic power ordered 
weighted average (LPOWA) operator [4], linguistic power ordered weighted geometric 
average (LPOWGA) operator [4], linguistic power ordered weighted harmonic average 
(LPOWHA) operator [4], linguistic power ordered weighted quadratic average (LPOWQA) 
operator [4], linguistic power average (LPA) operator [4], linguistic weighted PA operator [4], 
uncertain linguistic ordered weighted (ULOWA) operator [6], uncertain linguistic weighted 
averaging (ULWA) operator [6], [14], [15], uncertain linguistic hybrid aggregation (ULHA) 
operator [6], induced uncertain linguistic OWA (IULOWA) operator [16], uncertain linguistic 
geometric mean (ULGM) operator [17], uncertain linguistic weighted geometric mean 
(ULWGM) operator [17], uncertain linguistic ordered weighted geometric (ULOWG) operator 
[17], induced uncertain linguistic ordered weighted geometric (IULOWG) operator [17], 
uncertain linguistic PA operator [4], uncertain linguistic weighted PA operator [4], and 
uncertain linguistic power ordered weighted average (ULPOWA) operator [4], etc. 
 
It is noted that the above linguistic aggregation operators and uncertain linguistic 
aggregation operators are constructed based on the operational laws of linguistic variables 
and uncertain linguistic variables proposed by Xu [2,5,7,8]. However, these operational laws 
may have some problems (See Remark 3.1, Example 3.1, and Example 3.3). Accordingly, 
the above linguistic aggregation operators and uncertain linguistic aggregation operators 
may have some problems (see Subsection 6.2). To overcome these issues, the extended 
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triangular conorm (t-conorm) and triangular norm (t-norm) in  0,t  are defined to deal with 

the linguistic information and uncertain linguistic information in Section 2. The extended t-
conorm and t-norm are generalizations of many other extended t-conorms and t-norms, such 
as the extended Algebraic, extended Einstein, extended Hamacher and extended Frank t-
conorms and t-norms. The extended t-conorm and t-norm are generated by an additive 

function  g x  and its dual function    f x g t x  . When the additive generator  g x  is 

assigned different forms, we can obtain some specific extended t-conorms and t-norms. 
Thus, the extended t-conorm and t-norm are more general and more flexible. Based on the 
extended t-conorm and t-norm, Section 3 proposes some new linguistic operational laws of 
linguistic variables and uncertain linguistic variables, studies their properties and 
relationships, and illustrates their advantages over the operational laws proposed by Xu [5-
8]. Furthermore, in this section, an induced generalized uncertain linguistic ordered weighted 
averaging (IGULOWA) operator and an induced generalized uncertain linguistic ordered 
weighted geometric (IGULOWG) operator are developed based on the new operational laws. 
Some interesting properties and special cases of the developed operators are also 
investigated in the current section. We can find that the developed aggregation operators are 
all based on different extended t-conorms and t-norms and are used to deal with different 
relationships of the aggregated arguments, which can provide more choices for the decision 
makers. The prominent characteristic of the developed operators is that they include a 

variety of uncertain linguistic aggregation operators when the additive generator  g x  is 

assigned different forms. In Section 4, an approach to multiple attribute group decision 
making with uncertain linguistic information is developed based on the IGULOWA and 
IGULOWG operators. In Section 5, a numerical example is given to illustrate the developed 
group decision making method. Section 6 performs a comparison analysis between our new 
operators and approach and other uncertain linguistic aggregation operators and MAGDM 
methods [4,6,1-17], and then highlights the advantages of the new operators and approach. 
Finally, Section 7 ends the paper with some concluding remarks. 
 
2. PRELIMINARIES 
 
2.1 The Fuzzy Linguistic Approach 
 
The fuzzy linguistic approach is an approximate technique, which represents qualitative 

aspects as linguistic values by means of linguistic variables. Let  0,1,2, ,iS s i t    be a 

finite and totally ordered discrete linguistic term set with odd cardinality, where is  represents 

a possible value for a linguistic variable. For example, a set of nine terms S  could be given 
as follows [18-33]: 
       

0 1 2 3 4 5 6

7 8

: extremely poor, : very poor, : poor, : slightly poor, : fair, : slightly good, : good,

: very good, : extremely good

s s s s s s s
S

s s

 
  
 

. 

 
Usually, it is required that linguistic term set S  should satisfy the following characteristics: 
 

(1)  The set is ordered: i js s  if i j ; 

(2)  There is the negation operator:  neg i j t is s s    such that j t i   ( 1t   is the 

granularity of the term set); 
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(3)  Max operator:  max ,i j is s s  if i js s ; 

(4)  Min operator:  min ,i j is s s  if i js s . 

 
To preserve all the given information, Xu [5], [7] extended the discrete linguistic term set S  

to a continuous linguistic term set   0 , 0,tS s s s s t      . If s S  , then s  is called 

an original linguistic term, otherwise, s  is called a virtual linguistic term. In general, the 

decision maker uses the original linguistic terms to evaluate alternatives, and the virtual 
linguistic terms can only appear in operation. 
 

Definition 2.1. Considering any two linguistic terms ,s s S   , and  0,1 , Xu [5], [7] 

defined some operational laws as follows: 
 

(1) s s s     ; 

(2) s s   ; 

(3) s s s    ; 

(4)  s s s 

 
  

  . 

 
In many real-word problems, the input linguistic arguments may not match any of the original 
linguistic labels, or may be located between two of them [4]. For example, when evaluating 
the ‘‘design’’ of a car, an expert may provide his/her opinion with ‘‘between ‘fair’ and ‘good’’’ 
[4]. To deal with such cases, Xu [6,8] defined the uncertain linguistic variables and 
introduced some of their operational laws. 

Definition 2.2 [6,8]. Let ,s s s     , where ,s s S   , s  and s  are the lower and upper 

limits, respectively, we then call s  the uncertain linguistic variable. 
 

Let S  be the set of all uncertain linguistic variables. Consider any three uncertain linguistic 

variables ,s s s     , 
1 11 ,s s s 

     and 
2 22 ,s s s 

    , then their operational laws are 

defined as follows: 
 

(1) 
1 1 2 2 1 2 1 2 1 2 1 21 2 , , , ,s s s s s s s s s s s s            

                      ; 

(2) , , ,s s s s s s s                     , where  0,1 ; 

(3) 
1 1 2 2 1 2 1 2 1 2 1 21 2 , , , ,s s s s s s s s s s s s           

                      ; 

(4)    , , ,s s s s s s s 

 
     

            
 , where  0,1  ; 

(5)        neg neg , neg ,neg ,t ts s s s s s s      
           . 

 
In order to compare uncertain linguistic variables, we give the following definitions. 
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Definition 2.3. For a uncertain linguistic variable ,s s s     ,  
2

s s
t

 
  is called the 

score function of s . 

Definition 2.4. For a uncertain linguistic variable ,s s s     ,  
2

v s
t

 
  is referred to as 

the variance function of s . 
 
The relationship between the score function and the variance function is similar to the 
relationship between the mean and variance in statistics. 
 
Based on the score function and the variance function, we develop a comparison law to 
compare any two HFEs: 
 

Definition 2.5. Let 
1 11 ,s s s 

     and 
2 22 ,s s s 

     be any two uncertain linguistic 

variables, and let  is s  and  iv s  ( 1,2i  ) be the score functions and the variance 

functions of is  ( 1,2i  ), respectively. Then, the following conditions hold: 

 

(1) If    1 2s s s s  , then 1 2s s  . 

(2) If    1 2s s s s  , then 

① if    1 2v s v s  , then 1 2s s  . 

② if    1 2v s v s  , then 1 2s s  . 

                                                                                                                                                                                          
2.2 The Extended Triangular Co Norm and Triangular Norm 
 

Definition 2.6. A function      : 0, 0, 0,T t t t   is called an extended triangular norm (t-

norm) if it satisfies the following four conditions: 
 

(1)  ,T t a a , for all  0,a t . 

(2)    , ,T a b T b a , for all  , 0,a b t . 

(3)      , , , ,T a T b c T T a b c , for all  , , 0,a b c t . 

(4) If a c  and b d  for all  , , , 0,a b c d t , then    , ,T a b T c d . 

 

Definition 2.7. A function      : 0, 0, 0,S t t t   is called an extended triangular conorm (t-

conorm) if it satisfies the following four conditions: 
 

(1)  0,S a a , for all  0,a t . 

(2)    , ,S a b S b a , for all  , 0,a b t . 

(3)      , , , ,S a S b c S S a b c , for all  , , 0,a b c t . 

(4) If a c  and b d  for all  , , , 0,a b c d t , then    , ,S a b S c d . 
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The following theorem show that an extended t-norm  ,T a b  is expressed via its additive 

generator g  as       1,T a b g g a g b  , where    : 0, 0,g t    is a strictly 

decreasing function such that   0g t   and  0g   , and a dual extended t-conorm 

 ,S a b  is expressed as       1,S a b f f a f b   with    f x g t x  . 

 

Theorem 2.1. Suppose that    : 0, 0,g t    is a strictly decreasing function such that 

  0g t   and  0g   ,    f x g t x  ,       1,T a b g g a g b  , and 

      1,S a b f f a f b  . Then,  ,T a b  is an extended t-norm and  ,S a b  is a dual 

extended t-conorm. 
 

Proof. Assume that  , , , 0,a b c d t , then 

 

(1)          1 1,T t a g g t g a g g a a      

         1 10, 0S a f f f a f f a a      

(2)              1 1, ,T a b g g a g b g g b g a T b a       

             1 1, ,S a b f f a f b f f b f a S b a       

(3) 

        
        
      

        
     

  

1

1 1

1

1 1

1

, , ,

,

, ,

T a T b c g g a g T b c

g g a g g g b g c

g g a g b g c

g g g g a g b g c

g g T a b g c

T T a b c



 



 



 

  

  

  

 



 

        
        
      

        
     

  

1

1 1

1

1 1

1

, , ,

,

, ,

S a S b c f f a f S b c

f f a f f f b f c

f f a f b f c

f f f f a f b f c

f f S a b g c

S S a b c
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(4) Because    : 0, 0,g t    is a strictly decreasing function such that   0g t   and 

 0g   ,    1 : 0, 0,g t    exists and is also a strictly decreasing function such that 

 1 0g t   and  1 0g    . If a c  and b d , then    g c g a  and    g d g b , so 

             1 1, ,T a b g g a g b g g c g d T c d       

 

Because    f x g t x  ,    : 0, 0,f t    is a strictly increasing function such that 

 0 0f   and  f t   , and    1 : 0, 0,f t    exists and is also a strictly increasing 

function such that  1 0 0f    and  1f t   . Thus, we have 

             1 1, ,S a b f f a f b f f c f d S c d      .      

 
If we assign specific forms to the function g , then some extended t-conorms and t-norms 

can be obtained: 
 

(1) Let   log
x

g x
t

 
   

 
, then   log 1

x
f x

t

 
   

 
,  1 xg x te  ,    1 1 xf x t e   , and 

the extended Algebraic t-conorm and t-norm are obtained as follows: 
 

 ,EA

ab
S a b a b

t
   ,        ,EA

ab
T a b

t
                                 (1) 

 

(2) Let  
2

log
t x

g x
x

 
  

 
, then   log

t x
f x

t x

 
  

 
,  1 2

1 x

t
g x

e
 


,  

 1
1

1

x

x

e t
f x

e






, 

and the extended Einstein t-conorm and t-norm are obtained as follows: 
 

 
 2

2
,EE

t a b
S a b

t ab





,        

 2
,

2
EE

tab
T a b

t t a b ab


  
                                 (2) 

 

(3) Let  
 1

log
t x

g x
x

    
  

 
, 0  , then  

 1
log

t x
f x

t x

   
  

 
, 

 1

1x

t
g x

e




 

 
,  

 1
1

1

x

x

t e
f x

e 





 
, and the extended Hamacher t-conorm and t-norm 

are obtained as follows: 

 
   

 

2

2

2
,

1
EH

t a b t ab
S a b

t ab





  


 
,  

     2
,

1 1
EH

tab
T a b

t t a b ab  


    
     (3) 

 
Especially, if 1  , then the extended Hamacher t-conorm and t-norm reduce to the 

extended Algebraic t-conorm and t-norm respectively; if 2  , then the extended Hamacher 
t-conorm and t-norm reduce to the extended Einstein t-conorm and t-norm respectively. 
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(4) Let  
1

log

1
x

t

g x




 
 

 
 

, 1  , then  
1

1
log

1
x

t

f x





 
 

 
 

,  1 1
log

x

x

e
g x t

e


   
  

 
, 

 1 1
log

x

x

e
f x t t

e


   
   

 
, and the extended Frank t-conorm and t-norm are obtained 

as follows: 
 

 

1 1

1 1

, log 1
1

a b

t t

EFS a b t t 

 



     
      

       
 
 
 

,  
1 1

, log 1
1

a b

t t

EFT a b t 

 



    
      

      
 
 
 

      

(4) 
Especially, if 1  , then we have 
 

 
1 1 1 1 1

1 1
lim limlog log lim log lim log

1 1
x x x

t t t

t x
g x

t
x

   

 

  
    

                          
      

 

 

which indicates that    
1

lim , ,EF EAS a b S a b


  and    
1

lim , ,EF EAT a b T a b


 . Namely, if 

1  , then the extended Frank t-conorm and t-norm reduce to the extended Algebraic t-
conorm and t-norm, respectively. 
 

(5) Let  
1 1

g x
x t

  , then  
 
x

f x
t t x




,  1

1

t
g x

tx
 


,  

2
1

1

xt
f x

xt
 


, and the 

extended t-conorm and t-norm are as follows: 
 

 
 2

2

2
,

t a b tab
S a b

t ab

 



,        

 
,

tab
T a b

t a b ab


 
                            (5) 

 

(6) Let   exp 1
t x

g x
x

 
  

 
, then   exp 1

x
f x

t x

 
  

 
,  

 
1

1 log 1

t
g x

x
 

 
, 

 
 
 

1 log 1

1 log 1

t x
f x

x
 


 

, and the extended t-conorm and t-norm are as follows: 

 

 
log exp exp 1

,

1 log exp exp 1

a b
t

t a t b
S a b

a b

t a t b

    
          

    
      

     

,  ,

1 log exp exp 1

t
T a b

t a t b

a b


     

      
    

  (6) 
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2.3 The OWA, IOWA, GOWA, and IGOWA Operators 
 
Yager [34] provided a definition of the ordered weighted averaging (OWA) operator as 
follows: 
 

Definition 2.8 [34]. An OWA operator of dimension n is a mapping OWA : nR R  defined 

by an associated weighting vector  1 2, , ,
T

nw w w w  of dimension n , such that  0,1jw  , 

1,2, ,j n , and 
1

1
n

j
j

w


 , according to the following formula: 

 1 2
1

OWA , , ,
n

n j j
j

a a a w b


   

where jb  is the jth largest of the ia  ( 1, 2, ,i n ). 

 
An important feature of OWA operator is the reordering step, which makes this a nonlinear 
operator. During this step the arguments are ordered by their values. 
 
Yager and Filev [35] introduced the induced ordered weighted averaging (IOWA) operator as 
an extension of the OWA operator. Different from the OWA operator, the reordering step of 
the IOWA is carried out with order-inducing variables, rather than depending on the values of 
the arguments ia . The IOWA operator can be defined as follows: 

Definition 2.9 [35]. An IOWA is defined as follows: 
 

 1 1 2 2
1

IOWA , , , , , ,
n

n n j j
j

u a u a u a w b


   

 

where  1 2, , ,
T

nw w w w  is an associated weighting vector, such that  0,1jw  , 

1,2, ,j n , 
1

1
n

j
j

w


 , jb  is the ia  value of the OWA pair ,i iu a  having the jth largest iu , 

and iu  in ,i iu a  is referred to as the order inducing variable and ia  as the argument 

variable. 
 
The generalized OWA (GOWA) operator was introduced in [36]. It uses generalized means 
in the OWA operator. It can be defined as follows: 
 

Definition 2.10 [36]. A GOWA operator of dimension n is a mapping GOWA : nR R , 
according to the following formula: 
 

 
1

1 2
1

GOWA , , ,
n

n j j
j

a a a w b







 
  
 
  

 

where  ,    ,  1 2, , ,
T

nw w w w  is the weighting vector of  1 2, , , na a a ,  0,1jw  , 

1,2, ,j n , and 
1

1
n

j
j

w


 , jb  is the jth largest of ia  ( 1, 2, ,i n ). 
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Merigo and Gil-Lafuente [37] proposed a generalization of OWA operator by using 
generalized means and order inducing variables called the induced generalized ordered 
weighted averaging (IGOWA) operator, which is defined as follows: 
 

Definition 2.11 [37]. An IGOWA operator of dimension n is a mapping IGOWA : nR R  

defined by an associated weighting vector  1 2, , ,
T

nw w w w  of dimension n , such that 

 0,1jw  , 1,2, ,j n , and 
1

1
n

j
j

w


 , according to the following expression: 

 

 
1

1 1 2 2
1

IGOWA , , , , , ,
n

n n j j
j

u a u a u a w b







 
  
 
  

 

where  ,    , jb  is the ja  value of the OWA pair ,j ju a  having the jth largest ju , 

and ju  in ,j ju a  is referred to as the order inducing variable and ja  as the argument 

variable. 
 
The IGOWA operators, however, can only be used in situations where the aggregated 
arguments are the exact numerical values. In the following we shall investigate an induced 
generalized uncertain linguistic OWA operator, which can be used in situations where the 
aggregated arguments are given in the form of uncertain linguistic variables. 
 
3.  INDUCED GENERALIZED UNCERTAIN LINGUISTIC AGGREGATION 

OPERATORS 
 
In this section, some new operational laws in the linguistic and uncertain linguistic 
environment are proposed, and some properties of the new laws are studied. Moreover, 
based on these new laws, we develop several new uncertain linguistic aggregation operators 
and investigate some desired properties of the developed operators. 
 

3.1 Some New Operational Laws for Linguistic Variables and Uncertain 
Linguistic Variables 

 
In the following, based on the extended t-conorm and t-norm, we define some new 
operational laws for linguistic variables and uncertain linguistic variables. 
 

Definition 3.1. For ,s s S   , and 0  , we define some new operational laws as follows: 

 

(1)       1,S f f f
s s s s      
   ; 

(2) 
  1f f

s s  
  ; 

(3)       1,T g g g
s s s s      
   ; 

(4) 
  1g g

s s
   . 
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Especially, if   log
x

g x
t

 
   

 
, then we have: 

(5) 
t

s s s  
  

  ;     (6) 
1 1t

t

s s  


  
    

   

 ;    (7) 
t

s s s    ;     (8) 
t
t

s s 


  

 
 

  

If  
2

log
t x

g x
x

 
  

 
, then we have: 

 

(9) 
 2

2

t

t

s s s   







  ;  (10) 
1

1

t

t
t
t

t

s s 



 








 

 
 
 

 
 

 ;  (11) 

 22

t

t t

s s s  

    

  ;                       (12) 

 

2

2

t

t

s s 




 

  

 . 

 

If  
 1

log
t x

g x
x

    
  

 
, 0  , then we have: 

(13) 
   

 

2

2

2

1

t t

t

s s s     

 

  

 

  ;   (14) 
 

 

1
1

1
1

t
t

t

t

t

s s 



  



 





   
      

  
    

 ; (15) 

     2 1 1

t

t t

s s s  

         

  ; 

(16) 

 1
1

t

t

s s



 

  




  
   

 

 . 

Especially, if 1  , then (13)–(16) reduce to (5)–(8); if 2  , then (13)–(16) reduce to 
(9)–(12).. 

 

If  
1

log

1
x

t

g x




 
 

 
 

, 1  , then we have: 

 

(17) 
1 1

1 1

log 1
1

t t

t t

s s s  



 
 



     
      
    

     
 
 
 
 

  ;  (18) 
1

1
1log

1

1

t

t

t t

s s 



 



 













  
    

     
  

    

 ;  (19) 

1 1

log 1
1

t t

t

s s s  



 
 



    
      
    

    
 
 
 
 

  ; 

(20) 
1

1
1log

1

1

t

s s 



 




 








  
    

    
  

    

 . 
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Especially, if 1  , then (17)–(20) reduce to (5)–(8). 

If  
1 1

g x
x t

  , then we have: 

 

(21) 
 2

2

2t t

t

s s s    



 



  ;  (22) 
 1

t

t

s s  

 


 

 ;  (23) 
 
t

t

s s s  

   

  ;    (24) 

 
t

t

s s
 

   

 . 

 

If   exp 1
t x

g x
x

 
  

 
, then we have: 

 

(25) 
log exp exp 1

1 log exp exp 1

t
t t

t t

s s s   

 

 

 

   
          

   
           

  ;        (26) 
log exp 1

1 log exp 1

t
t

t

s s 
 




 




  

   
  

  
    

  

 ;  

(27) 

1 log exp exp 1

t

t t

s s s 

 

 

    
          

  ;         (28) 

1 log exp 1

t

t

s s



 



  
    

  

 . 

 

Theorem 3.1. For , , ,s s s s S     , and 0  , we have the following properties: 

 

(1)  max , ts s s s s      . 

ts s s    if and only if at least one of s  and s  is equal to ts . 

0s s s    if and only if 0s s s   . 

(2)  0 min ,s s s s s      . 

0s s s    if and only if at least one of s  and s  is equal to 0s . 

ts s s    if and only if ts s s   . 

(3) 0 ts s s  . 0s s   if and only if 0s s  . ts s   if and only if ts s  . 

(4) 0 ts s s
  . 0s s

   if and only if 0s s  . ts s
   if and only if ts s  . 

(5) s s s s      , if    and   ; Furthermore, s s s s       if and only if 

 (i) s s   and s s  , or 

(ii) at least one of s  and s  is equal to ts , and at least one of s  and s  is equal to ts . 

(6) s s s s      , if    and   ; Furthermore, s s s s       if and only 

(i) s s   and s s  , or 

(ii) at least one of s  and s  is equal to 0s , and at least one of s  and s  is equal to 0s . 
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Proof: (1) According to the definition of f ,    1 : 0, 0,f t    exists and is also a strictly 

monotonically increasing and continuous function such that  1 0 0f    and  1f t   . 

So, 

              1 1 1 1f f f f f f f t f t f t               

and 

              1 1 1 1f f f f f f f t f t f t               

Thus, we have 

      1max , f f f t       

which implies 

 max , ts s s s s       

 

Furthermore, if ts s s   , then     1f f f t    , which means that 

   f f    . Therefore, we have  f     or  f    , which implies that 

t   or t  , i.e., at least one of s  and s  is equal to ts . 

On the other hand, if at least one of s  and s  is equal to ts , then t   or t  , which 

means that    f f     and     1f f f t    , Thus, we have 

 

    1 tf f f
s s s s    
   . 

If 0s s s   , then     1 0f f f    , which means that     0f f   . 

Therefore, we have   0f    and   0f   , which implies that 0s s   and 0s s  . 

On the other hand, if 0s s   and 0s s  , then 0   , which means 

    0f f    and     1 0f f f    , Thus, we have 

    1 0f f f
s s s s    
   . 

(2) According to the definition of g ,    1 : 0, 0,g t    exists and is also a strictly 

monotonically decreasing and continuous function such that  1 0g     and  1 0g t  . 

So, 

              1 1 1 10 0 0g g g g g g g g g               

and 

              1 1 1 10 0 0g g g g g g g g g               

Thus, we have 

      10 min ,g g g       

which implies 

 0 min ,s s s s s       
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Furthermore, if 0s s s   , then     1 0g g g    , which means that 

   g g    . Therefore, we have  g     or  g    , which implies that 

0   or 0  , i.e., at least one of s  and s  is equal to 0s . 

On the other hand, if at least one of s  and s  is equal to 0s , then 0   or 0  , which 

implies that    g g     and     1 0g g g    , Thus, we have 

    1 0g g g
s s s s    
   . 

If ts s s   , then     1g g g t    , which means that     0g g   . 

Therefore, we have     0g g   , which implies that t   , i.e., ts s s   . 

On the other hand, if ts s s   , then t   , which implies     0g g    and 

    1g g g t    , Thus, we have 

    1 tg g g
s s s s    
   . 

(3) Since         1 1 10 0f f f f f f t t         , then 0 ts s s  . 

If 0s s  , then   1 0f f   , which means that   0f    and 0s s  . Conversely, if 

0s s  , then 0   and   1 0f f   , which imply that 
  1 0f f

s s s  
   . 

  If ts s  , then   1f f t   , which means that  f     and ts s  . 

Conversely, if ts s  , then t   and   1f f t   , which imply that 

  1 tf f
s s s  

   . 

(4) Since         1 1 10 0g g g g g g t t         , then 0 ts s s
  . 

If 0s s
  , then   1 0g g   , which means that  g     and 0s s  . Conversely, 

if 0s s  , then 0   and   1 0g g   , which imply that 
  1 0g g

s s s
    . 

  If ts s
  , then   1g g t   , which means that   0g    and ts s  . Conversely, if 

ts s  , then t   and   1g g t   , which imply that 
  1 tg g

s s s
    . 

(5) If    and   , then    f f  ,    f f   and 

         1 1f f f f f f       . Thus, we have 

         1 1f f f f f f
s s s s s s        
     . 

  If s s s s      , then we consider the following two cases: 

          Case 1: ts s s s s       . In this case, according to Theorem 3.1 (1), at least one 

of s  and s  is equal to ts , and at least one of s  and s  is equal to ts , and vice versa. 
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           Case 2: ts s s s s       . In this case, according to Definition 3.1, we have 

         1 1f f f f f f        and        f f f f      . Since 

   f f   and    f f  , then    f f   and    f f  , which implies 

that    and   , i.e., s s   and s s  , and vice versa. 

(6) If    and   , then    g g  ,    g g   and 

         1 1g g g g g g       . Thus, we have 

         1 1g g g g g g
s s s s s s        
     . 

  If s s s s      , then we consider the following two cases: 

          Case 1: 0s s s s s       . In this case, according to Theorem 3.1 (2), at least one 

of s  and s  is equal to 0s , and at least one of s  and s  is equal to 0s , and vice versa. 

           Case 2: 0s s s s s       . In this case, according to Definition 3.1, we have 

         1 1g g g g g g        and        g g g g      . Since 

   g g   and    g g  , then    g g   and    g g  , which implies that 

   and   , i.e., s s   and s s  , and vice versa. 

Theorem 3.2. For ,s s S   , and 1 2, , 0    , we have the following properties: 

(1) s s s s      ; (2)    s s s s s s          ; (3) 0s s s   ; (4) 

 s s s s        ; (5)  1 2 1 2s s s        ; (6) s s s s      ; (7) 

   s s s s s s          ; (8) ts s s   ; (9)  s s s s
  

      ; (10) 

1 2 1 2s s s   
  

  . 

Proof: (1) 
         1 1f f f f f f

s s s s s s        
      

(2)                        1 11 1f f f f f f ff f f f f f
s s s s s s s         

     
       

                            1 11 1f f f f f f ff f f f f f
s s s s s s s          

     
       

(3) 
       1 10 0f f f f f

s s s s s   
     

(4)                   1 11 1f f f f f ff f f f f
s s s s s         

     
     

                   1 1 11 1 1f f f f f f ff f f f f f f
s s s s s s            

       
      

(5) 
                   1 1 11 1 1

1 2 1 21 2
1 2 f f f f f f ff f f f f f f
s s s s s s            

       
      

           1 1
1 2 1 2

1 2 f f f f f
s s s       

    
    

(6) 
         1 1g g g g g g

s s s s s s        
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(7)                        1 11 1g g g g g g gg g g g g g
s s s s s s s         

     
       

                            1 11 1g g g g g g gg g g g g g
s s s s s s s          

     
       

(8) 
       1 1t g g t g g g

s s s s s   
     

(9)                   1 11 1g g g g g gg g g g g
s s s s s

 
         

   
     

                   1 1 11 1 1g g g g g g gg g g g g g g
s s s s s s 
            

     
      

(10) 
                   

1 2
1 1 11 1 1

1 2 1 21 2
g g g g g g gg g g g g g g

s s s s s s 
            

     
      

         
1 2

1 1
1 2 1 2g g g g g

s s s 
        



 
   

This completes the proof.  
 

Theorem 3.3. Let ,s s S    and 0  , then the following are also valid: 

 

(1)     neg negs s


  .                        (2)    neg negs s   . 

(3)      neg neg negs s s s      .      (4)      neg neg negs s s s      . 

Proof. According to the operations defined in Definition 3.1, we have 

(1)              1 1 1neg negt g g t g f t f f
s s s s s s

 
       

    
      

(2)             1 1 1neg negt f f t f g t g g
s s s s s s       

      
      

(3)                     1 1 1neg neg negt t f f t f t f g g t g g g
s s s s s s s s s                   

         

(4)                     1 1 1neg neg negt t g g t g t g f f t f f f
s s s s s s s s s                   

         

This completes the proof. 
 
Remark 3.1. In the following, we will compare the new operational laws with the Xu’ 
operational laws [5,7] and then illustrate the advantages of the new operational laws over the 
Xu’s operational laws. 
 
(1) The Xu’ operational laws only perform a simple aggregation on the linguistic terms. While 
the new operational laws are defined on the basis of the extended t-conorm and t-norm, 

which are generated by an additive function  g x  and its dual function    f x g t x  . 

When the additive generator  g t  is assigned different forms, we can obtain some specific 

extended t-conorms and t-norms, and then obtain some specific operations on linguistic 
variables. The prominent characteristic of the developed operational laws is that they include 
a variety of operations on linguistic variables when the additive generator g  is assigned 

different forms. 
(2) According to Definition 2.1, there are no relationships between the addition and 

multiplication operators proposed by Xu. Concretely, Xus s   may be greater than 

Xus s  and it may also be less than Xus s . According to Theorem 3.1, we can obtain 
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that the s s   is greater than or equal to the maximum value between s  and s , while 

s s  is less than or equal to the minimum value between s  and s , i.e., 

   0 min , max , ts s s s s s s s s s              . Therefore, the addition operation 

can obtain more favorable (or optimistic) expectations, and can therefore be referred to as 
an optimistic operation, while the multiplication operation produces more unfavorable (or 
pessimistic) expectations, and can therefore be referred to as a pessimistic operation. 
(3) According to Definition 2.1, the position index of the linguistic term obtained with the Xu’s 

addition operation between two linguistic terms s  and s  is the addition between the 

position index of s  and the position index of s , i.e., s s s     . Similarly, the position 

index of the linguistic term obtained with the Xu’s multiplication operation between two 

linguistic terms s  and s  is the multiplication between the position index of s  and the 

position index of s , i.e., s s s     . Therefore, the Xu’s addition and multiplication 

operations can be referred to as two most optimistic linguistic operations and they do not 

fully consider the relationship and influence between two linguistic terms s  and s . In 

contrast, the developed addition and multiplication operations overcome this drawback and 

fully consider the relationship and influence between two linguistic terms s  and s . If there 

is a positive influence between s  and s , then we use the developed addition operation 

s s   and choose different function for various situations. If there is a passive influence 

between s  and s , then we use the developed addition operation s s   and choose 

different function for various situations. 

(4) According to Definition 2.1, we have the following result: assume that , , ,s s s s S     , 

  , and   . If t   , then ts s s s s       ; if t   , then 

ts s s s s       . That is, the Xu’s addition and multiplication operations are not strictly 

monotonous, which is inconsistent with our intuitions. In contrast, according to Theorem 3.1 

(1) and (2), if , , ,s s s s S     , 0 t    , and 0 t    , then we have 

s s s s       and s s s s      . Therefore, the developed addition and 

multiplication operations are strictly monotonous, which is consistent with our intuitions. An 
illustrative example is given as follows: 

Example 3.1. Let 3s , 4s , 5s , and 6s  be four linguistic terms.  Clearly, 3 4s s  and 5 6s s . 

Let  
 0.5 8 1 0.5

log
x

g x
x

    
  

 
, then  

 8 0.5 1
log

8

x
f x

x

   
  

 
, 

 1 0.5 8

0.5 1x
g x

e
 


 

,  
 1

8 1

0.5 1

x

x

e
f x

e


 


 
. By Definition 3.1 (13) and (15), we have 

    13 5 5.87613 5f f f
s s s s 
           

    14 6 6.76924 6f f f
s s s s 
    

    13 5 2.12393 5g g g
s s s s 
            

    14 6 3.20004 6g g g
s s s s 
    

It is obvious that 3 5 4 6s s s s    and 3 5 4 6s s s s   , which is consistent with our 

intuition and can be more easily accepted. 
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If we use the operations Xu  and Xu  proposed by Xu [5,7] (Definition 2.1) to aggregate 

3s  and 5s , and 4s  and 6s , respectively, then we have 

3 5 3 5 8Xus s s s           4 6 4 6 8Xus s s s    

3 5 3 5 8Xus s s s            4 6 4 6 8Xus s s s    

 

As a result, we can obtain 3 5 4 6Xu Xus s s s    and 3 5 4 6Xu Xus s s s   . Comparatively 

speaking, 3 5 4 6s s s s    and 3 5 4 6s s s s    may be more easily accepted, and 

3 5 4 6Xu Xus s s s    and 3 5 4 6Xu Xus s s s    cannot be accepted. 

 

Definition 3.2. For any 
1 1 2 21 2, , , , ,s s s s s s s s s S     

            
   , and 0  , their 

operational laws are defined as follows: 

(1) 
         1 1

1 1 2 2 1 2 1 2 1 2 1 2
1 2 , , , ,

f f f f f f
s s s s s s s s s s s s             

                    
   

(2) 
     1 1, , ,

f f f f
s s s s s s s       

     
            

  

(3) 
         1 1

1 1 2 2 1 2 1 2 1 2 1 2
1 2 , , , ,

g g g g g g
s s s s s s s s s s s s             

                    
   

(4) 
     1 1, , ,

g g g g
s s s s s s s

  
        

           
  

Especially, if   log
x

g x
t

 
   

 
, then we have: 

(5) 
1 2 1 2

1 2 1 2

1 2 ,
t t

s s s s   
      

 
   

 
                    (6) 

1 1 1 1

,
t t

t t

s s s 
 


      
           

         

 
 
 
  

  

(7) 
1 2 1 21 2 ,
t t

s s s s   

 
   

 
                                     (8) ,

t t
t t

s s s 



    
    
   

 
 
 
 

 . 

If  
2

log
t x

g x
x

 
  

 
, then we have: 

(9) 
   2 2

1 2 1 2

2 2
1 2 1 2

1 2 ,
t t

t t

s s s s
   

   

 

 

 
  
 
 

                          (10) 
1 1

1 1

,
t t

t tt t
t t
t t

s s s 

 

 
 

 
 


   

         
         

 
 
 
 
 
 
 
 

  

(11) 

   
1 2 1 2

2 2
1 2 1 2 1 2 1 2

1 2

2 2

,t t

t t t t

s s s s   

            

 
  
  

    (12) 

   

2 2

2 2

,
t t

t t

s s s 
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If  
 1

log
t x

g x
x

    
  

 
, 0  , then we have: 

(13) 
   

 

   

 

2 2
1 2 1 2 1 2 1 2

2 2
1 2 1 2

1 2 2 2

1 1

,
t t t t

t t

s s s s
         

     

     

   

 
  
 
 

                        (14) 

 

 

 

 

1 1
1 1

1 1
1 1

,
t t

t t
t t

t t

t t

s s s 

 

   

 

   
 

 


         
                    

      
             

 
 
 
 

  
 
 
 
 

 ; 

(15) 

           
1 2 1 2

2 2
1 2 1 2 1 2 1 2

1 2

1 1 1 1

,t t

t t t t

s s s s   

                      

 
  
  

         (16) 

   1 1
1 1

,t t

t t

s s s
 


 

     
 

 

      
         

   

 
 
 
 
 
 

  

Especially, if 1  , then (13)–(16) reduce to (5)–(8); if 2  , then (13)–(16) reduce to (9)–
(12). 

If  
1

log

1
x

t

g x




  
 

 

, 1  , then we have: 

(17) 
1 2 1 21 1 1 1

1 2

1 1 1 1

log 1 log 1
1 1

,
t t t t

t t t t

s s s s
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(18) 
1 1

1 1
1 1log log

1 1

1 1

,
t t

t t

t t t t

s s s 

 

  

 

 
 

 

 

 


 

 

       
          

             
       

             

 
 
 
 
 
 
  

     (19) 

1 2 1 21 2

1 1 1 1

log 1 log 1
1 1

,
t t t t

t t

s s s s
   

 

   

 

          
               
          

           
    
   
   
   

 
 
 
 

   
 
 
 
  

   

(20) 
1 1

1 1
1 1log log

1 1

1 1

,

t t

s s s 

 

  

 



 
 

 

 

 

       
          

           
       

             

 
 
 
 
 
 
  

  

Especially, if 1  , then (17)–(20) reduce to (5)–(8). 

If  
1 1

g x
x t

  , then we have: 

(21) 
   2 2

1 2 1 2 1 2 1 2

2 2
1 2 1 2

1 2 2 2
,

t t t t

t t

s s s s
       

   

   

 

 
  
 
 

              (22) 
   1 1

,t t

t t

s s s   

   


   

 
  
  

  

(23) 
   

1 2 1 2

1 2 1 2 1 2 1 2

1 2 ,t t

t t

s s s s   

          

 
   

  

                     (24) 
   

,t t

t t

s s s
 

        

 
  
  

   

If   exp 1
t x

g x
x

 
  

 
, then we have: 

(25) 
1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2
log exp exp 1 log exp exp 1

1 log exp exp 1 1 log exp exp 1

,
t t

t t t t

t t t t

s s s s
   

   

   

   

          
                             

          
                               




 





 








 


; 

(26) 
log exp 1 log exp 1

1 log exp 1 1 log exp 1

,
t t

t t

t t

s s s
    
 

     


      

                
                    

 
 
 
 
 
 
  

 ;  
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(27) 

1 2 1 2

1 2 1 2

1 2

1 log exp exp 1 1 log exp exp 1

,t t

t t t t

s s s s
   

   

             
                  

          

 
 

   
 
  

  ; 

(28) 

1 log exp 1 1 log exp 1

,t t

t t

s s s

 
   

 

      
                 

 
 

  
 
  

 . 

 

Example 3.2. Assume that 8t  ,  
2

log
t x

g x
x

 
  

 
,  5 6,s s s ,  1 1 3,s s s ,  2 6 7,s s s , 

and 2  , then by Definition 3.2. (9)-(12), we have 

         1 2 1 3 6 7 6.4000 7.529464 1 6 64 3 7

64 1 6 64 3 7

, , , ,s s s s s s s s s s
   

   

 
     

  
  ; 

   2

2

5 6 7.1910 7.68008 5 8 6
1 1

8 5 8 6
8 8

8 5 8 6
1 1

8 5 8 6

2 2 , , ,s s s s s s s



    
    

     
    

    
    

 
 
 

   
 
 
  

 ; 

   
   

 1 2 1 3 6 7 8 1 6 8 3 7 0.6154 2.4348

2 64 8 1 6 1 6 2 64 8 3 7 3 7

, , , ,s s s s s s s s s s   

           

 
     

  

  ; 

 
   

 2 2

2 22 2

22
5 6 2.7397 4.23532 8 5 2 8 6

5 2 8 5 6 2 8 6

, , ,s s s s s s s
   

     

 
   
 
 

 . 

 

Theorem 3.4. For 1 2 3 4, , ,s s s s S     , and 0  , we have the following properties: 

 

(1)    1 2 1 2max , ,t ts s s s s s      . 

 1 2 ,t ts s s s    if and only if at least one of 1s  and 2s  is equal to  ,t ts s . 

 1 2 0 0,s s s s    if and only if  1 2 0 0,s s s s   . 

(2)    0 0 1 2 1 2, min ,s s s s s s      . 

 1 2 0 0,s s s s    if and only if at least one of 1s  and 2s  is equal to  0 0,s s . 

 1 2 ,t ts s s s    if and only if  1 2 ,t ts s s s   . 

 

(3)    0 0 1, ,t ts s s s s  .  1 0 0,s s s   if and only if  1 0 0,s s s .  1 ,t ts s s   if and only if 

 1 ,t ts s s . 
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(4)    0 0 1, ,t ts s s s s  .  0 0 1,s s s   if and only if  1 0 0,s s s .  1 ,t ts s s   if and only if 

 1 ,t ts s s . 

(5) 1 2 3 4s s s s      , if 1 3s s   and 2 4s s  ; Furthermore, 1 2 3 4s s s s       if and only if 

(i) 1 3s s   and 2 4s s  , or 

(ii) at least one of 1s  and 2s  is equal to  ,t ts s , and at least one of 3s  and 4s  is equal to 

 ,t ts s . 

(6) 1 2 3 4s s s s      , if 1 3s s   and 2 4s s  ; Furthermore, 1 2 3 4s s s s       if and only if 

(i) 1 3s s   and 2 4s s  , or 

(ii) at least one of 1s  and 2s  is equal to  0 0,s s , and at least one of 3s  and 4s  is equal to 

 0 0,s s . 

 

Theorem 3.5. For 1 2 3 4, , ,s s s s S     , and 1 2, , 0    , we have the following properties: 

(1) 1 2 2 1s s s s      ; (2)    1 2 3 2 1 3s s s s s s          ; (3)  0 1 0 0 1 1,s s s s s s       ; 

(4)  1 2 1 2s s s s        ; (5)  1 2 1 1 2 1s s s        ; (6) 1 2 2 1s s s s      ; 

(7)    1 2 3 1 2 3s s s s s s          ; (8)  1 1 1,t t ts s s s s s       ; (9)  1 2 1 2s s s s
        ; 

(10) 1 2 1 2

1 1 1s s s       . 

 

Theorem 3.6. Let 1 2, ,s s s S     and 0  , then the following are also valid: 

(1)     neg negs s


  .                           (2)    neg negs s   . 

(3)      1 2 1 2neg neg negs s s s      .      (4)      1 2 1 2neg neg negs s s s      . 

Compared with the Xu’s operational laws of uncertain linguistic variables [19], [27] 
(Definition 2.2), the new operational laws of uncertain linguistic variables have the same 
advantages as the new operational laws of linguistic terms. An illustrative example is given 
as follows: 
 
Example 3.3. Assume that there are four uncertain linguistic variables as follows: 

 1 3 4,s s s ,  2 5 6,s s s ,  3 4 5,s s s ,  4 6 7,s s s . 

Clearly, 1 3s s   and 2 4s s  . Let  
8

3 1
log

3 1
x

g x
  
 

 

, then  
1

8

3 1
log

3 1
x

f x


  
 

 

, 

 1
3

3 1
8log

x

x

e
g x

e
   

  
 

,  1
3

3 1
8 8log

x

x

e
f x

e
   

   
 

. By Definition 3.2 (17) and (19), 

we have 

               1 11 2 3 4 5 6 6.3658 7.20283 5 4 6
, , , ,

f f f f f f
s s s s s s s s s s  

       
   

               1 11 2 3 4 5 6 1.6342 2.79723 5 4 6
, , , ,

g g g g g g
s s s s s s s s s s  

       
   



 
 
 
 

British Journal of Applied Science & Technology, 4(19): 2699-2751, 2014 
 

 

2721 
 

               1 13 4 4 5 6 7 7.2028 7.73184 6 5 7
, , , ,

f f f f f f
s s s s s s s s s s  

       
   

               1 13 4 4 5 6 7 2.7972 4.26824 6 5 7
, , , ,

g g g g g g
s s s s s s s s s s  

       
   

It is obvious that 1 2 3 4s s s s      and 1 2 3 4s s s s     , which is consistent with our 

intuition and can be more easily accepted. 

If we use the operations Xu  and Xu  proposed by Xu [6,8] (Definition 2.2) to aggregate 

1s  and 2s , and 3s  and 4s , respectively, then we have 

       1 2 3 4 5 6 3 5 4 6 8 8, , , ,Xu Xus s s s s s s s s s        

       1 2 3 4 5 6 3 5 4 6 8 8, , , ,Xu Xus s s s s s s s s s        

       3 4 4 5 6 7 4 6 5 7 8 8, , , ,Xu Xus s s s s s s s s s        

       3 4 4 5 6 7 4 6 5 7 8 8, , , ,Xu Xus s s s s s s s s s        

As a result, we can obtain 

1 2 3 4s s s s       and 1 2 3 4s s s s       

Comparatively speaking, 1 2 3 4s s s s      and 1 2 3 4s s s s      may be more easily 

accepted, and 1 2 3 4s s s s       and 1 2 3 4s s s s       cannot be accepted. 

 
3.2 Induced Generalized Uncertain Linguistic Ordered Weighted Averaging 

(IGULOWA) Operator 
 
The IGOWA operator, however, can only be used in situations where the aggregated 
arguments are the exact numerical values. In the following, we shall develop an induced 
generalized uncertain linguistic ordered weighted averaging (IGULOWA) operator to 
accommodate the situations where the input arguments are given in the form of uncertain 
linguistic variables. 
 
The IGULOWA operator uses the main characteristics of the ULOWA, IOWA, and GOWA 
operators. Therefore, it uses uncertain linguistic information represented in the form of 
uncertain linguistic variables, generalized means, and order-inducing variables. The 
IGULOWA operator provides a very general formulation that includes as special cases a 
wide range of aggregation operators, including all the particular cases of the IOWA and 
GOWA operators, the ULOWA operator, the induced uncertain linguistic ordered weighted 
averaging (IULOWA) operator, the induced uncertain linguistic ordered weighted harmonic 
averaging (IULOWHA) operator, the induced uncertain linguistic ordered weighted quadratic 
averaging (IULOWQA) operator, the generalized uncertain linguistic ordered weighted 
averaging (GULOWA) operator and the generalized uncertain linguistic weighted averaging 
(GULWA) operator. The main advantage of the IGULOWA operator is that it considers 
complex reordering processes that can describe the problem in a more complete way under 
an uncertain framework that can be assessed with uncertain linguistic variables. 
 
Definition 3.3. An induced generalized uncertain linguistic ordered weighted averaging 

(IGULOWA) operator IGULOWA : nS S    is defined as follows: 

    
1

1 1 2 2
1

IG U LO W A , , , , , ,
n

n n j j
j

u s u s u s w s



 



 
  
 

                                     (7) 
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where  0,  ,  1 2, , ,
T

nw w w w   is a weighting vector, such that  0,1jw  , 

1

1
n

j
j

w


 ,  js  is the is  value of the ULOWA pair ,i iu s  having the jth largest iu , and iu  

in ,i iu s  is referred to as the order inducing variable and is  as the uncertain linguistic 

argument variable. 

However, if there is a tie between ,i iu s  and ,j ju s  with respect to order inducing 

variables such that i ju u , in this case, we replace the argument component of each of 

,i iu s  and ,j ju s  by their generalized mean   
1

2i js s


    depending on the 

parameter  . If k  items are tied, we replace these by k  replicas of their generalized mean. 
 
Especially, if 1  , then IGULOWA operator reduces to the induced uncertain linguistic 
ordered weighted averaging (IULOWA) operator, which is shown as follows: 

 

                        1 1 2 2
1

IULOWA , , , , , ,
n

n n j jj
u s u s u s w s

                                          (8) 

 

Theorem 3.7. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, then the aggregated value by using the IGULOWA operator is an uncertain 
linguistic variable, and 

 
         1 1 1 1 1 1

1 1

1 1 2 2
1 1

IGULOWA , , , , , , ,  
n n

j jj j
j j

n n

g g f w f g g g g f w f g g

u s u s u s s s
 


   

 
     

 

         
         
         

         

 
 

  
  

 

    (9) 

 
Proof. By using mathematical induction on n , we first prove that 
 

 
  

         1 1 1 1

1 1

1
,

n n

j jj j
j j

n

j jj
f w f g g f w f g g

w s s s
 




      

 

       
   
   

 
    

   

                         (10) 

 
For 2n  , since 

 
         1 1 1 1

1 11 1

1 1
,

f w f g g f w f g g
w s s s

 


          

   
   

 
  
 

  

 
         1 1 1 1

2 22 2

2 2
,

f w f g g f w f g g
w s s s

 


          

   
   

 
  
 

  

Then we have 
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1 1 1 1 1 1 1 1
1 1 2 21 1 2 2

1 1 1 1 1 1 1 1
1 2 11 2

1 21 2

, ,

,

f w f g g f w f g g f w f g g f w f g g

f f f w f g g f f w f g g f f f w f g g

w s w s

s s s s

s s

   

  

 
 

       

     

       

       

       
       
       

              
       



   
    
   



 

         

                   

1 1
21 2

1 1 1 1 1 1
1 2 1 21 2 1 2

,

f f w f g g

f w f g g w f g g f w f g g w f g g
s s



   

 

       

 

     

              
       

       
   

 
 
  

 
  
 

 
That is, the Eq. (10) holds for 2n  . Suppose that the Eq. (10) holds for n k , i.e., 

  
         1 1 1 1

1 1

1
,

k k

j jj j
j j

k

j j
j

f w f g g f w f g g

w s s s
 




      

 

       
   
   

 
    

   


 

then, when 1n k  , we have 

        

                     

    

1 1 1 1
1 1 1 1 1 11 1

1 1

1 1 1

1

1

1 11 1

, ,

  

k k
k kk k

j jj j
j j

k

j j
j

k k

j j kj j kj j

f w f g g f w f g g
f w f g g f w f g g

f f f w f g g

w s w s w s

s s s s

s

 
 



  
  

   
   

 

   
      

 

  





  

   
   
   
   

  
  
  

  

 
    

 

 
      
    


                 

              

1 1 1 1 1 1 1
1 11 1

1

1 1 1 1 1 1
1 11

1 1

,

,

k

k j kk j k
j

k k

j k j kj k j
j j

f f w f g g f f f w f g g f f w f g g

f w f g g w f g g f w f g g w f g g

s

s s

  

  

     

      

      
  



     
 

 

     
                            

 
  
 
 

 
 
 

 
 


      

         

1

1 1
1 1 1 1

1 1

,

k

k k

j jj j
j j

f w f g g f w f g g

s s



 



   



 
   

 

 
 
 
 

   
   
   
   

 
 
 
  

 
   

   

i.e., Eq. (10) holds for 1n k  . Thus, Eq. (10) holds for all n . 
Furthermore, by Eqs. (7) and (10), we get 
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1 1 1 1

1 1

1 1 1 1 1 1

1 1

1

1 1 2 2
1

1 1

IGULOWA , , , , , ,

,

,

n n

j jj j
j j

n n

j jj j
j j

n

n n j j
j

f w f g g f w f g g

g g f w f g g g g f w f g g

u s u s u s w s

s s

s s

 

 




 



   

   
 

   

 

     

 



   
   
   
   

    
   
   

    

 
  
 

 
   

   


 

   

  
   
   

  

 
 
 
 
 

 

In addition, because    : 0, 0,g t    is a strictly decreasing function and 

   f x g t x  ,    : 0, 0,f t    is a strictly increasing function. Accordingly, 

   1 : 0, 0,g t    is a strictly decreasing function and    1 : 0, 0,f t    is a strictly 

increasing function. Moreover, for any ,
i iis s s S 

   
  ( 1,2, ,i n  ), we have 

0 i i ts s s s    . Therefore, we have 

   

    

    

   

1 1 1

1

1 1 1

1

1 1 1

1

1 1 1

1

0
1

0

1

1

1

n

j

j

n

j j
j

n

i j
i

n

i

i

g g f w f g g

g g f w f g g

g g f f g g

g g f f g g t

s s

s

s

s








 


  


 


  



  



  



  



   
   
   

   

   
   
   

   

   
   

      

   
   

      













ts





 

 

which implies that the aggregated value by using the IGULOWA operator is still an uncertain 
linguistic variable. This completes the proof of Theorem 3.7.   
  

Let 1  , then the following result can be easily derived from Theorem 3.7. 
 

Theorem 3.8. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, then the aggregated value by using the IULOWA operator is an uncertain linguistic 
variable, and 
 

              
     1 1

1 1

1 1 2 2IULOW A , , , , , , ,
n n

j jj j
j j

n n
f w f f w f

u s u s u s s s
   

 

   
   
   
   

 
   

   

              (11) 
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Example 3.4. Let  4 60.3, ,s s ,  2 30.2, ,s s ,  5 70.8, ,s s ,  7 70.5, ,s s  be four ULOWA 

pairs ,i iu s . Performing the ordering of the ULOWA pairs with respect to the first 

component, we have 
 

 5 70.8, ,s s ,  7 70.5, ,s s ,  4 60.3, ,s s ,  2 30.2, ,s s ,  

This ordering induces the ordered uncertain linguistic arguments 

   5 71
,s s s  ,    7 72

,s s s  ,    4 63
,s s s  ,    2 33

,s s s  ,  

Suppose that  
1 1

8
g x

x
  ,  

 8 8

x
f x

x



,  1 8

1 8
g x

x
 


,  1 64

1 8

x
f x

x
 


, the 

weighting vector  0.3,0.4,0.1,0.2w  , and 0.7  . Then, by Eq. (9), we have 

          0.7 4 6 2 3 5 7 7 8 6.2090 6.7342IGULOWA 0.3, , , 0.2, , , 0.8, , , 0.5, , ,s s s s s s s s s s . 

Then, we can investigate some desirable properties of the IGULOWA operator. 
 

Theorem 3.9 (Commutativity). If  1 1 2 2, , , , , ,n nu s u s u s         is any permutation of 

 1 1 2 2, , , , , ,n nu s u s u s   , then we have 

   1 1 2 2 1 1 2 2IGULOWA , , , , , , IGULOWA , , , , , ,n n n nu s u s u s u s u s u s 
                  (12) 

Proof. According to Definition 3.1, let 

 
         1 1 11 1 1

11

1 1 2 2
11

IGULOWA , , , , , , ,  
nn

i jj j
ij

n n
g g f f g gg g f w f g g

u s u s u s s s



   



    



         
         

               

 
 

  
 

 

 
         1 1 11 1 1

11

1 1 2 2
11

IGULOWA , , , , , , ,  
nn

i jj j
ij

n n
g g f f g gg g f w f g g

u s u s u s s s



   



    



         
                         

 
 

        
 

 

Since  1 1 2 2, , , , , ,n nu s u s u s         is a permutation of  1 1 2 2, , , , , ,n nu s u s u s   , we 

have    j j    and    j j    , then 

   1 1 2 2 1 1 2 2IGULOWA , , , , , , IGULOWA , , , , , ,n n n nu s u s u s u s u s u s 
           

Theorem 3.10 (Idempotency). If all ,
i iis s s 

     ( 1,2, ,i n  ) are equal, i.e., 

,is s s s       , for all i , then 

 1 1 2 2IGULOWA , , , , , ,n nu s u s u s s                                (13) 

 

Proof. Let ,is s s s       , then we have 
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       1 1 11 1 1

11

1 1 2 2 1 2

11

IGULOWA , , , , , , IGULOWA , , , , , ,

,

,

nn

ij
ij

n n n

g g f f g gg g f w f g g

u s u s u s u s u s u s

s s

s s

 

   


 

    



         
         

             



 
 

  
 

 

   

      

 
This completes the proof of Theorem 3.10.    
 

Theorem 3.11 (Monotonicity). Let ,
i iis s s 

     and ,
i iis s s  

      ( 1,2, ,i n  ) be two 

collections of uncertain linguistic variables, if 
i i
s s    and 

i i
s s   , for all i , then 

 

   1 1 2 2 1 1 2 2IGULOWA , , , , , , IGULOWA , , , , , ,n n n nu s u s u s u s u s u s             (14) 

 

Proof. If 
i i
s s    and 

i i
s s   , for all i , then 

   i i
s s

    and 
   i i

s s
    . Therefore, 

 

         1 1 1 1 1 1

1 1

1 1n n

j jj j
j j

g g f w f g g g g f w f g g    
 

     

 

         
                        

   

and 
 

         1 1 1 1 1 1

1 1

1 1n n

j jj j
j j

g g f w f g g g g f w f g g    
 

     

 

         
                        

   

By Definition 2.3, we have 
 

  

         

         

1 1 2 2

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1

IGULOWA , , , , , ,

1 1

2

1 1

n n

n n

j jj j
j j

n

j jj j
j j

s u s u s u s

g g f w f g g g g f w f g g

g g f w f g g g g f w f g g

 

 

   
 

   
 

     

 

     

 

         
                        

   
         

 



  

  

1

1 1 2 2

2

IGULOWA , , , , , ,

n

n ns u s u s u s

   
        

  



  

 

 

If  

     1 1 2 2 1 1 2 2IGULOWA , , , , , , IGULOWA , , , , , ,n n n ns u s u s u s s u s u s u s         , 

then by Definition 2.5, we have 

   1 1 2 2 1 1 2 2IGULOWA , , , , , , IGULOWA , , , , , ,n n n nu s u s u s u s u s u s         . 
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If 

     1 1 2 2 1 1 2 2IGULOWA , , , , , , IGULOWA , , , , , ,n n n ns u s u s u s s u s u s u s         , 

then we have 

         

         

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1

1 1

2

1 1

2

n n

j jj j
j j

n n

j jj j
j j

g g f w f g g g g f w f g g

g g f w f g g g g f w f g g

 

 

   
 

   
 

     

 

     

 

         
                        

         
                         

 

 

 

which implies that 

         1 1 1 1 1 1

1 1

1 1n n

j jj j
j j

g g f w f g g g g f w f g g    
 

     

 

         
                        

   

and 

         1 1 1 1 1 1

1 1

1 1n n

j jj j
j j

g g f w f g g g g f w f g g    
 

     

 

         
                        

   

Thus, by Definition 2.4, 

  

         

         

1 1 2 2

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1

IGULOWA , , , , , ,

1 1

2

1 1

n n

n n

j jj j
j j

n

j jj j
j j

v u s u s u s

g g f w f g g g g f w f g g

g g f w f g g g g f w f g g

 

 

   
 

   
 

     

 

     

 

         
                        

   
         

 



  

  

1

1 1 2 2

2

IGULOWA , , , , , ,

n

n nv u s u s u s

   
        

  



  

 

Based on the above analysis, according to Definition 2.5, we can obtain 

   1 1 2 2 1 1 2 2IGULOWA , , , , , , IGULOWA , , , , , ,n n n nu s u s u s u s u s u s         . 

This completes the proof of Theorem 3.11.    
 

Theorem 3.12 (Boundedness). Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain 

linguistic variables, then 
 

     1 1 2 2min IGULOWA , , , , , , maxi n n i
i i
s u s u s u s s                          (15) 

Proof. Because    
1 1
min max

i i ii n i n
s s s  

   
   and    

1 1
min max

i i ii n i n
s s s  

   
  , 
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1 1 1

1 1
1

1 1 1

1

1 1 1

1
1

1

1
min min

1

1
max

max

n

j j j
j n j n

j

n

j j
j

n

j j
j n

j

j

g g f w f g g

g g f w f g g

g g f w f g g



  


 


 


  

   


  



  

 


 

                  

   
         

                  









 j
n


 

 

    

    

  

1 1 1

1 1
1

1 1 1

1

1 1 1

1
1

1

1
min min

1

1
max

max

n

j j j
j n j n

j

n

j j
j

n

j j
j n

j

j

g g f w f g g

g g f w f g g

g g f w f g g



  


 


 


  

   


  



  

 


 

                  

   
         

                  









 j
n


) 

 

Let  1 1 2 2IGULOWA , , , , , , ,n nu s u s u s s s s          . Then, 

   
 

   
1 1 1 1

max maxmin min

2 2 2

j jj j
j n j n j n j n

s s
t t t

           
 

    

If 
   

 
   

1 1 1 1
max maxmin min

2 2 2

j jj j
j n j n j n j n

s s
t t t

           
 

   , then by Definition 2.5, 

     1 1 2 2min IGULOWA , , , , , , maxi n n i
i i
s u s u s u s s      . 

If  
   

1 1
max max

2 2

j j
j n j n

s s
t t

      


  , then  
1
max j
j n

 
 

 ,  
1
max j
j n

 
 

 , thus, 

 
   

1 1
max max

2 2

j j
j n j n

v s
t t

      


  , which implies that 

   1 1 2 2IGULOWA , , , , , , maxn n i
i

u s u s u s s     . 
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If  
   

1 1
min min

2 2

j j
j n j n

s s
t t

      


  , then  
1
min j
j n

 
 

 ,  
1
min j
j n

 
 

 , thus, 

 
   

1 1
min min

2 2

j j
j n j n

v s
t t

      


  , which implies that 

   1 1 2 2IGULOWA , , , , , , minn n i
i

u s u s u s s     . 

From the above analysis, we can conclude that Eq. (15) always holds. 
 

Theorem 3.13. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, and ,s s s      is an uncertain linguistic variable, then 

         

   1 1 2 2 1 1 2 2IULOWA , , , , , , IULOWA , , , , , ,          n n n nu s s u s s u s s u s u s u s s        

(16) 
Proof. Since 

         1 1,
i i

i f f f f f f
s s s s

     
     

   

we have 

 
             

           

    

1 1 1 1

1 1

1 1

1 1

1

1

1 1 2 2IULOWA , , , , , , ,

,

     
n n

j jj j
j j

n n

j jj j
j j

n

j j
j

n n
f w f f f f f w f f f f

f w f f f w f f

f f w f

u s s u s s u s s s s

s s

s

 

 



   

   

 

   

 

 

 





   
    
   
   

   
    
   
   

 
 
 
 

 
      

   

 
   

   


     1

1

,
n

j j
j

f f w f

s
 



 
 
 
 

 
 
 

  
and 

 
     

         

1 1

1 1

1 1 1 1

1 1

1 1 2 2IULOWA , , , , , , , ,

,

   
n n

j jj j
j j

n n

j jj j
j j

n n
f w f f w f

f f f w f f f f f w f f

u s u s u s s s s s s

s s

 

 

 
 

   

 

 

   

 

   
   
   
   

         
          
                     

 
        

   





 



         1 1

1 1

,
n n

j jj j
j j

f f w f f f w f

s s
     

 

   
    
   
   




 
 



 
   

   

 

which completes the proof.  
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Theorem 3.14. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, if 0r  , then 
                         

   1 1 2 2 1 1 2 2IULOWA , , , , , , IULOWA , , , , , ,n n n nu rs u rs u rs r u s u s u s                 

(17) 

Proof. Since for any  1,2, ,i n  , 

     1 1,
i i

i f rf f rf
rs s s

  
    

  

Based on Definition 3.2 and Eq. (11), we have 

 
         

     

1 1 1 1

1 1

1 1

1 1

1 1 2 2IULOWA , , , , , , ,

,

n n

j jj j
j j

n n

j jj j
j j

n n
f w f f rf f w f f rf

f r w f f r w f

u rs u rs u rs s s

s s

 

 

 

 

   

 

 

 

   
   
   
   

   
   
   
   

 
 
 

   

 
 
 

   

  

 

and 

 
     

     

  

1 1

1 1

1 1 1 1

1 1

1

1 1 2 2IULOWA , , , , , , ,

,

n n

j jj j
j j

n n

j jj j
j j

j j

n n
f w f f w f

f rf f w f f rf f w f

f r w f

r u s u s u s r s s

s s

s

 

 



 

 



 

 

   

 



   
   
   
   

         
         
         

         

 
   

   

 
 

  
  

 



  

  1

1 1

,
n n

j j
j j

f r w f

s




 

   
   
   
   

 
 
 

   

 

This completes the proof of Theorem 3.14.      
According to Theorems 3.13 and 3.14, we can easily get the following result. 

Theorem 3.15. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, if 0r   and ,s s s      is an uncertain linguistic variable, then 

 

   1 1 2 2 1 1 2 2IULOWA , , , , , , IULOWA , , , , , ,          n n n nu rs s u rs s u rs s r u s u s u s s     (18

) 
 

Theorem 3.16. Let ,
i iis s s 

     and ,
i iis s s  

      ( 1,2, ,i n  ) be two collections of 

uncertain linguistic variables, then 

 
   

1 1 1 2 2 2

1 1 2 2 1 1 2 2

IULOWA , , , , , ,

IULOWA , , , , , , IULOWA , , , , , ,

n n n

n n n n

u s s u s s u s s

u s u s u s u s u s u s

    

   

     

      
    (19) 
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Proof. According to Definition 3.1, we have 
 

         1 1,
i i i i

i i f f f f f f
s s s s

      
     

   

then 

 

               

             

1 1 1 1

1 1

1 1

1 1

1

1 1 1 2 2 2IULOWA , , , , , ,

,

,

n n

j jj j j j
j j

n n

j jj j j j
j j

j

n n n

f w f f f f f w f f f f

f w f f f w f f

f w f

u s s u s s u s s

s s

s s

s

   

   

   

   



   

 

 

 



   
     
   
   

   
     
   
   

    

 
 
 

   

 
   

   



     

           1

1 1 1 1

,
n n n n

j j jj j j j
j j j j

w f f w f w f

s
     

   

          
            
          
          

 
 
 

     

 

and 

   

           

  

1 1 1 1

1 1 1 1

1 1

1

1 1 2 2 1 1 2 2IULOWA , , , , , , IULOWA , , , , , ,

, ,
n n n n

j j j jj j j j
j j j j

n

j j
j

n n n n

f w f f w f f w f f w f

f f f w f

u s u s u s u s u s u s

s s s s

s

   



   



   

   

 



       
        
       
       





  

   
       

         




      

        

     

1 1 1 1

1 1 1

1 1

1 1

,

,

n n n

j j jj j j
j j j

n n

j jj j
j j

f f w f f f f w f f f w f

f w f w f f

s

s s

  

 

  

 

   

  

 

 

                
                   
                 

                

    
    
    
    

 
 
 

   
 


       

1 1

n n

j jj j
j j

w f w f  
 

    
    
    
    

 
 
 

   

 

which completes the proof.   
 
We now look at some special cases of the IGULOWA operator obtained by using different 
choices of the parameters: the associated weighting vector w , the order inducing variable 

ju , and the parameter  . 

 
(1) If 1  , then the IGULOWA operator reduces to the following formula: 

 
     1 1

1 1

1 1 2 2IULOWA , , , , , , ,
n n

j jj j
j j

n n
f w f f w f

u s u s u s s s
   

 

   
   
   
   

 
 
 

   

     (20) 
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which is called an induced uncertain linguistic ordered weighted averaging (IULOWA) 

operator, where  js  is presented as in Definition 3.3. 

 
(2) If 1   , then the IGULOWA operator reduces to the following formula: 
 

 
         1 1 1 1 1 1

1 1

1 1 2 2IULOWHA , , , , , , ,  
n n

j jj j
j j

n n

g g f w f g g g g f w f g g

u s u s u s s s
       

 

         
            
                     

 
 

  
  

 

 (21) 

 
which is called an induced uncertain linguistic ordered weighted harmonic averaging 
(IULOWHA) operator. 
 
(3) If 2  , then the IGULOWA operator reduces to the following formula:   
 

 
         1 1 1 1 1 1

1 1

1 1 2 2

2 2 2 2

IULOWQA , , , , , , ,  
n n

j jj j
j j

n n

g g f w f g g g g f w f g g

u s u s u s s s
       

 

         
         
                     

 
 

  
  

 

  

(22) 
 
which is called an induced uncertain linguistic ordered weighted quadratic averaging 
(IULOWQA) operator. 
 

(4) If j ju s   for all j , then the IGULOWA operator reduces to the following formula: 

 

 
         1 1 1 1 1 1

1 1

1 1 2 2
1 1

GULOWA , , , , , , ,  
n n

j jj j
j j

n n

g g f w f g g g g f w f g g

u s u s u s s s
 


   

 
     

 

         
         
         

         

 
 

  
  

 

   

(23) 
 
which is called an generalized uncertain linguistic ordered weighted averaging (GULOWA) 

operator, where  js  is the jth largest of the is . 

 

(5) If j ju s   for all j  and 1  , then the IGULOWA operator reduces to the following 

formula: 

    
     1 1

1 1

1 1 2 2
1

ULOWA , , , , , , ,
n n

j jj j
j j

n

n n j j
j

f w f f w f

u s u s u s w s s s
 


  

 

       
   
   

 
   
 

   

           

(24) 
 
which is called an uncertain linguistic ordered weighted averaging (ULOWA) operator, where 

 js  is the jth largest of the is . 
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(6) If ju j   for all j  and the associated weighting vector  1 2, , ,
T

nw w w w   is the 

weight vector of js  ( 1,2, ,j n  ), then the IGULOWA operator reduces to the following 

formula: 

  
       1 1 1 1 1 1

1 1

1 1 2 2
1 1

GULWA , , , , , , ,  
n n

j j j j

j j

n n

g g f w f g g g g f w f g g

u s u s u s s s
   

 
     

 

         
         
                     

 
 

  
  

 

      

(25) 
 
which is called an generalized uncertain linguistic weighted averaging (GULWA) operator. 

(7) If ju j   for all j , the associated weighting vector  1 2, , ,
T

nw w w w   is the weight 

vector of js  ( 1,2, ,j n  ), and 1  , then the IGULOWA operator reduces to the following 

formula: 

   
   1 1

1 1

1 1 2 2
1

ULWA , , , , , , ,
n n

j j j j

j j

n

n n j j
j

f w f f w f

u s u s u s w s s s
  

 

       
   
   

 
   
 

   

              (26) 

 
which is called an uncertain linguistic weighted averaging (ULWA) operator. 
 

(8) If 
1 1 1

, , ,
T

w
n n n

 
  
 

 , then the IGULOWA operator reduces to the following formula: 

 

 
         1 1 1 1 1 1

1 1

1 1 2 2
1 1 1 1

IGULOA , , , , , , ,  
n n

j j
j j

n n

g g f f g g g g f f g g
n n

u s u s u s s s
 


   

 
     

 

         
         
                     

 
 

  
  

 

    

(27) 
 
which is called an induced generalized uncertain linguistic ordered averaging (IGULOA) 
operator. 

(9) If 
1 1 1

, , ,
T

w
n n n

 
  
 

  and 1  , then the IGULOWA operator reduces to the following 

formula: 

 
     1 1

1 1

1 1 2 2
1 1

IULOA , , , , , , ,
n n

j j
j j

n n
f f f f

n n

u s u s u s s s
   

 

   
   
   
   

 
 
 

   

                             (28) 

 
which is called an induced uncertain linguistic ordered averaging (IULOA) operator. 
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3.3. Induced Generalized Uncertain Linguistic Ordered Weighted Geometric 
(IGULOWG) Operator 

 
Based on the IGULOWA operator and the geometric mean, here we define an induced 
generalized uncertain linguistic ordered weighted geometric (IGULOWG) operator: 
 
Definition 3.4. An induced generalized uncertain linguistic ordered weighted geometric 

(IGULOWG) operator IGULOWG : nS S    is defined as follows: 

 

    1 1 2 2
1

1
IGULOWG , , , , , ,

j
n w

n n j
j

u s u s u s s 
 

 
  

 
                             (29) 

 

where  0,  ,  1 2, , ,
T

nw w w w   is a weighting vector, such that  0,1jw  , 

1

1
n

j
j

w


 ,  js  is the is  value of the ULOWG pair ,i iu s  having the jth largest iu , and iu  

in ,i iu s  is referred to as the order inducing variable and is  as the uncertain linguistic 

argument variable. 
 

However, if there is a tie between ,i iu s  and ,j ju s  with respect to order inducing 

variables such that i ju u , in this case, we replace the argument component of each of 

,i iu s  and ,j ju s  by their generalized geometric mean    
11
22

1
i js s 



 
 

 
   depending 

on the parameter  . If k  items are tied, we replace these by k  replicas of their generalized 
geometric mean. 
 
Especially, if 1  , then IGULOWG operator reduces to the induced uncertain linguistic 
ordered weighted geometric (IULOWG) operator, which is shown as follows: 
 

                        1 1 2 2
1

IULOWG , , , , , , j
n

w

n n jj
u s u s u s s

                                              (30) 

 

Theorem 3.17. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, then the aggregated value by using the IGULOWG operator is an uncertain 
linguistic variable, and 

 
         1 1 1 1 1 1

1 1

1 1 2 2
1 1

IGULOWG , , , , , , ,  
n n

j jj j
j j

n n

f f g w g f f f f g w g f f

u s u s u s s s
 


   

 
     

 

         
         
         

         

 
 

  
  

 

  

(31) 
 

Let 1  , then the following result can be easily derived from Theorem 3.17. 
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Theorem 3.18. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, then the aggregated value by using the IULOWG operator is an uncertain 
linguistic variable, and 
 

 
     1 1

1 1

1 1 2 2IULOWG , , , , , , ,
n n

j jj j
j j

n n
g w g g w g

u s u s u s s s
   

 

   
   
   
   

 
 
 

   

                (32) 

 

Example 3.5. Suppose that we have four ULOWG pairs ,i iu s  given  2 5 6, ,s s s , 

 5 4 5, ,s s s ,  3 1 3, ,s s s ,  6 5 7, ,s s s . Performing the ordering of the ULOWG pairs with 

respect to the first component, we have 

 6 5 7, ,s s s ,  5 4 5, ,s s s ,  3 1 3, ,s s s ,  2 5 6, ,s s s  

 
This ordering induces the ordered uncertain linguistic arguments 

 5 7,s s ,  4 5,s s ,  1 3,s s ,  5 6,s s  

 

If the weighting vector  0.3,0.1,0.5,0.1w  ,  
2

log
t x

g x
x

 
  

 
,   log

t x
f x

t x

 
  

 
, 

 1 2

1 x

t
g x

e
 


,  

 1
1

1

x

x

e t
f x

e






, and 5  , then by Eq. (31), we get 

          5 2 5 6 5 4 5 3 1 3 6 5 7 1.5918 3.4649IGULOWG , , , , , , , , , , , ,s s s s s s s s s s s s s s . 

Then we can investigate some desirable properties of the IGULOWG operator. 
 

Theorem 3.19 (Commutativity). If  1 1 2 2, , , , , ,n nu s u s u s         is any permutation of 

 1 1 2 2, , , , , ,n nu s u s u s   , then we have 

 

   1 1 2 2 1 1 2 2IGULOWG , , , , , , IGULOWG , , , , , ,n n n nu s u s u s u s u s u s 
               (33) 

 

Theorem 3.20 (Idempotency). If all ,
i iis s s 

     ( 1,2, ,i n  ) are equal, i.e., 

,is s s s       , for all i , then 

 1 1 2 2IGULOWG , , , , , ,n nu s u s u s s                                         (34) 

 

Theorem 3.21 (Monotonicity). Let ,
i iis s s 

     and ,
i iis s s  

      ( 1,2, ,i n  ) be two 

collections of uncertain linguistic variables, if 
i i
s s    and 

i i
s s   , for all i , then 

 

   1 1 2 2 1 1 2 2IGULOWG , , , , , , IGULOWG , , , , , ,n n n nu s u s u s u s u s u s               (35) 
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Theorem 3.22 (Boundedness). Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain 

linguistic variables, then 
 

     1 1 2 2min IGULOWG , , , , , , maxi n n i
i i
s u s u s u s s                           (36) 

 

Theorem 3.23. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, and ,s s s      is an uncertain linguistic variable, then 

 

   1 1 2 2 1 1 2 2IULOWG , , , , , , IULOWG , , , , , ,          n n n nu s s u s s u s s u s u s u s s                (37) 

 

Theorem 3.24. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, if 0r  , then 
 

    1 1 2 2 1 1 2 2IULOWG , , , , , , IULOWG , , , , , ,
r

r r r
n n n nu s u s u s u s u s u s          (38) 

 

Theorem 3.25. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, if 0r   and ,s s s      is an uncertain linguistic variable, then 

 

    1 1 2 2 1 1 2 2IULOWG , , , , , , IULOWG , , , , , ,          
r

r r r
n n n nu s s u s s u s s u s u s u s s        (39) 

 

Theorem 3.26. Let ,
i iis s s 

     and ,
i iis s s  

      ( 1,2, ,i n  ) be two collections of 

uncertain linguistic variables, then 
 

 
   

1 1 1 2 2 2

1 1 2 2 1 1 2 2

IULOWG , , , , , ,

IULOWG , , , , , , IULOWG , , , , , ,

n n n

n n n n

u s s u s s u s s

u s u s u s u s u s u s

    

   

     

      
          (40) 

 
In what follows, I will investigate the relationship between the IGULOWA operator and the 
IGULOWG operator. 

Theorem 3.27. Let ,
i iis s s 

     ( 1,2, ,i n  ) be a collection of uncertain linguistic 

variables, then we have 
 

(1)          1 2 1 2IGULOWA neg ,neg , ,neg neg IGULOWG , , ,n ns s s s s s                   (41) 

(2)          1 2 1 2IGULOWG neg ,neg , ,neg neg IGULOWA , , ,n ns s s s s s                   (42)  

 
Proof. (1) According to Definition 2.1, Eq. (9), and Eq. (31), we can get 
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1 1 1 1 1 1

1 1

1 1 1

1
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1 1

1

IGULOWA neg ,neg , ,neg

,
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n n

j jj j
j j

n

j j
j

n

g g f w f g g t g g f w f g g t

t f f g w g f f
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s s
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1 1 1

1

1 1 1 1 1 1

1 1

1

1 1
neg ,

neg IGULOWG

n

j j
j

n n

j jj j
j j

t f f g w g f f

f f g w g f f f f g w g f f

s

s s

u



 

 


   
 



  



     

 

   
   
   

   

         
         
         

         

 
 
 

 
 

  
  

   
   
  

   1 1 2 2, , , , , ,n ns u s u s  

 

 
(2) According to Definition 2.1, Eq. (9), and Eq. (31), we have 

      

         

    

1 1 1 1 1 1

1 1

1 1 1

1

1 2

1 1

1

IGULOWG neg ,neg , ,neg

,

,

n n

j jj j
j j

n

j j
j

n

f f g w g f f t f f g w g f f t

t g g f w f g g

s s s

s s

s

 





   
 

 


     

 

  



         
          
         

         

   
   
   

   

 
 

  
  

 




  

    

         

1 1 1

1

1 1 1 1 1 1

1 1

1

1 1
neg ,

neg IGULOWA

n

j j
j

n n

j jj j
j j

t g g f w f g g

g g f w f g g g g f w f g g

s

s s

u



 

 


   
 



  



     

 

   
   
   

   

         
         
         

         

 
 
 

 
 

  
  

   
   
  

   1 1 2 2, , , , , ,n ns u s u s  

 

This completes the proof of Theorem 3.27.  
 
We next look at some special cases of the IGULOWG operator obtained by using different 
choices of the parameters: the associated weighting vector w , the order inducing variable 

ju , and the parameter  . 

 
(1) If 1  , then the IGULOWG operator reduces to the following formula: 
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     1 1

1 1

1 1 2 2IULOWG , , , , , , ,
n n

j jj j
j j

n n
g w g g w g

u s u s u s s s
   

 

   
   
   
   

 
 
 

   

         (43) 

 
which is called an induced uncertain linguistic ordered weighted geometric (IULOWG) 

operator, where  js  is presented as in Definition 3.4. 

(2) If 1   , then the IGULOWG operator reduces to the following formula: 
 

 
         1 1 1 1 1 1

1 1

1 1 2 2IULOWHG , , , , , , ,  
n n

j jj j
j j

n n

f f g w g f f f f g w g f f

u s u s u s s s
       

 

         
            
         

         

 
 

  
  

 

 (44) 

 
which is called an induced uncertain linguistic ordered weighted harmonic geometric 
(IULOWHG) operator. 
 
(3) If 2  , then the IGULOWG operator reduces to the following formula: 
 

 
         1 1 1 1 1 1

1 1

1 1 2 2
1 1

2 2
2 2

IULOWQG , , , , , , ,  
n n

j jj j
j j

n n

f f g w g f f f f g w g f f

u s u s u s s s
       

 

         
         
         

         

 
 

  
  

 

 (45) 

 
which is called an induced uncertain linguistic ordered weighted quadratic geometric 
(IULOWQG) operator. 
 

(4) If j ju s   for all j , then the IGULOWG operator reduces to the following formula: 

 

 
         1 1 1 1 1 1

1 1

1 1 2 2
1 1

GULOWG , , , , , , ,  
n n

j jj j
j j

n n

f f g w g f f f f g w g f f

u s u s u s s s
 


   

 
     

 

         
         
         

         

 
 

  
  

 

  (46) 

 
which is called an generalized uncertain linguistic ordered weighted geometric (GULOWG) 

operator, where  js  is the jth largest of the is . 

 

(5) If j ju s   for all j  and 1  , then the IGULOWG operator reduces to the following 

formula: 
 

 
     1 1

1 1

1 1 2 2ULOWG , , , , , , ,
n n

j jj j
j j

n n
g w g g w g

u s u s u s s s
   

 

   
   
   
   

 
 
 

   

                (47) 
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which is called an uncertain linguistic ordered weighted geometric (ULOWG) operator, where 

 js  is the jth largest of the is . 

(6) If ju j   for all j  and the associated weighting vector  1 2, , ,
T

nw w w w   is the 

weight vector of js  ( 1,2, ,j n  ), then the IGULOWG operator reduces to the following 

formula: 
 

 
       1 1 1 1 1 1

1 1

1 1 2 2
1 1

GULWG , , , , , , ,  
n n

j j j j

j j

n n

f f g w g f f f f g w g f f

u s u s u s s s
   

 
     

 

         
         
                     

 
 

  
  

 

 (48) 

 
which is called an generalized uncertain linguistic weighted geometric (GULWG) operator. 

(7) If ju j   for all j , the associated weighting vector  1 2, , ,
T

nw w w w   is the weight 

vector of js  ( 1,2, ,j n  ), and 1  , then the IGULOWG operator reduces to the following 

formula: 
 

 
   1 1

1 1

1 1 2 2ULWG , , , , , , ,
n n

j j j j

j j

n n
g w g g w g

u s u s u s s s
  

 

   
   
   
   

 
 
 

   

                        (49) 

 
which is called an uncertain linguistic weighted geometric (ULWG) operator. 

(8) If 
1 1 1

, , ,
T

w
n n n

 
  
 

 , then the IGULOWG operator reduces to the following formula: 

 

 
         1 1 1 1 1 1

1 1

1 1 2 2
1 1 1 1

IGULOG , , , , , , ,  
n n

j j
j j

n n

f f g g f f f f g g f f
n n

u s u s u s s s
 


   

 
     

 

         
         
                     

 
 

  
  

 

(50) 

 
which is called an induced generalized uncertain linguistic ordered geometric (IGULOG) 
operator. 
 

(9) If 
1 1 1

, , ,
T

w
n n n

 
  
 

  and 1  , then the IGULOWG operator reduces to the following 

formula: 

 
     1 1

1 1

1 1 2 2
1 1

IULOG , , , , , , ,
n n

j j
j j

n n
g g g g

n n

u s u s u s s s
   

 

   
   
   
   

 
 
 

   

                   (51) 

 
which is called an induced uncertain linguistic ordered geometric (IULOG) operator. 
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4. AN APPROACH BASED ON THE DEVELOPED OPERATORS TO GROUP 
DECISION MAKING WITH UNCERTAIN LINGUISTIC INFORMATION 

 
For a multiple attribute group decision making (MAGDM) with uncertain linguistic 

information, let  1 2, , , mX x x x  be a set of m  alternatives,  1 2, , , nC c c c  be a 

collection of n  attributes, whose weight vector is  1 2, , ,
T

nw w w w  , with  0,1jw  , 

1,2, ,j n  , and 
1

1
n

j
j

w


 , where jw  denotes the importance degree of the attribute jc , 

and let  1 2, , , lD d d d  be a set of l  decision makers, whose weight vector is 

 1 2, , ,
T

l      with  0,1k  , 1,2, ,k l , and 
1

1
l

k
k




 , where k  denotes the 

importance degree of the decision maker kd . Each decision maker provides his/her own 

uncertain linguistic decision matrix 
    k k

ij
m n

A a


   ( 1,2, ,k l  ) as follows: 

 

    

     

     

     

11 12 1

21 22 2

1 2

k k k

n

k k k
k k n

ij
m n

k k k

m m mn

a a a

a a a
A a

a a a



 
 
 

   
 
 
 

  

   
   

  

 

 

where  k
ija S   is a performance value, which takes the form of uncertain linguistic variable, 

given by the decision maker kd D , for the alternative ix X  with respect to the attribute 

jc C . 

 
In the following, based on the proposed operators, we develop an approach to group 
decision making with uncertain linguistic information, which includes the following steps: 
 
Step 1. Utilize the IGULOWA operator (Eq. (9)) 
 

          
1

1 2

1 2
1

IGULOWA , , , , , ,    
l

kl

ij ij ij l ij k ij
k

a a a a a






    


  
     

  
, 1, 2, ,i m ; 

1, 2, ,j n                                                                                                                             

(52) 
or the IGULOWG operator (Eq. (31)) 
 

            1 2

1 2
1

1
IGULOWG , , , , , ,    

kl
kl

ij ij ij l ij ij
k

a a a a a




    
 

 
   

 
, 1,2, ,i m  ; 

1,2, ,j n                                                                                                                            

(53) 
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to aggregate all the uncertain linguistic decision matrices 
    k k

ij
m n

A a


   ( 1,2, ,k l  ) into 

a collective uncertain linguistic decision matrix  ij m n
A a


  , where  0,  , 

 1 2, , ,
T

l      (  0,1k  , 1,2, ,k l  , and 
1

1
l

k
k




 ) is the order inducing variable, and 

 1 2, , ,
T

l      is the weight vector of decision makers. 

 

Step 2. Utilize the decision information given in matrix A , and the GULWA operator (Eq. 
(25)) 
 

   
1

1 2
1

GULWA , , ,
n

i i i in j ij
j

a a a a w a







 
   

 
     ,   1,2, ,i m                              (54) 

 
or the GULWG operator (Eq. (48)) 
 

   1 2
1

1
GULWG , , ,

j
n w

i i i in ij
j

a a a a a 
 

 
   

 
     ,   1,2, ,i m                            (55) 

 

to derive the collective overall preference value ia  of the alternative ix , where 

 1 2, , ,
T

nw w w w   is the weight vector of attributes. 

 

Step 3. Calculate the scores  is a  ( 1,2, ,i m  ) of the collective overall preference values 

ia  ( 1,2, ,i m  ) by Definition 2.3. 

Step 4. Rank all the alternatives ix  ( 1,2, ,i m  ) and select the best one(s) in accordance 

with the collective overall preference values ia  ( 1,2, ,i m  ). 

Step 5. End. 
 
5. NUMERICAL EXAMPLE 
 
In the following, we use a numerical example adapted from [4] to illustrate our approach. 
 
Example 5.1 [4]. Let us suppose a company which is planning his production strategy for 
the next year and wants to introduce a new product but still do not know the type of 
customers to address. A panel is provided with five possible alternatives: 
 

(1) 1x  is a luxury product oriented to the very rich customers;  

(2) 2x  is a luxury product oriented to the rich customers; 

(3) 3x  is a product oriented to the average customers;  

(4) 4x  is a product oriented to the poor customers. 

The company must make a decision according to the following four attributes (suppose that 

the weight vector of four attributes is  0.3,0.1,0.25,0.35
T

w  ): 
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(1) 1c  is the risk analysis;  

(2) 2c  is the growth analysis; 

(3) 3c  is the social-political impact analysis; and  

(4) 4c  is the environmental impact analysis. 

 

The four possible alternatives ix   1,2,3,4i   are to be evaluated using the linguistic term 

set 

          
0 1 2 3 4

5 6 7 8

extremely poor, very poor, poor, slightly poor, fair,

slightly good, good, very good, extremely good

s s s s s
S

s s s s

     
  

    
 

 by three decision makers  1,2,3kd k   (suppose that the weight vector of three decision 

makers is  0.1,0.6,0.3
T

  ) under the above four attributes, and construct, respectively, 

the uncertain linguistic decision matrices     
5 4

k k

ijA a


    1,2,3k   as shown in Tables 1-3. 

 
The following steps are used to get the best alternative(s): 
 

Table 1. Uncertain linguistic decision matrix 
 1A  provided by 1d  

 
1 

1c  2c  3c  4c  

1x   4 6,s s   5 6,s s   1 2,s s   2 3,s s  

2x   2 3,s s   5 7,s s   1 2,s s   1 3,s s  

3x   1 2,s s   5 6,s s   5 7,s s   3 4,s s  

4x   3 3,s s   3 4,s s   4 5,s s   5 6,s s  

5x   1 3,s s   5 7,s s   5 6,s s   2 3,s s  

 

Table 2. Uncertain linguistic decision matrix 
 2A  provided by 2d  

 
2 

1c  2c  3c  4c  

1x   5 6,s s   5 6,s s   1 3,s s   3 4,s s  

2x   1 3,s s   4 6,s s   1 2,s s   5 7,s s  

3x   1 2,s s   6 7,s s   5 6,s s   3 4,s s  

4x   5 6,s s   4 5,s s   1 2,s s   5 6,s s  

5x   3 5,s s   1 3,s s   1 2,s s   6 7,s s  

Step 1. Utilize the IGULOWA operator (suppose that  0.2,0.5,0.3
T

  ,   log
8

x
g x

 
   

 
, 

and 2  ) (Eq. (52)) to aggregate all the uncertain linguistic decision matrices 
    

5 4

k k

ijA a


   ( 1,2,3k  ) into the collective uncertain linguistic decision matrix  
5 4ijA a


   

(see Table 4). 
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Table 3. Uncertain linguistic decision matrix 
 3A  provided by 3d  

 
3 

1c  2c  3c  4c  

1x   3 4,s s   5 7,s s   3 4,s s   3 4,s s  

2x   3 6,s s   1 2,s s   1 2,s s   6 7,s s  

3x   2 3,s s   2 3,s s   5 7,s s   3 5,s s  

4x   4 5,s s   1 2,s s   1 2,s s   3 4,s s  

5x   3 4,s s   4 5,s s   3 5,s s   6 7,s s  

 

Table 4. Collective uncertain linguistic decision matrix A  
 
4 

1c  2c  3c  4c  

1x   3.8352 5.2287,s s   5.0000 6.5959,s s   2.2662 3.3556,s s   2.7469 3.7415,s s  

2x   2.4477 4.9757,s s   3.5114 5.4783,s s   1.0000 2.0000,s s   5.0834 6.4692,s s  

3x   1.5869 2.5602,s s   4.3276 5.4187,s s   5.0000 6.8561,s s   3.0000 4.5534,s s  

4x   4.0041 4.8514,s s   2.5917 3.5380,s s   2.4363 3.3577,s s   4.2055 5.2287,s s  

5x   2.5909 4.0041,s s   4.0470 5.7128,s s   3.6088 5.0511,s s   5.3672 6.4692,s s  

 

Step 2. Utilize the decision information given in matrix  ij m n
A a


  , and the GULWA 

operator (suppose that   log
8

x
g x

 
   

 
 and 2  ) (Eq. (25)) to derive the collective 

overall preference value ia  ( 1,2,3,4,5i  ) of the alternative ix  ( 1,2,3,4,5i  ): 

  1 3.3492 4.6661,a s s ,     2 3.6667 5.3655,a s s ,    3 3.5805 5.2467,a s s ,   4 3.6620 4.6063,a s s , 

 5 4.2359 5.5498,a s s  

Step 3. Calculate the scores  is a  ( 1,2,3,4,5i  ) of the collective overall preference values 

ia  ( 1,2,3,4,5i  ) by Definition 2.3: 

 1 0.5010s a  ,   2 0.5645s a  ,   3 0.5517s a  ,   4 0.5168s a  ,  5 0.6116s a   

Step 4. Rank all the alternatives ix  ( 1,2,3,4,5i  ) in a descending order by Definition 2.5: 

 5 2 3 4 1x x x x x     

thus the optimal alternative is 5x . 

 
In the following, we will analyze how different values of the parameter   change the 
aggregation results. As   is assigned different values between 0 and 10, the score functions 
of the alternatives obtained by the IGULOWA operator are shown in Fig. 1. 
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Fig. 1. Score functions for alternatives obtained by the IGULOWA operator 
 

Fig. 1 demonstrates that all the score functions increase as   increases from 0 to 10, from 
which we can find that 
 

(1) when  0,0.0609  , the ranking of the four alternatives is 5 3 4 2 1x x x x x     and the 

best choice is 5x . 

(2) when  0.0609,1.3070  , the ranking of the four alternatives is 5 3 2 4 1x x x x x     and 

the best choice is 5x . 

(3) when  1.3070,  7.9521  , the ranking of the four alternatives is 5 2 3 4 1x x x x x     

and the best choice is 5x . 

(4) when  7.9521,10  , the ranking of the four alternatives is 5 2 3 1 4x x x x x     and the 

best choice is 5x . 

 
In the above example, if we use the IGULOWG operator instead of the IGULOWA operator 
to aggregate the values of the alternatives, then the score functions of the alternatives are 
shown in Fig. 2. From Fig. 2, we can see that all the score functions obtained by the 
IGULOWG operator decrease as the parameter   increases from 0 to 10 and the 
aggregation arguments are kept fixed. From Fig. 2, we can find that 
 

(1) when  0,1.2208  , the ranking of the four alternatives is 5 3 1 4 2x x x x x     and the 

best choice is 5x . 

(2) when  1.2208,10  , the ranking of the four alternatives is 5 1 3 4 2x x x x x     and the 

best choice is 5x . 
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Fig. 2. Score functions for alternatives obtained by the IGULOWG operator. 
 

Fig. 3 illustrates the deviation values between the score functions obtained by the IGULOWA 
operator and the ones obtained by the IGULOWG operator, from which we can find that the 
values obtained by the IGULOWA operator are greater than the ones obtained by the 
IGULOWG operator for the same value of the parameter   and the same aggregation 

values, and the deviation values increase as the value of the parameter   increases. 
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Fig. 3. Deviation values for alternatives between the IGULOWA and IGULOWG 
operators. 
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Fig. 3 indicates that the IGULOWA operator can obtain more favorable (or optimistic) 
expectations, and therefore can be considered as an optimistic operator, while the 
IGULOWG operator has more unfavorable (or pessimistic) expectations, and therefore can 
be considered as a pessimistic operator. The values of the parameter   can be considered 
as the optimistic or pessimistic levels. According to Figs. 1, 2, and 3, we can conclude that 
the decision makers who take a gloomy view of the prospects could use the IGULOWG 
operator and choose the bigger values of the parameter  , while the decision makers who 
are optimistic could use the IGULOWA operator and choose the bigger values of the 
parameter  . 
 
6.  COMPARISON WITH PREVIOUSLY PROPOSED UNCERTAIN LINGUISTIC 

AGGREGATION OPERATORS AND MAGDM METHODS 
 
In this section, we perform a comparison analysis between our new operators and approach 
and other uncertain linguistic aggregation operators and MAGDM methods, and then 
highlight the advantages of the new operators and approach. 
 
6.1 The Uncertain Linguistic Aggregation Operators and Approach Proposed 

by Xu [16] 
 
We begin our comparison by using the operations and method developed by Xu [16] to 
address Example 5.1. First, we review the IULOWA and ULWA operators developed by Xu 
[16] as follows: 

       
   

1 1

1 1 2 2 1 21 2
IULOWA , , , , , , ,n n

j jj j
j j

w n n n n
u s u s u s s s s s s

 

  
   

  

 

 
     
  
 

                       

(56) 
 

where  1 2, , ,
T

n      is a weighting vector, such that  0,1j  , 
1

1
n

j
j




 , 

     
,

j jj
s s s

  
 
 

  is the is  value of the ULOWA pair ,i iu s  having the jth largest iu , and 

iu  in ,i iu s  is referred to as the order inducing variable and is  as the uncertain linguistic 

argument variable. 

 
1 1

1 2 1 1 2 2ULWA , , , ,n n

j j j j

j j

w n n n
w w

s s s w s w s w s s s
 

 

 
     
  
 

                          (57) 

 
Based on the IULOWA and ULWA operators [16], the following steps are involved to obtain 
the most desirable alternative(s): 
 
Step 1. Use the IULOWA operator (Eq. (56)) (in order to be consistent with Example 5.1, 

suppose that  0.2,0.5,0.3
T

  ) to aggregate all the individual uncertain linguistic decision 
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matrices 
    

5 4

k k

ijA a


   ( 1,2,3k  ) into the collective uncertain linguistic decision matrix 

 
5 4ijA a


   (see Table 5). 

 

Table 5. The collective uncertain linguistic decision matrix A  
 
5 

1c  2c  3c  4c  

1x   3.7 5.0,s s   5.0 6.5,s s   2.0 3.2,s s   2.7 3.7,s s  

2x   2.3 4.5,s s   2.8 4.3,s s   1.0 2.0,s s   4.3 5.8,s s  

3x   1.5 2.5,s s   3.7 4.7,s s   5.0 6.8,s s   3.0 4.5,s s  

4x   3.9 4.6,s s   2.2 3.2,s s   1.9 2.9,s s   4.0 5.0,s s  

5x   2.4 3.9,s s   3.7 5.2,s s   3.2 4.7,s s   4.8 5.8,s s  

 

Step 2. Utilize the decision information given in matrix A , and the ULWA operator (Eq. (57)) 

(in order to be consistent with Example 5.1, suppose that  0.3,0.1,0.25,0.35
T

w  ) to derive 

the collective overall preference value ia  of the alternative ix : 

 1 3.0550 4.2450,a s s ,     2 2.7250 4.3100,a s s ,    3 3.1200 4.4950,a s s ,   4 3.2650 4.1750,a s s , 

 5 3.5700 4.8950,a s s  

Step 3. Calculate the scores  is a  ( 1,2,3,4,5i  ) of the collective overall preference values 

ia  ( 1,2,3,4,5i  ) by Definition 2.3: 

 1 0.4563s a  ,   2 0.4397s a  ,   3 0.4759s a  ,   4 0.4650s a  ,  5 0.5291s a   

Step 4. Rank all the alternatives ix  ( 1,2,3,4,5i  ) in a descending order by Definition 2.5: 

5 3 4 1 2x x x x x     

thus the optimal alternative is 5x . 

 
6.2 Discussion 
 
It is easy to see that the optimal alternative obtained by the Xu’ method [16] is the same as 
our method, which shows the effectiveness, preciseness, and reasonableness of our 
method. However, it is noticed that the ranking order of the alternatives obtained by our 

method is 5 2 3 4 1x x x x x    , which is different from the ranking order obtained by the 

Xu’ method [16]. Concretely, the ranking order between 1x , 2x , 3x , and 4x  obtained by two 

methods are just converse, i.e., 2 3 4 1x x x x    for our method while 3 4 1 2x x x x    for 

the Xu’ method [16]. 
 
In the following, we will illustrate the advantages of the developed operators and approach 
over the existing uncertain linguistic aggregation operators and approaches: 
 

(1) The existing linguistic aggregation operators and uncertain linguistic aggregation 
operators are constructed based on the Xu’ addition and multiplication operations. 
As stated above, the Xu’s addition and multiplication operations have some 
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drawbacks. As a result, the existing linguistic aggregation operators and uncertain 
linguistic aggregation operators are unreasonable. To overcome these drawbacks, 
we redefine the new addition and multiplication operations on uncertain linguistic 
variables, and based on which, we further develop several new uncertain linguistic 
aggregation operators. Thus, compared with the existing linguistic and uncertain 
linguistic aggregation operators, the newly developed aggregation operators are 
much precise and practical, thereby making the decision making more reasonable 
and reliable. 

(2) The developed uncertain linguistic aggregation operators have some new desired 
properties, such as Theorems 3.13, 3.14, 3.15, 3.16, 3.23, 3.24, 3.25, 3.26, and 
3.27, while the existing linguistic aggregation operations and uncertain linguistic 
aggregation operators do not have these properties. 

(3) Ref. [16] mainly focuses on the IULOWA operators, neglecting the IULOWG 
operators. This paper investigates not only the IGULOWA operator but also the 
IGULOWG operator (see Subsection 3.3). Moreover, the relationship between the 
IGULOWA and IGULOWG operators is investigated in Theorem 3.27 and is 
illustrated in Fig. 3. The newly developed IGULOWA operator adds to the IULOWA 
operator an additional parameter controlling the power to which the argument values 
are raised. When we use different choices for the parameter  , we obtain some 
special cases. The IGULOWG operator is a combination of the IGULOWA operator 
and the geometric mean. The IGULOWA operator is based on the arithmetic 
average, which focuses on the group decision but neglects the importance of the 
individual decisions. The IGULOWG operator is based on the geometric mean, 
which focuses on individual decisions but may neglect the importance of the group 
decision. 
Furthermore, we investigate the variation trend of the developed aggregation 
operators with respect to the parameter   (see Figs. 1 and 2) and examine the 

intersections of lines in the figures, which can indicate the role of the parameter   in 
the ranking of the alternatives. In addition, considering that the selection of the 
appropriate values of the parameter   for various situations is an interesting topic 
and is worthy of further study, we indicate how to select appropriate values of the 
parameter   for various situations. 

(4) Ref. [16] utilizes only the IULOWA operators to develop an approach for solving 
MAGDM problems with uncertain linguistic information, while our study utilizes the 
IGULOWA and IGULOWG operators to develop an approach for solving MAGDM 
problems with uncertain linguistic information. Furthermore, a comparative analysis 
of the decision results obtained by the IGULOWA and IGULOWG operators is 
shown in Example 5.1 (see Fig. 3). 

(5) The new operators are constructed on the basis of the extended t-conorm and t-

norm, which are generated by an additive function  g x  and its dual function 

   f x g t x  . When the additive generator  g x  is assigned different forms, we 

can obtain some specific extended t-conorms and t-norms, and then obtain some 
specific uncertain linguistic aggregation operators. The prominent characteristic of 
the developed operators is that they include a variety of uncertain linguistic 

aggregation operators when the additive generator  g x  is assigned different 

forms. 
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7. CONCLUSION 
 

In this paper, we have defined the extended triangular conorm and triangular norm in  0,t  

to deal with the linguistic information and uncertain linguistic information due to the fact that 
the existing operational laws of linguistic variables and uncertain linguistic variables have 
some drawbacks. Based on the extended triangular conorm and triangular norm, we have 
defined some new operational laws of linguistic variables and uncertain linguistic variables, 
studied their properties and correlations, and based on which, two uncertain linguistic 
aggregation operators, including the IGULOWA operator and IGULOWG operator, for the 
uncertain linguistic information have been presented. Based on the IGULOWA and the 
IGULOWG operators, we have proposed an approach to multiple attribute group decision 
making with uncertain linguistic information. Finally, a numerical example has been given to 
illustrate the developed approach using an investment problem. 
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