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Abstract
Ultrasound is typically measured using phase-sensitive piezoelectric sensors. Interest in
phase-insensitive sensors has grown recently, with proposed applications including ultrasound
attenuation tomography of the breast and acoustic power measurement. One advantage of
phase-insensitive detectors, in contrast to conventional phase-sensitive detectors, is that they do
not suffer from a narrow directional response at high frequencies due to phase cancellation. A
numerical model of a phase-insensitive pyroelectric ultrasound sensor is presented. The model
consists of three coupled components run in sequence: acoustic, thermal, and electrical. The
acoustic simulation models the propagation and absorption of the incident ultrasound wave. The
absorbed acoustic power density is used as a heat source in the thermal simulation of the
time-evolution of the temperature in the sensor. Both the acoustic and thermal simulations are
performed using the k-Wave MATLAB toolbox with an assumption that shear waves are not
supported in the medium. The final component of the model is a pyroelectric circuit model
which outputs the sensor response based on the temperature change in the sensor. The modelled
pyroelectric sensor response and directional dependence are compared to empirical data.

Keywords: pyroelectricity, directional response, ultrasound sensor, numerical model,
directionality

(Some figures may appear in colour only in the online journal)

1. Introduction

The pyroelectic effect is a property of certain dielectric mater-
ials which have a spontaneous electric polarization, where
a change in temperature of the material results in a charge
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separation, and hence a measurable current or electric poten-
tial difference [1–3]. It has been used in many applications,
including infrared sensors, pyroelectric thermometers, laser
power meters, [1, 4] and, more recently, for ultrasound power
measurement [5, 6] and ultrasound tomography of the breast
[7]. In order to understand the behaviour of pyroelectric ultra-
sound sensors and to optimise their design for particular
applications, an accurate model is needed.

A typical design for a pyroelectric ultrasound sensor is sim-
ilar to a PVDF (polyvinylidene difluoride) membrane hydro-
phone in that it consists of a layer of pyroelectric sensor mater-
ial sandwiched between electrodes which measure the voltage
response. The size of the electrodes determine the size of the
sensitive region of the sensor, since only the charge separation
between the electrodes is measured. Since the sensor responds
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to heating, a backing layer is added, the purpose of which is
to absorb incoming ultrasound as effectively as possible so
that the heat is deposited close to the sensitive membrane. A
schematic of a generic pyroelectric sensor is shown in figure 1.

Most conventional ultrasound sensors aremade from piezo-
electric materials which have an electrical response to mech-
anical deformation of the material. To a first approximation,
piezoelectric sensors can be thought of asmeasuring the acous-
tic pressure integrated across the surface of the sensor, and
can have a sufficiently fast response time to measure the
phase of an acoustic wave even at high ultrasonic frequen-
cies. For normally incident waves, a larger piezoelectric sensor
will have a higher sensitivity, but for non-normally incid-
ence waves, the variation in phase across the sensor surface
leads to cancellation and a lower overall sensitivity. Redu-
cing the size of the piezoelectric sensor reduces this phase-
cancellation, and when the sensitive region is much smal-
ler than the wavelength an omni-directional response results.
However, this also reduces the sensor’s sensitivity, and thus
the size of a piezoelectric sensor is a trade-off between dir-
ectionality and sensitivity. Pyroelectric sensors, on the other
hand, are inherently phase-insensitive—they respond to the
energy deposited in the sensor due to absorption of the ultra-
sound wave—and so are not subject to these directionality
effects due to phase-cancellation, and the sensitivity is only
weakly affected by angle of incidence. Furthermore, pyroelec-
tric sensors typically have a much slower temporal response
than piezoelectric sensors, since pyroelectric sensors respond
to temperature change, whereas piezoelectric sensors respond
to deformation. In order to improve the temporal response of a
pyroelectric sensor, either the power of the heat source needs
to be increased or the sensor must be made to respond to smal-
ler changes in temperature. The former option is not viable for
medical imaging, as the heating quickly becomes damaging
to tissue, and the latter option makes the sensor sensitive to
thermal noise, reducing the signal-to-noise ratio. The direc-
tional response of pyroelectric ultrasound sensors has been
measured [7], but the reason for the shape of the directional
response curve is not well understood, which is one of the prin-
cipal problems we seek to elucidate in this paper.

An accurate simulation of the pyroelectric effect requires
the electric, thermal, and mechanical fields within the pyro-
electric material to be modelled. Previous approaches for
modelling pyroelectric ultrasound sensors have either relied
on simple analytical approximations for the heating and for
the acoustic field [5], or have been specialized to particular
geometries which may not generalize easily [6]. In the case
of pyroelectric infrared sensors, some modelling approaches
have used finite element methods [8, 9] which can be compu-
tationally costly, especially for the acoustic simulations.

The model presented in this paper simulates, in sequence,
the acoustic field within the pyroelectric sensor due to an
external ultrasound source, the temperature change in the
sensor caused by the absorption of acoustic energy from the
ultrasound wave, and the pyroelectric voltage response of
the sensor. Section 2 gives a brief overview of the theoret-
ical aspects of the pyroelectric effect, and the assumptions
that have been made for modelling the pyroelectric sensor
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Figure 1. Pyroelectric ultrasound sensor schematic: a single
pyroelectric layer with electrodes attached to both of its larger
surfaces, backed by a highly acoustically absorbing backing layer.
The pyroelectric element is parametrized by a set of coordinates Ω,
with cross-sectional area A, depth h, and a volume of Vp = |Ω|
= A · h. The spontaneous polarization density PS and the
pyroelectric coefficient γ are shown to be orthogonal to the sensor
surface, and we assume that the electric displacement D and its time
derivative, the displacement current density JD, are also orthogonal
to the sensor surface. Differential surface element, dA= dx dy, on
the pyroelectric sensor material. The volume below the surface
element forms a column of height h. The change in surface charge
on dA induced by a change in spontaneous polarization due to a
change in temperature is assumed to depend only on the average
rate of change in temperature in the column.

response. The governing equations for the sensor response are
given and an expression for the measured voltage is derived.
In section 3, the three components of the model are out-
lined: acoustic, thermal, and voltage response simulations. In
section 4 it is shown how the modelled voltage responses and
directional responses vary with changes in certain parameters
of interest. We focus especially on the directional response of
the sensor, as it is a key feature of pyroelectric sensors that
has not previously been modelled. In section 5 the results of
the model are compared to measured data. Finally, in section 6
we discuss the results and suggest potential applications of this
pyroelectric ultrasound model, as well as aspects which can be
further worked on.

2. Pyroelectric theory

2.1. Pyroelectric effect

Crystal and semi-crystalline polymer structures which exhibit
the pyroelectric effect are a subset of piezoelectric materials,
which in turn are a subset of all dielectric materials [1, 3].
Pyroelectric materials can broadly be categorized as those
materials which exhibit a change in surface charge in response
to a change in temperature. More precisely, this means that
the electric displacement field D= ε0E+P inside the mater-
ial has a temperature dependence, where E is the electric field,
P is the polarization density, and ε0 is the vacuum permittiv-
ity. Pyroelectric materials possess a permanent polarization
PS, called the spontaneous polarization, which persists even
without an external electric field. The total polarization density
P is the sum of the spontaneous polarization density PS and the
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induced polarization density Pind which arises from an elec-
tric field. The spontaneous polarization density is a function
of temperature, whereas the induced polarization density is
a function of the electric field. PVDF is a non-linear dielec-
tric, but we assume that the external electric field is negligible
[10], so that the electric field inside the sensor arises from the
spontaneous polarization only. This electric field is relatively
weak, and hence we can make a first order approximation of
theD–E dependence so that the sensor material is modelled as
a linear dielectric, where the induced polarization is propor-
tional to the electric field, Pind = ε0(εr− 1)E, and the electric
displacement is then given by D= εE+PS, where ε= ε0εr,
and εr is the relative permittivity. The spontaneous polariza-
tion reacts to changes in temperature due to the shifting of the
electric dipole moments in the material, resulting in a change
in the surface charge of the crystal, which can be measured.

2.2. Pyroelectric coefficient

The pyroelectric effect can be described as a coupling of elec-
tric, thermal, and mechanical effects in materials, as shown
in figure 2. Here we may assume that magnetic effects are
negligible, since in the absence of external magnetic fields
the only magnetic effects would arise from an inhomogen-
eous electric field (in time or space), and the only electric
fields in our model are weak ones arising from the spontaneous
polarization density of the pyroelectricmaterial. Themeasured
pyroelectric effect consists primarily of two separate phenom-
ena: the primary pyroelectric effect, which is the change in
electric displacement or polarization due to a change in tem-
perature, and the secondary pyroelectric effect, which is the
indirect change in the polarization due to a thermal expansion-
driven strain. These effects are highlighted in figure 2.

Using equilibrium thermodynamics, relationships between
thermal, mechanical, and electric properties which give rise
to the pyroelectric effect can be expressed up to first order
by the coupled differential forms for D= D(σ,E,T) and
S= S(σ,E,T), given by [1, 2, 12]

dDi =
∑
kℓ

(
∂Di

∂σkℓ

)E,T

dσkℓ︸ ︷︷ ︸
direct

piezoelectricity

+
∑
k

(
∂Di

∂Ek

)σ,T

dEk︸ ︷︷ ︸
dielectric permittivity

+

(
∂Di

∂T

)σ,E

dT︸ ︷︷ ︸
pyroelectricity

, (1)

dSij =
∑
kℓ

(
∂Sij
∂σkℓ

)E,T

dσkℓ︸ ︷︷ ︸
elasticity

+
∑
k

(
∂Sij
∂Ek

)σ,T

dEk︸ ︷︷ ︸
converse

piezoelectricity

+

(
∂Sij
∂T

)σ,E

dT︸ ︷︷ ︸
thermal

expansion

, (2)

where σ is the stress tensor, T is the temperature, and
the superscripts indicate variables which are held constant.
(A similar expression could also be written for entropy, χ, but
it does not affect the electric displacement and hence does not
contribute to the pyroelectric effect; instead it is involved in
the converse effect, the electrocaloric effect.) The pyroelec-
tric coefficient describes how the spontaneous polarization of
a material changes with temperature and is given by [1, 12, 13]

γσ,E =

(
∂D
∂T

)σ,E

=

(
∂PS

∂T

)σ,E

. (3)

Although the pyroelectric coefficient is a vector quantity, most
pyroelectric crystals are only polarizable in a single direction,
and in practice the pyroelectric crystal is poled orthogonal to
a flat surface, so that with respect to the surface the pyro-
electric coefficient can be treated as a scalar quantity [14].
The two primary components contributing to the pyroelectric
coefficient in equation (3) can be expressed separately using
equations (1) and (2), detailed below.

Equations (1) and (2) may be written in more compact
forms by replacing the partial derivatives with the tensor coef-
ficients they quantify,

dDi = dE,Tijk dσjk+ εσ,T
ij dEj+ γσ,E

i dT, (4)

dSij = sE,Tijkℓdσkℓ + dσ,T
kij dEk+ασ,E

ij dT, (5)

where we have used the Einstein summation convention, and
we have used the fact that the coefficients which quantify the
direct piezoelectric effect are equal to the coefficients quan-
tifying the converse piezoelectric effect [2]. dijk are the coef-
ficients of the rank–3 piezoelectric tensor, εij are the coeffi-
cients of the rank–2 permittivity tensor, γi are the coefficients
of the rank–1 pyroelectric tensor, sijkℓ are the coefficients of
the rank–4 elastic compliance tensor, and αij are the coeffi-
cients of the rank–2 thermal expansion tensor. Assuming a
constant electric field, dE= 0, and constant strain, dS= 0,
equations (4) and (5) can be rearranged to isolate the stress
differential terms, dσij, and then equated to get the expression
for the total pyroelectric effect,

γσ,E
i =

(
∂Di

∂T

)S,E

︸ ︷︷ ︸
primary

pyroelectric
effect

+dσ,T
ijk

(
s−1
)E,T
mnjk

ασ,E
mn︸ ︷︷ ︸

secondary
pyroelectric

effect

, (6)

by making use of the tensor inverse identities (d−1)imndijk =
δmjδnk and (s−1)ijmnsijkℓ = δmkδnℓ, where δij is the Kronecker
delta function.

For many pyroelectric materials, the secondary pyroelec-
tric effect has a non-negligible contribution to the total effect,
and in the case of PVDF, a polymer widely used for ultrasound
detection, the primary and secondary effects have nearly equal
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Figure 2. Diagram depicting the relationships between electrical, mechanical, and thermal effects in crystals. Intensive variables comprise
the outer triangle, and extensive variables the inner triangle. The ranks of the tensors corresponding to the variables in the circles are shown
in round brackets, while the ranks of tensors corresponding to properties between variables are shown in square brackets. The primary
pyroelectric effect is highlighted in blue, while the secondary pyroelectric effect is highlighted in red. Diagram based on version seen in
J F Nye (1985) and S B Lang (1974) [1, 2]. Reproduced with permission from [2]. The diagram was originally conceived by G Heckmann
(1925) [11]. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Springer Berlin
Heidelberg.

contribution [10]. We will therefore consider the total pyro-
electric coefficient in equation (6) as the pyroelectric coeffi-
cient of interest. There also exists a tertiary pyroelectric effect
which may arise in piezoelectric materials from non-uniform
heating, leading to non-uniform stresses from thermal pressure
in thematerial [1, 15].We assume that the tertiary effect is neg-
ligible, so that pyroelectric response dependence on thermal
gradients may be ignored.

2.3. Pyroelectric current response

The electric displacement field in the pyroelectric material
induces a surface charge density on the faces of the mater-
ial normal to the electric displacement field. The time rate of
change of the electric displacement then leads to a change
in this surface charge, which can be measured as a current
by attaching electrodes to the surfaces of the pyroelectric
material.

Several simplifying assumptions are made for describing
the pyroelectric response of the sensor in the model presented
here. It is assumed that for the purposes of modelling the pyro-
electric current response to heating from an ultrasound source,
the surface charge on any particular area element dA (refer to
figure 1) of the pyroelectric sensor depends only on the change
in temperature below that area, and not to changes in the tem-
perature beneath adjacent area elements. This assumption is
justified by a combination of 1-dimensional models [5] and
by the thermal diffusion in the sensor propagating primarily
in the direction normal to the surface of the sensor, which
in turn is justified by the heat equation where heat flow fol-
lows the gradient of temperature. The temperature gradient
along the surface of the sensor is relatively uniform compared
to the gradient normal to the surface, since the time scale of
thermal diffusion is on the order of tdiff ≈ L2/4κ, where L is
the length scale of thermal diffusion and κ is the thermal dif-
fusivity, whereas the time scale it takes for the full acoustic
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i(t)

C Rp

RL

V (t)

Figure 3. The circuit equivalent for a pyroelectric sensor. © 2007
IEEE. Reprinted, with permission, from [5].

Table 1. Model parameters used for simulations in this section.

Default model input parameters Value

Source frequency (MHz) 2
Source amplitude (kPa) 250
Source–detector separation R (mm) 30
Source width ℓ (mm) 10
Diameter of sensor d (mm) 30
Diameter of sensitive region ds (mm) 1
PVDF thickness (µm) 100
Sensor capacitance C (nF) 10
Total resistance Req (MΩ) 10

wave to reach the surface of the sensor has the upper bound
tdelay ≈ dsep/c, where dsep is the difference between the longest
and shortest distances travelled by the wave-front of the acous-
tic wave to reach the sensor surface (for a plane wave at normal
incidence, this distance is zero), and c is the sound speed in the
background medium. For a sensor with a width of d= 50 mm
and a water background, we can estimate that dsep = d, so that
tdelay = 50 mm/cwater = 33.4 µs.

For typical pyroelectric materials such as polyvinylidene
difluoride (PVDF) and lead zirconate titanate (PZT) the
thermal diffusion is on the order of κ≈ 10−7 m2 s−1, so the
length scale of thermal diffusion over a time span of tdelay is
L≈ 3.7 µm, which is negligible compared to the width of the
sensor. This assumption does neglect edge effects in cases
where the width of the incoming ultrasound wave is smaller
than the width of the sensor, in which case we expect heat to
spread towards the edges of the sensor as well as along the
depth, but this should be a small effect, since even for long
diffusion times on the order of a second, the thermal diffu-
sion length scale is about 0.63 mm, which is still considerably
smaller than the width of a typical sensor.

It is also assumed that the spontaneous polarization PS

within the pyroeletric material is uniform at a given temperat-
ure T, and is normal to the surface of the sensor for all temper-
atures, hence implying that the pyroelectric coefficient γσ,E is
also uniform and normal to the sensor surface. The uniformity
of the spontaneous polarization along the depth of the pyro-
electric material and the temperature stability of the pyroelec-
tric coefficient are supported fairly well by experimental res-
ults for PVDF, for temperatures below 40 ◦C [16–19].

If we consider a material with constant stress, dσ = 0,
and constant electric field, dE= 0, then the expression in
equation (4) reduces to the simple form

dD= γσ,EdT. (7)

The expression in equation (7) in commonly used to describe
the pyroelectric effect [1]. It is only valid for describing
changes between equilibrium states, since it was derived using
equilibrium thermodynamics. Hence, it is insufficient formod-
elling scenarios where the sensor is heated unevenly spatially,
and more careful analysis must be done. However, assuming
for a moment that the heating is uniform, we may take the time
derivative of equation (7) to get an expression for a displace-
ment current density in the sensor,

JD =
∂D
∂t

= γσ,E ∂T
∂t

, (8)

indicating that we may expect the pyroelectric current to have
a proportional dependence on the pyroelectric coefficient and
the time rate of change of temperature.

According to previous works, in the 1-dimensional case
where the temperature only varies along the depth of the pyro-
electric crystal and is uniform across the slices parallel to the
crystal surface, the pyroelectric current response is given by
the average rate of change in temperature along the depth of
the crystal (along the direction of polarization) [20–24]. We
will follow the arguments presented in [21], and extend the
result for temperatures which vary throughout the crystal by
applying the method along columns below surface elements
dA, assuming that the change in charge induced on the surface
element dA is proportional only to the average rate of change
in temperature directly below it in the sensor. By doing this,
we can get the pyroelectric current density at the surface of the
sensor.

We partition the sensor material into N slabs of thickness
∆zi for i ∈ {1, . . . ,N}, where we consider each slab being suf-
ficiently thin so that it can be considered to have a constant
spontaneous polarization density, PS,i = PS,iẑ. If we consider
the volumes beneath area elements dA of the sensor element
as parallel plate capacitors with capacitance

dCh
0 =

ε

h
dA, (9)

where ε= εrε0 is the permittivity of the pyroelectric mater-
ial, ε0 is the permittivity of the vacuum, and εr is the relative
permittivity, then we can relate the surface charge element to
the potential difference between the top and bottom surfaces
of the pyroelectric sensor by

dqh = Vh
0 dCh

0 . (10)

The potential difference Vh
0 is the line integral of the elec-

tric field between the top and bottom electrodes of the sensor,
where the electric field in this case is induced by the internal
surface charges caused by the jump discontinuities in the
polarization between adjacent slabs. We can relate the electric
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Figure 4. Modelled voltage responses for the 1 mm (left), 5 mm (middle), and 10 mm (right) sensitive region diameter sensors for angles of
incidence of 0◦, 20◦, and 40◦, using the parameters from table 1. All three sensors are given the same parameter values except for the
diameter of the sensitive portion of the sensor surface.

field to the polarization density field through the field bound-
ary conditions between adjacent layers,

ςb,i =−ẑ · (PS,i+1 −PS,i) , (11)

ςf,i+ ςb,i = ẑ · (εi+1Ei+1 − εiEi) , (12)

where ς f,i and ςb,i are the free and bound surface charge
densities between layers i and i+ 1, respectively. We assume
that the sensor is a perfect insulator and hence has no free
charges, so ς f,i= 0 for i= 1, . . . ,N. Within the electrodes at
i= 0 and i=N+ 1, the polarization density and electric fields
are zero since the electrodes are conductors, and we assume
that the momentary electric field within the electrodes caused
by changes in polarization density in the sensor are short-lived
compared to the thermal timescales causing the changes, and
can hence be neglected. Combining these, we get that

Ei =−PS,i

εi
. (13)

We will assume that the dielectric constant εi is constant
throughout the sensor material, so we can let εi= ε. Since the
voltage Vh

0 is the line integral of the electric field across the
thickness of the sensor, it follows from equation (10) that the
surface charge element can be expressed as

dqh =−dCh
0

N∑
i=1

PS,i

ε
∆zi. (14)

By expressing the differential charge as the change in charge
from an initial value, dqh = dqh(0)+ dqh(t) and linearly
expanding the spontaneous polarization density with respect
to temperature as PS,i ≈ PS,i|T0 +

∂PS,i

∂T

∣∣
T0
Ti(t), we can express

the differential change in charge in the limit as N→∞ by

dqh(t) =−

(
1
h

ˆ h

0
γ(z)T(z, t)dz

)
dA, (15)

where γ is again the pyroelectric coefficient. We are interested
in the magnitude of the change in charge, so we will drop the
sign from now on. We assume that the pyroelectric coefficient
is uniform within the sensor, so by taking the time derivative

of equation (15) and differentiating both sides with respect to
the area, we get the pyroelectric current density,

j(t) =
dq̇h(t)
dA

=
γ

h

ˆ h

0

∂T(z, t)
∂t

dz. (16)

Integrating equation (16) over the surface yields the total
pyroelectric current,

i(t) =
ˆ

S

(
γ

h

ˆ h

0

∂T(x, t)
∂t

dz

)
dS= γA

d⟨T(x, t)⟩Ω
dt

, (17)

which is proportional to the pyroelectric coefficient and the
surface integral of the depth-averaged rate of change in tem-
perature, as shown in the first equality in (17). Alternatively,
we can split the proportionality to the volume-averaged rate
of change in temperature and the surface area of the sensor,
shown in the second equality of (17).

3. Ultrasound sensor model

The model described here consists of three coupled compon-
ents, which together simulate the pyroelectric response of an
ultrasound sensor to an ultrasound wave.

3.1. Acoustic simulation

The acoustic simulation in this model is done using the
k-Wave MATLAB package, assuming linear acoustic propaga-
tion with absorption in a fluid medium, meaning that shear
waves are assumed to be negligible. The dynamics of these
acoustic waves are governed by the equations:

∂u(x, t)
∂t

=− 1
ρ0(x)

∇p(x, t), (18)

∂ρ(x, t)
∂t

=−∇ · [ρ0(x)u(x, t)]+ SM(x, t), (19)

p(x, t) = c0(x)2
[
ρ(x, t)+ d(x, t) ·∇ρ0(x)− L̂(x)ρ(x, t)

]
,

(20)
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Figure 5. Voltage response dependence on variations in total resistance, Req, and sensor capacitance, C.

where d and u are the particle displacement and velocity, ρ and
p are the acoustic density and pressure, c0 and ρ0 are the equi-
librium sound speed and density, SM is a mass source term, and
L̂ is a linear loss operator. The operator L̂ describes absorption
and dispersion that follows a frequency power law of the form
α= α0ω

y, where y is the power law exponent. It is defined
using the fractional Laplacian and has the form,

L̂(x) = α1(x)
∂

∂t
(−∇2)y/2−1 +α2(x)(−∇2)(y+1)/2−1, (21)

whereα1(x) =−2α0(x)c0(x)y−1 is the absorption proportion-
ality coefficient, α2(x) = 2α0(x)c0(x)y tan(πy/2) is the dis-
persion proportionality coefficient [25].

The volume rate of heat deposition, Q, is determined by a
combination of the absorption characteristics of themedium as
well as the form of the acoustic wave applied to themedium. In
general, we can describe the heat deposition term as a moving
mean of dissipation, averaged over a characteristic period τ of
the acoustic wave,

Q(x, t) = ⟨D(x, t)⟩τ , (22)

where D is a term quantifying the dissipation of acoustic
energy, and ⟨·⟩τ denotes the temporal moving mean over a
window of length τ , which can be expressed as

⟨D(x, t)⟩τ =

ˆ t+τ/2

t−τ/2
D(x,s)ds. (23)

The characteristic period τ represents a time-scale over which
the small-scale periodic behaviour of the acoustic wave can

be averaged, so that only the macroscopic behaviour of the
wave is taken into account. The form of the dissipation term
D depends on how the absorption is modelled, but it can be
related to acoustic energy density and acoustic intensity by
treating it as an energy loss term in the acoustic wave, so that
it obeys the energy conservation corollary [26]

∂w(x, t)
∂t

+∇ · I(x, t) =−D(x, t), (24)

where w is the acoustic energy density and I is the acoustic
intensity. If we were to be more precise, in the case of acous-
tic absorption due to thermal conduction and viscous effects,w
and I depend on the temperature of the medium, and I further
depends on the stress tensor σ. However, we will assume uni-
form stress dσ = 0 throughout the material and a sufficiently
well-behaved applied acoustic wave such that I= pu is a reas-
onable approximation for the acoustic intensity. In the steady-
state we can say that the first term in equation (24) is zero,
and hence the acoustic intensity and dissipation are left with
trivial time dependencies. Hence, we can take the moving time
average of the acoustic intensity over an arbitrary window of
length τ that is an integer multiple of the period of the ultra-
sound wave. Thus, the heating term due to dissipation is given
by

Q(x) =−∇ · ⟨I(x, t)⟩, (25)

which is then used in the thermal simulation.
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R

θ

dds

h

Pyroelectric layer
Sensitive region
Backing layer
Source

Figure 6. Schematic for directional response simulation. Line
source of width ℓ is rotated with respect to the center of the surface
of the sensor of width d by angle θ, maintaining a constant distance
R between the centres of the surfaces of the source and sensor. The
sensor has a diameter d with an electrode diameter of ds, and a
PVDF thickness of h.

3.2. Thermal simulation

The thermal simulation can be greatly simplified if we can neg-
lect diffusion, which is valid if the timescale of thermal diffu-
sion is much greater than the heating duration. The heat diffu-
sion timescale can be characterized by the thermal relaxation
time, tthermal, which is the time that it takes the temperature
of a heated region to drop to 1/e of its initial temperature. An
approximation for tthermal for acoustic plane wave heating is
given by the equation

tthermal =
d2

4κ
, (26)

where κ is the thermal diffusivity of the material, and d is a
characteristic length. For the PVDF layer d is the thickness
h of the membrane, whereas for the backing layer the char-
acteristic length is the acoustic penetration depth of energy,
1/2α, where α is the acoustic attenuation. Assuming a PVDF
membrane with thickness 100 µm along with a backing layer
with attenuation coefficient α= 760 NPm−1 at 1 MHz. For
the PVDF pyroelectric sensor with material properties given in
table 2, the thermal relaxation time in the PVDF layer is 13ms,
whereas for the backing layer, assuming a 1 MHz ultrasound
source, the thermal relaxation time is 564 ms. At higher ultra-
sound frequencies the thermal relaxation time in the backing
layer would be even shorter. These times are comparable to
the heating durations considered in this paper, and hence we
need to use a thermal model that accounts for diffusion.

The thermal dynamics of the sensor are also modelled in
k-Wave, which uses the heat equation:

ρ0(x)cp(x)
∂T(x, t)

∂t
=∇· [K(x)∇T(x, t)]+Q(x, t), (27)

where cp is the specific heat capacity,K is the thermal conduct-
ivity, and Q is the volume rate of heat deposition as defined by
equation (25).

Table 2. Model parameters used for simulations in this paper.
© 2007 IEEE. Reprinted, with permission, from [5].

Fixed model input parameters Value

PVDF density ρPVDF (kg m−3 1788
PVDF sound speed cPVDF (ms−1) 2300
PVDF attenuation coefficient αPVDF

(NPm−1MHz−1)
111

Backing layer density ρabs (kg m−3a 1910
Backing layer sound speed cabs (ms−1)b 1000
Backing layer attenuation coefficient αabs

(NPm−1 at 1MHz)b
760

PVDF pyroelectric coefficient γ
(µ C ◦ C−1m−1)a

24

Thermal diffusivity κ (m2s−1)bc 1.92× 10−7

Thermal conductivity K (Wm−1K−1)bc 0.334
Sensor resistance Rp (GΩ) 0.17
Amplifier input impedance Ra (MΩ) 10
Attenuation power law exponent y 1.1
a Manufacturer’s value.
b Measured at NPL.
c PVDF and backing layer assumed to have same κ and K.

This part of the simulation gives us the temperature field,
T(x, t), within the sensor region Ω. The spatial mean of the
temperature field within this region, ⟨∆T(x, t)⟩Ω, gives us the
pyroelectric current response through equation (17), which is
used as an input in the final part of the model—the voltage
response.

3.3. Voltage response

An electrical circuit model approach for the pyroelectric
sensor considers the sensor as a current generator connected
in parallel with a capacitor and a resistor, which correspond
to the capacitance and resistance of the material, respectively
[1, 5, 27]. In the version of the circuit model seen in figure 3.3,
presented in [5], the pyroelectric circuit component is connec-
ted to a unit gain amplifier with an input resistanceRa, which in
turn is connected to a shunt resistor of resistance RL. The cur-
rent i(t) measured across the electrodes attached to the sensor
surfaces is given by equation (17), and so the voltage response
can be attained using Kirchhoff’s laws to yield [1, 5, 27]

γA
C

d⟨∆T(x, t)⟩Ω
dt

=
V(t)
ReqC

+
dV(t)
dt

, (28)

where Req is the parallel combination of Rp and Ra, and the
values for capacitance C and resistance Rp of the sensor cor-
respond to their total values across the electrodes.

The thermal simulation gives us the change in temperat-
ure field ∆T(x, t) in the sensor, from which we can numer-
ically solve for the pyroelectric sensor response, V(t), using
equation (28).

The full pyroelectric signal is the voltage as a function of
time, V(t). In this paper we take the absolute maximum of V(t)
to reduce the signal to a single quantity that can be compared
between measurements. More technical approaches can also
be considered, such as the correlation scheme outlined in [28],
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Table 3. Model parameters used for simulations in this paper.
Values in table taken from [5, 7].

Model input parameter Voltage response Directivity

Frequency (MHz) 1 2.03
Diameter of source ℓ (mm) 19.1 10
Diameter of sensitive region
ds (mm)

60 1

PVDF thickness (µm) 61 110
Sensor capacitance C (nF) 8.2 0.275
Sensor resistance Rp (GΩ) 0.17 0.17
Amplifier input impedance
Ra (MΩ)

10 10

Source-sensor separation
R (mm)

15 50

Angle between source and
sensor surface θ (◦)

10 0–40

where the cooling time of the sensor in physical measurements
is accounted for.

4. Sensor voltage and directional responses

Using the model from the previous section, we investigate
how various sensor parameters affect the pyroelectric sensor
response. The model contains many parameters that can be
independently varied over large ranges, but we focus on a
few key physical parameters of particular interest: sensitive
region diameter (ds, the diameter of the electrode, as shown in
figure 6), PVDF thickness, source–sensor separation, thermal
diffusivity, and the electrical parameters Req and C.

For these simulations, we will use the parameters outlined
in table 1 as the control, which are chosen to be close to typical
values found in pyroelectric ultrasound sensors in the literat-
ure. We will additionally use the acoustic and thermal proper-
ties for the PVDF and backing layer as listed in table 2, and
the water background is assumed to be non-attenuating.

The results presented in this paper were computed using
a 2D model for faster computation times. The computational
grid used in these simulations had a grid stepsize of 100 µm
per pixel. The voltage response and directional response were
tested for convergence by checking that increasing the grid
resolution to a stepsize of 50 µm produced voltage response
curves with relative root mean squared difference of less than
3%, and directional response curves with a difference of less
than 1%.

4.1. Sensor voltage response

To model the sensor voltage response, we consider situations
where the sensor is undriven (there is no ultrasound) for the
initial tin = 2 s, is then exposed to constant heating due to the
absorption of a normally-incident wave for tQ= 2 s, and then
is allowed to cool down for a further tcool = 6 s.

Figure 4 shows how the diameter of the sensitive region
affects the voltage curve at various angles of incidence for the
ultrasound wave. Increasing the sensor size results in a greater
voltage response, since they capture a greater portion of the
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Figure 7. Modelled directional responses for the 1 mm sensitive
region diameter sensor with PVDF thickness varying from 100 to
300 µm, using the parameters from table 1. The 100∗ µm sensor
response indicated by the solid black line is for a sensor that is
acoustically matched with the backing layer, with the same
pyroelectric properties as the PVDF.

charge separation arising from the pyroelectric effect. Increas-
ing the sensor size also causes the voltage curves at different
angles of incidence θ to converge to one-another, indicating a
flatter directional response. The directional response aspect is
investigated more in section 4.2.

Figure 5 shows how varying the electrical parameters Req

and C affects the voltage response curves. There appears to
be a symmetry with respect to changes in Req or C, where
lower values ofReqC result in fast voltage responses with sharp
peaks, whereas larger values of ReqC result in slow voltage
responses with smooth peaks. From equation (28) we can see
that for large values of ReqC, the voltage response becomes
proportional to the temperature change and for small ReqC it
becomes proportional to the rate of temperature change. This
is discussed further in section 6.2.

4.2. Directional response

To model the sensor directional response, we consider situ-
ations where the sensor is exposed to constant heating due
to ultrasound absorption for tQ= 0.15 seconds, and then is
allowed to cool down for tcool = 0.05 s. We used (27) to obtain
∂T
∂t and use this as the left hand side in (28); the latter equation
was then solved using Matlab functions ode45 and ode15s.
As we are taking the maximum voltage response for each
angle, the cooling portion does not actually affect the direc-
tional response as the peak voltage amplitude is reachedwithin
the first 150 ms. A directional response measurement is done
by varying the angle of a beam-like source with respect to the
surface of the sensor, while maintaining the same separation
between the source and sensor, as depicted in figure 6. We
therefore define our directional response as

9
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DR(θ) =max
t

[V(t,θ)] . (29)

Figures 7, 8, and 9 show how changes in the geometry of
the source–sensor arrangement affect the directional response.
The separation between the source and sensor does not have
much effect beyond a very short separation of about 1 cm,
whereas the sensitive region diameter and PVDF thickness
seem to affect the directionality significantly. The source–
sensor separation should not affect the directional response
unless there are significant near-field effects, and a sensor
with a sensitive region diameter of 1 mm is likely to be less
affected by these unless the separation is very small, as we see
in figure 9. The PVDF thickness and sensor width, however,
directly affect the heating profile of the PVDF layer, so they
should be expected to affect the directional response.

A more direct way to affect the heating of the sensor is by
adjusting the thermal conductivity, K, of the PVDF and back-
ing layers. In figure 10 we see how increasing the thermal con-
ductivity affects the directional response. With higher thermal
conductivity, the sensor response seems to becomemore stable
near normal incidence, and diminish less overall for all angles
from 0◦ to 40◦. This could be because with higher thermal
conductivity, the loss in the power density of the incoming
ultrasound with increased angle is compensated for by the fast
transfer of heat in the highly thermally conductive medium.

Finally, we again look at how changes in the total resist-
ance Req and sensor capacitance C affect our modelled results,
this time for directional response. We can see in figure 11 how
for the same acoustic and thermal simulation, variations in the
electrical parameters affect the directivity. Aside from differ-
ences in smoothness, no significant differences are apparent in
the qualitative nature of the response curves.

5. Comparison to experimental measurements

The pyroelectric ultrasound sensor model outlined in section 3
was tested against experimental data described in [5, 7], with
experimental parameters outlined in tables 2 and 3. Both the
voltage response and directional response were tested with
appropriate parameters for comparison. For the purpose of
saving on computation time, the simulations were done with
two spatial dimensions instead of three.

5.1. Voltage response

The most fundamental aspect that the model must replicate
is the voltage response of the pyroelectric sensor. Using the
parameters from tables 2 and 3, chosen to match the paramet-
ers used in empirical tests for pyroelectric ultrasound sensors
at NPL, we can simulate the same setup where a 1 MHz ultra-
sound piston source is driven for 2 s in front of a 50 mm sens-
itive region diameter pyroelectric sensor, then turned off, after
which the sensor is allowed to cool down for another 6 s. A
comparison of the measured and modelled normalised voltage
responses is shown in figure 12. The normalised simulated
voltage curve has a relative root mean squared error of 26.4%
compared to the normalised experimental voltage curve.

5.2. Directional response

Using the parameters from tables 2 and 3, we simulated a dir-
ectional response measurement for a pyroelectric ultrasound
sensor in the farfield of a 2.03MHz source, driven long enough
so that a steady-state is attained inside the sensor volume. In
the 2D simulation, the ultrasound source is approximated by a
line source, which is rotated with respect to the center of the
sensor surface, in such a way that the center of the sensor sur-
face and the center of the source maintain a constant distance
of R for all angles, as shown in figure 6.

The pyroelectric ultrasound sensor simulation is used to
calculate the directional response in the case of a 1 mm
sensitive region diameter sensor. There is a symmetry with
respect to the normal incidence, as the directional responses
for angles θ and −θ are identical, so the simulation only
needs to be run for positive angles, and then mirrored to get
the full directional response. The empirically measured dir-
ectional response and the corresponding simulated directional
response are shown in figure 13. The phase-sensitive direc-
tional responses for the same sensitive region diameters are
shown for comparison. The phase-sensitive sensor was mod-
elled by recording the peak of the average acoustic pressure
over the sensor surface, VPS ≡maxt |⟨p(x, t⟩∂Ωt |, where ∂Ωt

denotes the top surface of the sensor volume Ω. The shape of
the phase-sensitive directionality curve is very responsive to
the diameter of the sensitive region of the sensor, so an adjus-
ted diameter of 0.925 mm was used to produce a better fit.
This is reasonable, as there is often some sensitivity outside
the geometrically defined sensitive region due to inherent lim-
itations on how constrained the electric field can be during
poling. The modelled pyroelectric response in figure 13 cap-
tures the slope of the directional response. The central peak of
the experimental pyroelectric directional response is believed
to be an artifact arising from reflections between the sensor
and the ultrasound transducer, which were not included in the
model [7].

6. Discussion

6.1. Shape of the directional response

We argued in section 3.2 that diffusion is not negligible for
heating durations above 10 ms For the experimental direc-
tionality measurements considered in section 5.2, the acoustic
source was driven for 0.15 s, so diffusion should be expected
to contribute to the pyroelectric signal.

We can compare howmuch of the pyroelectric signal comes
from direct heating of the PVDF layer and how much comes
from diffusion from the backing layer by making modified
heat source terms, QPVDF, and QABS for some original heat
source Q. We define QPVDF to be equal to Q within the PVDF
layer and zero everywhere else, and QABS to be equal to Q in
the backing layer and zero everywhere else. By using these
heat sources in the thermal simulation, we get the directional
response comparison in figure 14. The pyroelectric response
due to diffusion from the backing layer is on average 3.3 times
greater than the pyroelectric response from the direct heating
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Figure 8. Modelled directional responses for sensors with sensitive
region diameters ranging from 1 to 10 mm, using the parameters
from table 1. The diameter of the line source was kept at a fixed
10 mm.
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Figure 9. Modelled directional responses with source–sensor
separation R ranging from 10 to 70 mm, using the parameters from
table 1.

of the PVDF layer, indicating that for heating a duration of
0.15 seconds with a 2MHz ultrasound beam, the backing layer
is the primary contributor to the sensor response. If we make
a modified QABS2 by setting the rate of heating within QABS

to zero for depths beyond 0.5 mm away from the top surface
of the backing layer, we find that the resulting pyroelectric
response from the QABS2 heating term has a relative root mean
squared error of 0.68 % from the QABS pyroelectric response.
Thus, the majority of the directional response arises from heat-
ing in the top 0.5 mm of the backing layer, with approximately
25 % of the response arising from the direct heating of the
PVDF membrane.

The distribution of the rate of heat deposition in the cross-
sections of the sensor maintains a fairly constant shape in the
top layers of the sensor. Additionally, since the heating of the
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Figure 10. Modelled directional responses for the 1 mm sensor with
thermal conductivity K ranging between the default value and
1000× the default conductivity for the sensor medium, with the
other parameters as defined in table 1.

Figure 11. Directionality dependence (DR defined in (29)) on
variations in total resistance, Req, and sensor capacitance, C. Figure
plots DR(θ)

max
θ

(DR(θ)) for each Req, C pairing.

sensor along the lateral direction is almost uniform, the heat
flow from the backing layer into the PVDF is nearly linear,
resulting in an enhancement of the direct heating caused direc-
tional response. Because of this, we can expect the pyroelectric
directional response to match closely with the directional-
ity of the total rate of heat deposition in the PVDF layer,´
Ω
QdV. In figure 15 we compare the directional responses of

the 1 mm sensor to the total power in the PVDF layer and
see that there is a strong agreement. In cases where thermal
diffusion can be neglected, these curves should be expected
to match exactly. However we can also see from figure 10
that in situations where thermal diffusion is very high, this
equivalence between the directionality in V and

´
Ω
QdV no

longer holds.
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Figure 12. Experimentally measured pyroelectric ultrasound sensor
response compared to the modelled response for a 1 MHz source
applied for 2 s. The amplitudes of the voltage responses have been
normalized to have the same peak value of 1, and the experimental
voltage data was shifted down by 0.002 V to remove DC noise prior
to normalization.
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Figure 13. Modelled directional response compared to measured
directional response from [7]. Included are the directional responses
of 1 mm phase insensitive (PI) pyroelectric sensors and phase
sensitive (PS) piezoelectric sensors. The modelled piezoelectric
sensor was given a sensitive region diameter of 0.925 mm for a
better fit with the experimental data, where the nominal sensitive
region diameter is 1 mm. The modelled pyroelectric directional
response was normalized to have a peak value of 1.075.

6.2. Voltage response curve

The voltage response V(t) in our model is the solution of the
first order ODE in equation (28), which can equivalently be
expressed in the integral form:

V(t) =
γA
C
e−t/ReqC

ˆ t

0
e−s/ReqC d∆T(s)

ds
ds, (30)

where we have assumed the initial condition V(0)= 0, and
have defined ∆T(s) = ⟨∆T(x,s)⟩Ω. For short heating dura-
tions the change in temperature in the PVDF during heating

-40 -20 0 20 40
Angle [ °]

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 v
ol

ta
ge

Q
Q

ABS

Q
PVDF

Figure 14. Comparison of the directionality of the pyroelectric
voltage response with the heating terms Q, QPVDF, and QABS. All
curves were normalised using the peak value of the original
response curve.

-40 -20 0 20 40
Angle [ °]

0.7

0.75

0.8

0.85

0.9

0.95

1

N
or

m
al

is
ed

 a
m

pl
itu

de

Voltage response
Total heat

Figure 15. Comparison of the modelled directionality of the
pyroelectric voltage response to the integrated heating term
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QdV

within the PVDF layer of the 1 mm sensor.

is almost linear, so we can approximate that d∆T(s)
ds = d∆T

dt =
O (1), which allows us to compute an analytical expression for
the voltage response

Va(t) = γAReq
d∆T
dt

(
1− e−t/ReqC

)
. (31)

Figure 16 shows how the analytic expression for the voltage
from equation (31) compares to the numerically computed
voltage curve. Included also are the analytic voltage curves
if we instead use the maximum or minimum rate of change
in temperature during heating instead of the average, both
of which either overestimate of underestimate the voltage
response. We can see that there is good agreement during
heating.
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Figure 16. Comparison of the numerical and analytical voltage
curves for the 1 mm sensor. Analytical curves calculated with
equation (31).

The appearance of the product ReqC within the exponen-
tial term in equation (31) explains why the normalized voltage
responses and directional responses along the bottom-left to
top-right diagonals in figures 5 and 11 are identical to one
another. The smaller the duration of ReqC, the sooner the
voltage reaches its peak value of γAReq

d∆T
dt . From this obser-

vation we can make a rough evaluation of the feasibility of
using pyroelectric ultrasound sensors to measure the time
of arrival of an ultrasound beam. At ReqC= 0.1 µs, Va(t)
achieves over 99% of its asymptotic peak value in less than
0.5 µs, which is the period of a 2 MHz wave, meaning that
we would need ReqC less than this in order to be able to meas-
ure the phase of the incoming ultrasound wave. If we assume
that the pyroelectric sensor can be treated like a parallel plate
capacitor with a dielectric medium, then we can also write
C= εA/h. If we furthermore treat the sensor as a thick wire,
then we may write its resistance Rp = ξh/A, where ξ is the
resistivity of the pyroelectric material, and ReqC= RpC/(1+
Rp/Ra) = ξε/(1+Rp/Ra). Lowering the amplifier resistance
Ra so that it approaches zero would also make ReqC arbitrar-
ily small, but in practice the resistance of the amplifier would
eventually be so low that it would be dominated by the res-
istance of the connecting wires. Assuming copper wire which
has a resistivity of approximately ξa = 1.68× 10−8 Ωm, with
length 10 cm and cross-sectional area of 1 mm2, we would
have that Ra = 1.68 mΩ. Pyroelectric materials are insulat-
ors, so the total resistance would be nearly equal to the
resistance of the amplifier, Ra. The capacitance required to
achieve ReqC< 0.1 µs is then C< 59.5 µF, which is eas-
ily achievable. However, lowering the amplifier resistance to
this extent would likely lower the sensor signal response far
below the noise threshold. Faster response times can also be
achieved by increasing the pyroelectric sensor resistance, Rp.
Without significantly altering the membrane geometry, this
would require the use of a novel material with a significantly
higher resistivity.

6.3. Validity of model assumptions

One of the major assumptions made in this model is that the
spontaneous polarization densityPS, and electric displacement
field D, are orthogonal to the sensor surface for all temperat-
ures. This assumption allows us to use the slab assumption to
argue that the current response is proportional to the volume
averaged temperature. In cases where this assumption fails to
be accurate, the voltage across the pyroelectric material would
need to be considered frommore general assumptions, such as
having an internal bound charge density ηb =−∇ ·PS.

For large temperature gradients a tertiary pyroelectric effect
may also contribute to the voltage response, which our model
does not account for. However, for thin membranes, the only
situation where large temperature gradients may be expec-
ted are when the sensitive region diameter is larger than the
cross-section of the incident ultrasound field, so that there
exists a boundary between the heated and unheated portions
of the sensor. In this paper we have only considered sensitive
region diameters that are at most as large as the source beam
diameter.

7. Conclusion

This paper has described and demonstrated a numerical model
for pyroelectric ultrasound sensors. The model was shown to
agree well with experimental data for the voltage response and
directional response of a pyroelectric ultrasound sensor up to
a normalization factor.

Themodelling was also used to give insights into the shapes
of the responses. By varying the parameters of the model,
significant changes in the voltage response and directional
response were observed. The observation that larger sensors
and thinner PVDF membranes appear to produce a flatter dir-
ectional responses could serve to steer the direction of sensor
design in the context of ultrasound tomography.

Potential future work could investigate the extent to which
shear waves affect the model results, and in what circum-
stances. This model can also be used to simulate pyroelectric
UST data, and opens up the possibility of performing model
based inversion of such data for imaging.
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