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ABSTRACT 

In this paper, we provide a maximum norm analysis of an overlapping Schwarz method on nonmatching grids for a 
quasi-variational inequalities related to ergodic control problems studied by M. Boulbrachène [1], where the “discount 
factor” (i.e., the zero order term) is set to 0, we use an overlapping Schwarz method on nonmatching grid which con- 
sists in decomposing the domain in two sub domains, where the discrete alternating Schwarz sequences in sub domains 
converge to the solution of the ergodic control IQV for the zero order term. For  0,1   and under a discrete maxi- 

mum principle we show that the discretization on each sub domain converges quasi-optimally in the  norm to 0. L
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1. Introduction 

The Schwarz alternating method can be used to solve 
elliptic boundary value problems on domains which con- 
sist of two or more overlapping sub domains. 

The solution is approximated by an infinite sequence 
of functions which results from solving a sequence of 
elliptic boundary value problems in each of the sub do- 
main. 

In this paper, we are interested in the error analysis in 
the maximum norm for the obstacle problem in the con- 
text of overlapping nonmatching grids: we consider a 
domain Ω which is the union of two overlapping subdo- 
ains where each sub domain has its own triangulation. 
This kind of discretizations is very interesting as they can 
be applied to solving many practical problems which 
cannot be handled by global discretizations. They are 
earning particular attention of computational experts and 
engineers as they allow the choice of different mesh sizes 
and different orders of approximate polynomials in dif- 
ferent sub domains according to the different properties 
of the solution and different requirements of the practical 
problems. 

We study a new approach for the finite element ap- 
proximation for the ergodic problem where the obstacle 
is related to a solution. We consider a domain which the 
union of two overlapping sub-domains where each sub 
domain has its own generated triangulation. The grid 

points on the sub-domain boundaries need not much the 
grid points from the other sub-domains. Under a discrete 
maximum principle, we show that the discretization on 
each sub-domain converges quasi-optimally in the L  
norm. 

In the first section we study the Schwarz method for 
the ergodic control Quasi-variational inequalities; we state 
the continuous alternating Schwarz sequence for quasi- 
variational inequalities, and define their respective finite 
element counterparts in the context of overlapping grids. 

In Section 2, we give a simple proof for the main re- 
sult concerning error estimates in the norm for the 
problem studied, taking into account the combination of 
Jinping Zeng & Shuzi Zhou [2] geometrical convergence 
and P. L. Lions, B. Perthame [3] quasi-variational ine- 
qualities and ergodic impulse control. 

L

2. Schwarz Method for the Ergodic Control 
Quasi-Variational Inequalities 

We begin by down a classical results related to ergodic 
control quasi-variational inequalities [1-18]. 

It is well known that impulse control problems for re- 
flected diffusion process may be solved by considering 
the solution of quasi variational inequalities (QVI) (see 
Bensoussan [4], A. Bensoussan and J. L. Lions [5]). A 
typical example is the following: 
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where Ω is given bounded smooth open set in N� , 
0  , f is given function, the cost function Mu  repre- 

sents the obstacle of impulse control defined by: 

   inf ;

0, , where 0

M x k x

x k

 
 

  

   
       (2) 

where k is a positive number, M is an operator defined on 
 C   and assumed to map into itself, that is, 

   M x M x    whenever    x x       (3) 

 ,a u v u v x


   d ; and (.,.) denotes the inner product 

on Ω. 
It has been proved that the long run average cost for 

this problem solves the ergodic QVI. More precisely, 
denoting by:  

1
d ,w w x w u u  



  
   and u   . 

P. L. Lions and B. Perthame [3] proved that the solution 
 ,w   of the QVI : 
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(4) 
converges to the solution of the ergodic control QVI : 

     
   

0 0 0 0 0 0

1 1
0 0 0 0 0

, , ,

, ; , ,

a w v w w v w f v w

w H w Mw v H v Mw w

      


       0
 

(5) 

As stated in the following theorem. 
Theorem 1 [1]: As   goes to ,0

  converges 
uniformly in  C   to some constant 0 , and w  con- 
verges uniformly in  C   and strongly in  H 1   to 

0 . Moreover  is the unique solution of the 
quasi variational inequality of the ergodic control prob- 
lem (5). 

w 0 0, w

Problem Position 

Let   be fixed in the open interval  0,1  and set. 
Then, one can easily see that problem (1) is equivalent to 
the following QVI: 

   
 

 

1

1

, ,

, ;

,

b u v u f u v u

u H u Mu

v H v Mu

  

  



    
   


  



      (6) 

where  

     , ,b u v a u v u v 

Thanks to [5], (1) or (6) has a unique solution. Also, 
notice that, as the bilinear form (7) is independent of  , 
the left hand side of (6) is independent of   too. 

3. The Schwarz Method for the Obstacle  

We decompose   into two overlapping polygonal sub 
domains 1  and 2 , such that  

1 2                    (8) 

and u  satisfies the local regularity condition 

 2, , 2p
i i

u W p              (9) 

We denote by i  the boundary condition of i  
and i i i     the intersection of i  and j  is 
assumed to be empty. 

3.1. The Schwarz Sequences for Problem (4) 

We denote by: 
1 1n n nw u u  
    1  and 1 1 1 ,n n nu n      0  (10) 

Choosing 0
0w w   such that  the unique solu- 

tion of: 
0w

     
 

 

0 0 0 0 0 0

1
0 0 0

1
0 0

, , ,

, ;

, , 0

a w v w w v w f v w

w H w Mw

v H v Mw w

      
   


   

  (11) 

We respectively define 1n
iw
  the alternating Schwarz 

sequences on i  such that: 

     

 

1 1 1 1 1

1 1

1 1

, , ,

on , ;

, , 0

n n n n n n
i i i i i i

n n n n
i i i i i

n n
i i

a w v w w v w f v w

w w w Mw

v H v Mw w

     

   

 

     

 



      
   

   

1
i

 

(12) 
where 1, 2 and  i ii f f   . 

3.2. The Continuous Schwarz Sequences for 
Principal Problem 

We consider the following problem: 

   
   1 1

, ,

, ; ,

b u v u f u v u

u H u Mu v H v Mu

   

  

    


      

   (13) 

Choosing 0
0u u  , solution of: 

   
 
 

0 0

1
0 0

1
0

, ,

,

,

a u v u f v u

u H u Mu

v H v Mu

   
   


  

0

0 ;        (14) 

We respectively define the alternating Schwarz se- 
quences  1

1
nu
  on 1  such that:  and; 1   , , and 1          (7) 2
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Lemma 1 [3]: for each  0;n 

   1 1
1 2respecn nMu Mu C 
     

4. The Discret Problem 

We suppose for simplicity that  is polyhedral. Let h  
be a regular, quasi uniform triangulation of  into n- 
simplexes of diameter less than h. 

 r


We denote by h  the standard piecewise linear finite 
element espace, we consider the discrete variational ine- 
quality: 

V

    , , ,

, ; ,
h h h h h h h h

h h h h h h h h h h

a u v u u v u f v u

u V u r Mu v V v r Mu
   

   

     


   



m h

  (18) 

Thanks to ([6]), QVI (18) has a unique solution. 

4.1. The Discrete Maximum Principle [7] 

We assume that the matrix A with generic coefficient is a 
M-matrix. 

   , ,1 ,i jijB i j            (19) 

As for the continuous problem, it is easy to see that 

hu , the solution of (18), is also solution to the following 
(QVI): 

   , ,

, ; ,
h h h h h h

h h h h h h h h h h

b u v u f u v u

u V u r Mu v V v r Mu
   

  

    


    

  (20) 

Theorem 2 [1]: Let u  and hu  (the discrete solu- 
tion). Then, there exists a constant independent of   
the both and h such that 

32 2 loghu u C h h   


    

Theorem 3 [1]: Under conditions of theorem 1 and 2, 
we have 

0 0

0 0

lim 0

lim 0

h h

h h

w w

 
 



 

 
 

Note that hw  and h  is the finite element approxi- 
mation of w  and   respectively.   

4.2. The Discrete Schwarz Sequences 

Let  hi h iV V   be the space of continuous piecewise 
linear function on hi which vanish on . i 

For  w C i  , we define 

 

  0 on , π on

w
hi

h i hi

V

v V v v w



i     
 

where  denotes the interpolation operator on πhi i . 
For 1,i 2 . Let hi  be a standard regular finite ele- 

ment triangulation in i ,  being the mesh size.  i

We suppose that the two triangulations are mutually 
independent on 1 2

h

   a triangle belonging to one tri- 
angulation does not necessarily belong to the other. 

Choosing h , such that  is a solution of 
the following inequation: 

0
0hu u  0hu

   0 0 0

0 0 0

, ,

, ; ,
h h h h h

h h h h h h h h h

a u v u f v u
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We define the alternating Schwarz sequences  1
1

n
hu
  

on 1 such that: 
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Notation: We will adapt the following notations: 

 

 

, 1, 2

, 1, 2

i

i

i L
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i

i









   

   
            (24) 

5. L -Error Analysis 

Lemma 2 [8]:   , 1, ,ij i j N
B b




 
is M-matrix such that 

   ,ij ij i jb b    

then exists constants  such that 1 2,k k

    1 1sup , 0,1hk w x x     

and     2 2sup , 0,1hk w x x     
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Theorem 4 [8]:    1 1
1 2, ;n n
h hu u n 
   0  produced by 

Schwarz alternating method converges geometrically to 
u  the solution of obstacle problem, more precisely, 
there exist  which depend only respec- 
tively of 
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Theorem 5: Let  1 2max , .h h h
,0 1k k 

Then, there exist 
two constants C and , independent of both h 
and n such that: 
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The case i = 2 is similar. 

Theorem 6: Let   and , the discretes al-  1n
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For: h   and . 0h 
The case i = 2 is similar. 
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1 01lim 0, 0     , For: h  and . 0h 
The case i = 2 is similar.  
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