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Abstract
Microscopic hyperspectral imaging technology has been widely used in pathological analysis as
it can obtain both spatial and spectral information of samples. However, most hyperspectral
imaging systems can only capture images in a single field of view. Therefore, an image mosaic
is one of the most important steps in a large-scale microscopic hyperspectral imaging system.
This paper proposes a microscopic hyperspectral image (HSI) mosaic method based on
Speeded-Up Robust Features (SURF) and linear synthesis to achieve large-scale HSIs. In
contrast to other SURF-based image mosaic methods, the proposed method leverages both
image content and coordinate information to improve the accuracy and stability of the image
mosaic. In addition, multiple bands of HSIs with different texture information and grayscale are
applied in image matching to take full advantage of spatial redundancy. Simultaneously, a blank
microscopic HSI screening method is introduced in this paper to pick out a clearer blank image
for better preprocessing, i.e. removing interference in the optical path and the interference of
dust on slides. Finally, the preprocessed images are synthesized by linear-based synthesis
methods due to their simple synthesis structure and better universality. Additionally, a file
format, i.e. hyperslide, is defined for large-scale HSIs and can be browsed with HyperViewer
software. Experimental results show that the proposed microscopic HSI mosaic method can
obtain high-quality large-scale microscopic HSIs of tissue sections.
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1. Introduction

Pathological diagnosis is of great importance in tumor iden-
tification, and microscopic imaging techniques have been
widely used for this purpose to provide the specific struc-
tures of biological cells, organelles and tissues [1–3]. With
the development of artificial intelligence as well as novel
cheaper and more powerful technologies, increasingly large
and complex neural networks are being presented online and
new requirements of turning single-field imaging into whole-
slide imaging are emerging for pathological images [4]. Indi-
vidual images, i.e. tiles, usually represent very small areas
because they are scanned at very high microscope magnific-
ations for clear texture information, which will directly affect
the observation and analysis of sections [5]. In contrast, if the
section is scanned at low magnification to obtain an overall
image, it is easier to observe the distribution pattern. Nonethe-
less, the low resolution of these images seriously restricts fea-
ture extraction. Therefore, a natural solution to this problem
is to leverage computational tools to assemble several indi-
vidual tiles to form a high-resolution large-scale image [6].
Subsequently, several large-scale pathological databases have
also been introduced for the training and testing of neural net-
works [7, 8]. In this case, a whole-slide image (WSI) with high
resolution (submicrometer) will assist in clinical diagnosis by
giving access to both the detailed structure and overall preview
of tissue slide images within a relatively short time [9, 10].
Automated whole-slide imaging scanners have been generally
used in education, medicine and institutes [11]. For example,
Kawano et al proposed a microscopic whole-slide imaging
system based on color darkfield internal reflection illumina-
tion for biological applications [12], and Guo et al reported
a real-time autofocusing-strategy-based whole-slide imaging
system with low cost and high throughput [13].

Autofocus and image mosaics are both important steps in
whole-slide imaging systems or large-scale pathological ima-
ging systems. To date, several researchers have proposed vari-
ous image mosaic algorithms mainly based on Speeded-Up
Robust Features (SURF) and scale-invariant feature transform
(SIFT) to acquire large-scale pathological images [14]. Shan
et al leveraged SURF in a mosaic for two adjacent images
and then matched eigen points via the Bray–Curtis similar-
ity [15]. Pang et al solved the image mosaic problem of blood
cells using a SIFT–Gauss splicing fusion method [16]. How-
ever, current pathological diagnosis is mostly based on color
images and their limited information obstructs improvements
in diagnostic accuracy. Therefore, the microscopic hyperspec-
tral image (HSI) technique is incorporated into pathological
diagnosis such as red blood cell count automation, lympho-
blastic leukemia cell identification, chemical selective analysis
of malaria-infected red blood cells, etc [17–19], whereas stud-
ies on HSI-technology-based large-scale pathological imaging
are still rare. Consequently, after the study of the autofocus
algorithm, it is necessary to further study the corresponding
mosaic algorithm to obtain high-quality microscopic hyper-
spectral pathological image data for pathological diagnosis.

The reconstruction of microscopic hyperspectral WSIs is
of great importance but difficult because the mosaic algorithm

has to simultaneously preserve both spatial information and
spectral information. Therefore, some researchers have imple-
mented specific precise devices to generate the WSIs, such
as prism-based slit-array dispersion and digital micromirror
device-based spatial light modulators [20, 21]. Additionally,
some microscopic HSI mosaic algorithms, usually consisting
of image preprocessing, image registration and image fusion,
have also been put forward to obtain microscopic hyperspec-
tral WSIs. The preprocessing of microscopic HSIs is usu-
ally implemented by dividing a blank image captured on the
same slide with the same light source. This will remove inter-
ference from the dirty spots on the slide and optical path.
Image registration is a fundamental component in medical
image processing and it can be formulated as an optimiza-
tion problem, finding the optimal spatial transformation model
between two or more images [22]. Image registration is gen-
erally composed of a coordinate transformation model, optim-
ization model, multiresolution strategy, image interpolation
method and cost function [23]. The methods of image registra-
tion are typically classified into two groups: nonfeature-based
and feature-based [24]. Nonfeature-based methods are sensit-
ive to image transformation and are computationally complex
tasks [24], whereas feature-based methods are faster and more
robust in relation to noise and large deformations. The fre-
quently utilized features contain points (region corners, points
with high curvature), lines (section boundaries, blood ves-
sels, fibrous tissue) and significant regions (tumor regions,
hyperplasia regions, cells) [25]. There are several feature-
based image registration methods proposed, such as SIFT
and SURF [26]. SIFT leverages a high-dimensional vector to
describe a feature point and each feature point is independent
of image size and rotation with good tolerance to light and
noise [27, 28]. Al-khafaji proposed a spectral–spatial SIFT
method to extract spectral–spatial scale-invariant features for
HSI matching [29]. SURF is similar to SIFT with respect to
feature point matching, but it can extract many robust local
features more rapidly thanks to two-dimensional Haar wavelet
responses, integral images and scale space technique [30–32].

Image fusion is also a fundamental image processing tech-
nique that stitches several images to obtain a large-scale image
for better identification, detection and segmentation of natural
and artificial objects [33, 34]. Large-scale microscopic high-
spatial-resolution HSIs (HRHSIs) are now mostly obtained by
fusing low-spatial-resolution HSIs (LRHSIs) and high-spatial-
resolution multispectral images (HRMSIs) [35–37]. These
methods are generally classified into three groups: exten-
sions of sharpening, model-based and low-rank structure-
based fusion methods [38]. The span-sharpening methods
typically utilize the spatial information of a panchromatic
image to sharpen the multispectral images (MSIs) to gen-
erate HRHSIs [39]. However, some undesirable effects may
occur because of spectral range differences between LRHSIs
and HRMSIs [40]. The second method, model-based, is the
most popular method in HSI fusion problems. In this method,
LRHSIs and HRMSIs are respectively regarded as the decom-
position part of HRHSIs in the spatial and spectral domains
through degradation matrices [41]. Nevertheless, these large
matrices in both the spectral and spatial domains will lead to
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higher space complexity. Regarding the third fusion method,
the low-rank properties are preservedwhen analyzing the HSIs
and then each pixel is processed independently without respect
to the inherent spatial relationship [38, 42]. Therefore, this
method results in distortions of the spectral structure and spa-
tial details as well as the spectral features. The above three
fusion methods are widely applied in HSI and MSI fusion and
they have obtained good results in generating HRHSIs. How-
ever, these methods require both HSIs and MSIs, which is
too time-consuming and expensive in memory during image
acquisition.

In this paper, we propose a microscopic HSI mosaic
algorithm based on SURF and linear synthesis to obtain large-
scale microscopic HSIs. These images were captured by a
homemade acousto-optic tunable filter (AOTF) hyperspec-
tral imaging system with an autofocus algorithm considering
wavelength changes [43, 44]. In this algorithm, the content-
based mosaic method is repeatedly leveraged to captured
microscopic HSIs rather than both HSIs and MSIs. Moreover,
this method is supplemented with the position-based mosaic
method so that the mosaic HSIs are generated with higher
accuracy and stability. In addition, there are differences in
texture and grayscale between different wavelengths and the
spatial redundancy-based multi-wavelength characteristics are
applied to the microscopic HSI mosaic. Experimental res-
ults show that the proposed algorithm can obtain high-quality
large-scale microscopic HSIs, which is useful for building HSI
pathological databases.

2. Methods

Microscopic image mosaic algorithms have been widely
used in large-scale color image mosaics, and most of these
algorithms can be divided into two categories: multi-image
mosaic with overlapping regions and multi-image mosaic
without overlapping regions. As shown in figure 1, the applica-
tion of amulti-imagemosaicwith overlapping regions requires
several choices to be made, such as multiple images acquired
in a certain region, the overlapping area between each pair of
images and a suitable size of overlapping area.

Given two horizontally adjacent images with overlapping
regions, the ratio of the width of the overlapping regions to the
width of the w× h image is assumed to be α. The similarity
of eigenvectors is calculated to obtain the shift of each image
from the combined image, i.e. displacement vector (∆w,∆h).
In ideal circumstances, if the left image stays still, the displace-
ment vector of the left image is (0,0) and that of the right image
is (w×α,0). Similarly, when it comes to two vertically adja-
cent images, if the above image remains still, the displacement
vector of the above image is (0,0) and that of the below image
is (0,h×α). As a result, two images are composited together
in figure 2 based on the displacement vectors to generate a
large image with size (w+∆w1 +∆w2,h+∆h1 +∆h2).

For multiple images without overlapping regions, extra
information is needed for the imagemosaic. It is usually imple-
mented by recording displacement information, e.g. absolute

Figure 1. Adjacent images are captured with overlapping regions.
Shadowed areas represent overlapping regions and blank areas
represent non-overlapping regions.

Figure 2. Two adjacent images are composited based on the
displacement vectors. ∆w and ∆h are displacement vectors in the
horizontal and vertical directions respectively.

position of the triaxial electric loading platform when acquir-
ing the current image or relative shift to the previous position
of the triaxial electric loading platform. The displacement of
the triaxial electric loading platform is precisely controlled to
make sure that the content of two adjacent images is continu-
ous and there is no gap or a very small gap between the two
images. Then, all images are stitched together to obtain the
large-scale image according to the position information. This
method has a high requirement of accuracy of the electric plat-
form in the acquisition system, otherwise there will be a large
gap in the resultant image.

The above two methods are both adopted in this sys-
tem, where the multi-image mosaic with overlapping regions
dominates and the multi-image mosaic without overlapping
regions assists in inspecting and correcting to increase the
accuracy of the algorithm. In addition, microscopic HSI
is abundant in information, especially in spatial redund-
ancy. Therefore, the image-content-based mosaic method is
repeatedly used supplemented by the image-position-based
mosaic method to obtain higher accuracy and stability.

2.1. Image registration algorithm

An intersection must exist between SURF eigenvectors of
two adjacent images with overlapping regions. The coordin-
ate mapping relation is established for the eigen points
with the same eigenvector in the two images, i.e. offset
vector. The images with overlapping regions in this paper
are captured under the same light source settings, so some
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Figure 3. Multi-point matching in KNN feature points.

SURF eigen points have different coordinate information but
similar eigenvectors. Simultaneously, the characteristic also
lies in SURF eigen points of overlapping regions and non-
overlapping regions. As shown in figure 3(a), the k-nearest-
neighbor (KNN) [45, 46] combined with random sample con-
sensus (RANSAC) [47, 48] is leveraged to generate and screen
eigen points to receive a pair of effective eigen points. Com-
pared with optimum matching methods, KNN calculates the
first K eigen points and then discards some of them based on
the situation. Optimum matching methods are much easier,
whereas a correct eigen point may be missed because there
are many similar tissues in microscopic physical images.

To generate correct eigen points, SURF eigen points of
both image A and image B are calculated through the SURF
algorithm. N SURF eigen points in image A are recorded
as {⃗vA,1, v⃗A,2, · · · , v⃗A,i, · · · , v⃗A,N} ,1⩽ i⩽ N and in image B
as {⃗vB,1, v⃗B,2, · · · , v⃗B,j, · · · , v⃗B,M} ,1⩽ j⩽M. Every v⃗ is a 64-
dimensional vector, i.e. v⃗A,i = {A1,A2, · · · ,A64} and v⃗B,j =
{B1,B2, · · · ,B64}. The similarity of all eigen points in image
A and in image B, containing N×M eigen point pairs, is cal-
culated in (1)

{(⃗
vA,1, v⃗B,N1,1

)
,
(⃗
vA,1, v⃗B,N1,2

)
, · · · ,

(⃗
vA,1, v⃗B,N1,j

)
, · · · ,(⃗

vA,1, v⃗B,N1,M

)
,
(⃗
vA,i, v⃗B,Ni,1

)
,
(⃗
vA,i, v⃗B,Ni,2

)
, · · · ,

(⃗
vA,i, v⃗B,Ni,j

)
,

· · · ,
(⃗
vA,i, v⃗B,Ni,M

)
,
(⃗
vA,N, v⃗B,NN,1

)
,
(⃗
vA,N, v⃗B,NN,2

)
, · · · ,(⃗

vA,N, v⃗B,NN,j
)
, · · · ,

(⃗
vA,N, v⃗B,NN,M

)}
.

(1)
It is shown in figure 3(b) that multiple point matching

may appear in KNN. Considering that the image shifts lin-
early, the correct connection is A and D, whereas B and
C should be removed. Therefore, RANSAC is utilized to
remove unconscionable eigen points by means of iteration
to help with the generation of the correct offset vector dur-
ing the scan of eigen point pairs. The eigenvectors of SURF
eigen points are similar to each other, so a set of eigen points
{(⃗vA,i, v⃗B,Ni,1), (⃗vA,i, v⃗B,Ni,2), . . . , (⃗vA,i, v⃗B,Ni,j), . . . , (⃗vA,i, v⃗B,Ni,M)}
is generated in this system. SURF eigen point v⃗ contains the
sub-pixel coordinate information, i.e. (x⃗v, y⃗v), which is import-
ant information in extracting SURF eigen points. For one pair
of SURF eigen points (⃗vA,i, v⃗B,Ni,j), the coordinate informa-
tion of v⃗A,i is (x⃗vA,i , y⃗vA,i) and that of v⃗B,Ni,j is (x⃗vB,Ni,j , y⃗vB,Ni,j ),
as shown in figure 4.

One pair of SURF eigen points can be formulated as a two-
dimensional vector p⃗i,j in (2). Most of the two-dimensional
vectors point in the same direction and few of them diverge,
and thus they can be eliminated by RANSAC

Figure 4. SURF eigen points: (a) sketch map; (b) actual map.

p⃗i,j =
(
x⃗vA,i − x⃗vB,Ni,j , y⃗vA,i − y⃗vB,Ni,j

)
. (2)

It is assumed in this system that a linear translation model
finally fits a linear translation vector, i.e. the offset vector of the
two images p⃗final. Given a threshold δ ∈ (0,1) and an iteration
k, all theN×M SURF eigen points will satisfy this model only
if there are at least δ×N×M SURF eigen points satisfying it.
The specific process of RANSAC screening is as follows:

(1) Choosem eigen point pairs from N×M SURF eigen point
pairs to obtain the initialized linear translation vector p⃗init.

(2) Compute the remaining (N×M−m) SURF eigen point
pairs. If the two-dimensional vector p⃗i,j of one pair of eigen
points

(⃗
vA,i, v⃗B,Ni,j

)
satisfies (3), this pair of eigen points is

a reasonable value and vice versa

|⃗pi,j− p⃗init|⩽ ε (3)

where ε is the internal threshold in the linear translation
model, i.e. the degree to which the two-dimensional vector
of each eigen point pair is shifted from the initial linear
translation vector.

(3) If the number of all reasonable SURF eigen point pairs is
larger than δ×N×M, the final linear translation vector
p⃗final is calculated based on these eigen point pairs.

(4) If the number of all reasonable SURF eigen point pairs is
smaller than or equal to δ×N×M, go back to step 1 and
the iteration number plus one. If the maximum iteration
number is exceeded, p⃗final is generated from the model of
the first k models that fits the data best.

In summary, RANSAC scans all the eigen point pairs and
removes unusual SURF eigen point pairs. This method will
preserve large numbers of reasonable eigen point pairs to
obtain the relative displacement of two images p⃗final.

2.2. Image fusion algorithm

Microscopic HSI includes more abundant spatial informa-
tion compared with signal gray imaging, which is taken
into consideration to receive microscopic HSI fusion with
higher accuracy. Several images of the same field of
view {I1, I2, · · · , IN} are acquired at different wavelengths
{λ1,λ2, · · · ,λN} (N is the number of wavelengths in micro-
scopic HSI) and there are texture feature and gray differences
due to the different wavelengths, as shown in figure 5.

Considering that the differences between these images lead
to relatively large differences between SURF eigen points, a
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Figure 5. Gray images of the same field of view at different
wavelengths in melanoma samples (40×): (a) 510 nm; (b) 606 nm;
(c) 703 nm.

multi-wavelength image matching method based on the spa-
tial redundancy feature is adopted in this system and then the
images are fused based on the location information to obtain
the offset vectors of two adjacent images.

The microscopic HSI data consists of N gray images
{I1, I2, · · · , IN} at different wavelengths {λ1,λ2, · · · ,λN} and
its physical position in the imaging system is represented by
{xH,yH,zH}. The calculation steps are as follows:

(a) Calculate the initial offset vector p⃗init.

Extract grayscale images I1,n, I2,n at the same wavelength
λn⃗ from two adjacent microscopic HSIsH1,H2 and then calcu-
late the initial offset vector p⃗init as demonstrated in section 2.1.
The wavelength λñ has to satisfy (4)

λñ = (λ1 +λ2)/2. (4)

If λñ /∈ {λ1,λ2, · · · ,λN}, λñ must be approximated. ∀n ∈
(1,N) ,{λ1,λ2, · · · ,λN}, if |λn−λñ| can obtain the minimum,
λn is the approximate value of λñ.

(b) Calculate the offset correction vector p⃗pos.

The physical coordinate information of each microscopic
HSI is recorded in the microscopic HSI system. The phys-
ical coordinates of two adjacent microscopic HSIs H1,H2

are recorded as {x1,y1,z1} and {x2,y2,z2}. The coordin-
ate unit is millimeters with four decimal places reserved
and the highest precision is 0.1 µm. First, calculate the
pixel numbers under different objectives based on the mag-
nification factor per unit size α. There are five magnific-
ation factors {α4,α10,α20,α40,α100} which correspond to
4×,10×,20×,40×,100× objectives. Then, calculate the off-
set in physical position (dx,dy,dz) of the two images as for-
mulated in (5)  dx= x1 − x2

dy= y1 − y2
dz= z1 − z2

. (5)

The position of the image on the Z axis is not required
in the image mosaic, so this paper only calculates the pixel
offset on the X-axis and Y-axis, i.e. offset correction vector
p⃗pos = (px,py)

px = dx×α,py = dy×α. (6)

(c) Calculate the fusion offset vector p⃗fusion.

Any two grayscale images {I1,n, I2,n, 1⩽ n⩽ N} of two
adjacent HSIs at the same wavelength and another two
grayscale images {I1,m, I2,m, 1⩽ m⩽ N,m ̸= n} at another
wavelength have the same offset vector. However, in a prac-
tical imaging system, the images will have different grayscale
distributions, contrast ratios and texture features because of the
different incident wavelengths, resulting in deviations of offset
vectors. Hence, multi-wavelength grayscale images are adop-
ted to calculate the fusion offset vector through linear fusion
on account of wavelength information.

The spectral range of microscopic HSI is certain, i.e.
(λstart,λend) and the interval between wavelengths λstep is for-
mulated in (7) if the image contains N bands. When M bands
of the image are extracted, the interval between wavelengths
turns into as calculated in (8)

λstep = (λend −λstart)/(N− 1) (7)

λ_step = (λend −λstart)/(M− 1) . (8)

Ideally, the microscopic HSI of M bands is suitable only
when and satisfy (9)

λ_step = Kλstep,K ∈ Z+,M< N. (9)

M suitable wavelengths {λl1 ,λl2 , · · · ,λlM} are as follows:

λli = λstart + iλ_step,1⩽ i⩽M. (10)

If λstep and λ_step satisfy (9), M suitable wavelengths
will satisfy (11). Otherwise, find the proximate wavelengths
from N wavelengths. ∀λli ∈ {λl1 ,λl2 , · · · ,λlM} ,∀λn ∈
{λ1,λ2, · · · ,λN}, if |λli −λn| gets the minimum, λn will be
the approximate value of λli

{λl1 ,λl2 , · · · ,λlM} ⊆ {λ1,λ2, · · · ,λN} . (11)

M grayscale images of the two adjacent microscopic HSIs
{I1,l1 , I1,l2 , · · · , I1,lM} , {I2,l1 , I2,l2 , · · · , I2,lM} at corresponding
wavelengths {λl1 ,λl2 , · · · ,λlM} are extracted from the initial
images. Then, a set of offset vectors {⃗pl1 , p⃗l2 , · · · , p⃗lM} of the
image pairs {I1,l1 , I2,l1} ,{I1,l1 , I2,l2} , · · · ,{I1,lM , I2,lM} is calcu-
lated on the basis of 2.1. Outliers may exist in the set of offset
vectors {⃗pl1 , p⃗l2 , · · · , p⃗lM} in a practical imaging system, so the
position information is exploited to correct the vectors. If off-
set vector p⃗li ,1⩽ i⩽M and offset correction vector p⃗pos sat-
isfy (12), p⃗li is considered as the reasonable offset vector, oth-
erwise the offset vector will be removed

0.9⃗ppos ⩽ p⃗li ⩽ 1.1⃗p pos. (12)

The original offset vectors {⃗pl1 , p⃗l2 , · · · , p⃗lM} turn into{
p⃗l1 , p⃗l2 , · · · , p⃗lQ

}
after position correction and these Q off-

set vectors are then linearly fused to obtain fusion offset
vector p⃗fusion. The corresponding weights of linear fusion to
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Figure 6. Schematic diagram of the weight of the offset vector.

{
p⃗l1 , p⃗l2 , · · · , p⃗lQ

}
is
{
βl1 ,βl2 , · · · ,βlQ

}
, representing the contri-

bution of the offset vectors of different wavelength images to
the fusion offset vector. In this paper, a linear weight calcula-
tion method based on wavelength differentiation is adopted. A
certain wavelength is taken as the intermediate point, and the
difference between the wavelength of each offset vector and
the wavelength of the intermediate point is taken as the weight.
Subsequently, the weight of Q offset vectors is obtained by
normalization. If M= Q, i.e. M offset vectors are all reason-
able, all weights will be evenly divided in (13). Otherwise,
some offset vectors are removed and the remaining weights
are evenly divided as shown in figure 6

βl1 = βl2 = · · ·= βlQ =
1
Q
,Q=M. (13)

The wavelength interval between offset vectors ∆l is
defined by the equation

E=

{
2
(
1+ 2+ · · ·+ Q

2

)
, Q is even

2
(
1+ 2+ · · ·+ Q+1

2

)
− Q+1

2 , Q is odd

∆l=

(
1− Q

M

)
/E. (14)

The weight value is given as

βlq =

{
1
M +∆l× q,1⩽ q⩽ Q

2
βl q

2
+∆l×

(Q
2 − q+ 1

)
, Q2 ⩽ q⩽ Q . (15)

Finally, the fusion offset vector p⃗fusion is calculated as

p⃗fusion =
Q∑
i=1

βli p⃗li . (16)

(d) Offset the vector of microscopic HSI p⃗final.

If offset vectors at different wavelengths
{
p⃗l1 , p⃗l2 , · · · , p⃗lQ

}
are with sole error, there will be a gap in the mosaic image. In
this circumstance, the fusion offset vector p⃗fusion should be cor-
rected again by initial offset vector p⃗init. Before the correction,
the error vector p⃗err between the two vectors is calculated as

p⃗err =
p⃗fusion−p⃗init

p⃗init

err= |⃗perr|=
√
p⃗2err,x+ p⃗2err,y

(17)

where error vector p⃗err represents the offset of initial offset vec-
tor p⃗init from fusion offset vector p⃗fusion. In view of the higher
stability of the multi-wavelength fused offset vector p⃗fusion, the
two vectors are averaged when p⃗err is very small. The larger the
error vector p⃗err, the smaller the difference between p⃗final and
p⃗fusion. By that analogy, when p⃗err is too large, p⃗fusion is adopted
as p⃗final and p⃗init is considered to have a large error

p⃗final = χp⃗final +(1−χ) p⃗fusion

χ=


1
2 ,0⩽ err< 0.1

0.7− err× 2,0.1⩽ err< 0.35
0,err⩾ 0.35

.
(18)

2.3. Blank microscopic HSI screening algorithm

In the process of large-scale multidimensional data acquisi-
tion, a series of microstructure HSIs with large margins will
influence the accuracy of the autofocus and image mosaic.
Therefore, the proportion of empty area is calculated in this
paper. First, two grayscale images It,n, Ib,n of the nearest
wavelength λn of λref are separately extracted from micro-
scopic HSI with histopathological tissue Ht and blank micro-
scopic HSIHb. The samewavelengths ofHt andHb are defined
as {λ1,λ2, · · · ,λN} and λn is defined as

λn =

{
λm, |λm−λref|= min

1⩽i⩽N
|λi−λref| ,λ1 ⩽ λref ⩽ λN

λN,λN < λref

.

(19)
Secondly, the ratio image Ir is calculated as

Ir = It,n/Ib,n. (20)

The two grayscale images It,n, Ib,n have the same incident
light and Ib,n has higher mean brightness because there are no
histopathological tissues in the blank area. Therefore, the pixel
values in the ratio image Ir are all within [0,1] and individual
outliers are also set within [0,1].

Finally, the ratio image Ir is transferred to a binary image
using its average pixel values and the binary image is trans-
ferred into six parts in figure 7 to calculate the ratio of blank
area in Ir.

The ratios of blank area in the six parts are respectively cal-
culated as

r=
Nwhite

Ntotal
=
Nwhite

wh
,w=

W
3
,h=

H
2

(21)

where white represents white pixels and total represents total
pixels. r is leveraged in the system to optimize autofocus and
large-scale image acquisition, reducing the negative impact of
large blank areas.

Simultaneously, a blank image is of great importance in
microscopic HSI processing because it assists in both spec-
tral correction and removal of intrinsic interference. In addi-
tion, if the blank image is disturbed by factors such as dust
on the slide, the image quality will deteriorate. Therefore, two
blank images H1,H2 are taken during image acquisition and
then one is screened through a simple evaluationmethod based
on image brightness for image preprocessing.
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Figure 7. Area division for the calculation of blank area ratio.

Figure 8. Synthesis tree: (a) synthesis tree of tree-based synthesis
strategy; (b) even number of nodes in one layer; (c) odd number of
nodes in one layer.

First, two grayscale images I1,n, I2,n at wavelength λn,
which is calculated in (19), are chosen in the two blank images.
Then, the two images are respectively treated as an image with
histopathological tissue and a blank image, and the ratios S1,S2
of blank area in I1,n, I2,n are calculated in (22) following for-
mula (21). If there is some dust in I1,n and I2,n is clearer, the
ratio image S2 will be determined as blank area. In the end,
the clearer blank HSI Sfinal is screened by comparing the total
pixel values of S1 and S2

S1 = Calculate(I1,n/I2,n)
S2 = Calculate(I2,n/I1,n)

(22)

Sfinal =

{
H2,Sum(S1)⩽ Sum(S2)
H1,Sum(S1)> Sum(S2)

. (23)

2.4. Microscopic HSI synthesis strategy

Multi-image synthesis can be simplified into multiple two-
image synthesis and the process is then iterated in a loop.
There are usually two kinds of synthesis strategy: tree-based
and linear-based. In a tree-based synthesis strategy, the process
of multiple two-image synthesis can be demonstrated as a bin-
ary tree, i.e. synthesis tree as shown in figure 8(a). The basic
idea of the synthesis tree is to compose a synthesis task with

Figure 9. Initial synthesis tree transferred into multiple synthesis
trees: (a) synthesis tree of linear-based synthesis strategy; (b) two
synthesis trees transformed from the initial synthesis tree.

two child nodes and one parent node, and then gradually form
a large-scale image through a bottom-up step-by-step mosaic.
The image on the root node is the resultant image, i.e. final
large-scale multidimensional image.

In practical experiments, the number of images is random,
so two methods are introduced when the number of micro-
scopic HSIs is N. One method is to avoid grouping the images,
always keep one synthesis tree and adjust it according to the
number of nodes in each layer. If the number of nodes n in
one layer is even as in figure 8(b), the nodes in this layer are
combined in pairs and the microscopic HSIs paired by the two
adjacent nodes are stitched, etc. Otherwise, the final two nodes
in this layer are stitched first and the stitched image is set as
one node in this layer, where the number of nodes is changed
to even as shown in figure 8(c).

Another method is to group the images into groups of a
power of two to construct several full binary trees, as shown
in figure 9. If the number of input images in the synthesis tree
is N and it can be expressed as the sum of powers of two, this
synthesis tree can be transferred into multiple synthesis trees
of full binary trees. At the end of each subtree synthesis, the
microscopic HSIs represented by these root nodes are stitched
again to obtain the final image.

In summary, a tree-based synthesis strategy has a good hier-
archy, but there are large numbers of extra processing steps
during the reconstruction and it does not have good universal-
ity because it relies heavily on the number of input images.

In a linear-based synthesis strategy, the two output images
will not have similar size because it is a growing image syn-
thesis strategy as shown in figure 10. Each signal block in this
schematic represents a mosaic microscopic HSI and the block
turns black once it is stitched until all the blocks turn black,
representing the end of the mosaic. Therefore, each micro-
scopic HSI in this method only has two kinds of status, i.e.
mosaic and stitched, resulting in a simple synthesis structure.
On top of this, there is no requirement for the number of input
images and no specific process in this method, which means it
has generality.

As a result, a linear-based synthesis strategy is adopted in
this paper for the following reasons. With respect to synthesis
structure, a linear-based synthesis strategy has a more straight-
forward and simple structure, which is easier for engineering
realization. As for the input image, the tree-based synthesis
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Figure 10. Schematic of linear-based synthesis strategy: captured
images are stitched according to Z shape.

strategy needs to be adjusted according to the number of input
images and synthesizes in a recursive way, whereas a linear-
based synthesis strategy directly stitches the images without
any additional processing operations. In terms of the output of
the intermediate results, the two strategies will both output the
microscopic HSIs at each node and store them in the storage
system of the Linux server. The intermediate resultant image
is the synthesis result of two images in a tree-based synthesis
strategy, whereas the intermediate images in a linear-based
synthesis strategy are the synthesis result of all the previous
images, which can show the process of the image mosaic step
by step. Regarding the output image, both synthesis strategies
will output a large-scale microscopic HSI and its correspond-
ing parameter files. To summarize, a linear-based synthesis
strategy is leveraged in this paper thanks to its simple struc-
ture, friendly input and output, and good generality.

2.5. Hyperslide large-scale image specification

Large-scale microscopic HSIs will take up a huge amount of
memory and hence conventional image file formats are not
suitable for storing and browsing large-scale HSIs. There-
fore, this paper defines a specific file format named hypers-
lide based on the TIFF6.0 standard for HSIs. This format can
be opened with specialized software HyperViewer which reas-
onably adopts several development frameworks like .Net and
Spring as well as various programming languages such as C#,
Java, Python, IDL and Javascript. The number of pixels in
length and width of the hyperslide files can be up to 232 which
is enough to store images of large size. However, hyperslide
does not include spectral information because it consists of
a hyperspectral cube false color combination pyramid image.
Nevertheless, if the hyperslide file and raw file are simultan-
eously stored in the same folder, spectral information can be
viewed in real time.

The physical structure and logical structure of a hyperslide
file respectively correspond to the existence of hyperslide in
the operating system and the storage structure of image data in
a single hyperslide file. As shown in figure 11(a) and table 1,
a hyperslide file consists of a three-stage system: image file

header (IFH), image file directory (IFD) and image data. A
TIFF file contains several images and each image has a cor-
responding IFD. As depicted in figure 11(a), the logical struc-
ture refers to the concrete properties of IFH, IFD and direct-
ory entries (DEs), i.e. image size, data and compression mode,
etc. A hyperslide file is logically composed of four groups: the
triple pyramid image, thumbnail, index information and tag
diagram of the sample. Among them, index information is the
DE of the first-stage image and the other parts separately cor-
respond to an IFD. The image data in hyperslide can be stored
as strips and tiles. Apart from this, the triple pyramid images
and thumbnails are stored in tile format, improving the effi-
ciency of random access to large-size images.

As shown in figure 11(a), the resolution of each layer of
the image in the pyramid decreases in equal proportion layer
by layer and the image with the maximum resolution is the
original image. The triple pyramid images in this paper con-
tain the first stage main image and the second as well as the
third stage secondary image. The resolution relationship of
each layer is defined as

ri = ri× 21−i (24)

where ri is the resolution of the ith-stage image.
Although the pyramid structure can increase the real-time

performance of multi-resolution display, it increases the disk
storage space. However, as a data cube, a single HSI can reach
GB level so a stitched HSI will cause huge pressure on the stor-
age space of ordinary computers. In addition, each single-band
image of HSIs is 256 grayscale images. Human eyes can only
distinguishmore than 30 grayscale images, but will distinguish
thousands of different shades and brightness [49]. Therefore,
color images aremore conducive to human eyes’ interpretation
than grayscale images. In order to reduce the storage burden
of the system and make it easy to view images, a pseudo-color
image is leveraged as the content of each stage image in this
paper. The first-stage image is the pseudo-color image of the
original stitched HSI array at 40× and the second-stage image
is the down-sampled image of the first-stage image. Simil-
arly, the third-stage image is obtained after secondary down-
sampling which is displayed on the screen.

Hyperslide is a large-scale index image file with only spa-
tial information and no spectral information of the stitched
HSIs. In order to obtain spectral information, the spatial
coordinates in the large-scale HSIs can be transformed into
the spatial coordinates of the specific numbered cubes in the
cube array through a coordinate position mapping relationship
which is demonstrated in figure 11(b). Tiles in the figure are
numbered in ascending order from left to right and top to bot-
tom and cubes are numbered in collection order. Tiles of the
same color are generated from the same cube and the color also
indicates exactly which part of the cube’s two-dimensional
space generates these tiles. JSON character strings, i.e. index
information, are utilized to record the exact position of each
cube in the first-stage image and they are written to the cus-
tom directory entry tag HyperMatch in the first-stage image.

An example of index information is shown in figure 11(c),
where (start_x, start_y) represents the coordinate of the actual
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Figure 11. Hyperslide large-scale image: (a) triple pyramid image of hyperslide and its physical structure and logical structure; (b) example
of the HyperMatch tag; (c) correspondence diagram of the first-stage image and the cube array; (d) block number to be loaded for planar
dimension control (field of view controlling); (e) example graph for HyperMatch generating a coordinate matrix; (f) schematic diagram of
the sampling point set.

Table 1. Variables in physical structure.

Variable
Name Description

IFH IFH is located in the first eight bytes of the
file, including byte order, TIFF magic word
42 and offset address of the first IFD.

IFD IFD contains the number of DEs, several
DEs and the offset address of next IFD.
IFD has a data pointer DE, describing the
storage address which is used for read–
write interfaces to access image data.

DE DE includes 12 bytes and is comprised of
four parts: unique tag code (TIFFTag), type
of tag value, the number of bytes taken by
tag value and tag value or its offset address.
If the number of bytes taken by tag value is
less than 4, the last part stores the tag value,
otherwise it stores the offset address.

TIFFTag TIFFTag describes the inherent properties
of the image, such as its width, length, com-
pression type and offset address.

pixel starting point in the upper-left corner of the first-stage
image and concatInfo represents the information set of the
adjacent field of view generated during the mosaic process.
concatName is composed of the numbers of two adjacent
cubes (A and B), i.e. ID, and connection symbol <- > . (off-
set_x, offset_y) is the offset vector of cube A and cube B and

(zero_x, zero_y) is the coordinate of the upper-left corner ori-
gin point in the two-dimensional image of cube B.

As shown in figure 11(d), due to the use of image pyramid
technology, the image block with the most appropriate resol-
ution in the pyramid will be displayed to increase the clarity.
Image roaming includes three kinds of operations: up roaming,
down roaming and peer roaming. In peer roaming, the feature
of internal block storage is used to ensure that are only partial
block data exist in the memory. Up roaming means switch-
ing from the current resolution of image to a high-resolution
image, as opposed to down roaming. Peer roaming is used to
operate in the same-stage image of the pyramid. Assuming that
the current roaming image is in the ith layer of the pyramid, the
magnification coefficient of the current display image j is from
0.25 to 1.75. If the user scales the image and j > 1.75, the sys-
tem will default that the image of the current layer is not clear,
so it will switch to the (i − 1)th layer, i.e. up roaming, and the
magnification of the ith layer will be set to 0.875. if j < 0.25,
the system will consider that the low-resolution image is more
suitable for the current display, so it will switch to the (i+ 1)th
layer, i.e. down roaming, and the magnification will be set to
0.5. Otherwise, users will maintain peer roaming operations.
In conclusion, switching based on this magnification scheme
is insensitive, smooth and infrequent.

The spectral curve of a hyperslide file can be obtained from
the corresponding cube based on the mapping relationship.
First, it is shown in figure 11(e) that a coordinate matrix is
established according to (start_x, start_y) and (zero_x, zero_y)
in HyperMatch. The element in the matrix represents the
upper-left corner origin point (0, 0) of the two-dimensional

9



Meas. Sci. Technol. 32 (2021) 035503 Q Zhang et al

index of each cube in the first-stage image. The operation of
the viewing spectrum can be divided into two types: view-
ing a single-point spectrum and viewing a regional spectrum.
Viewing a single-point spectrum can be modeled as a two-
dimensional plane search problem and viewing a regional
spectrum can subsequently be simplified as multiple single-
point search problems.

2.5.1. Single-point spectral mapping algorithm Single-
point spectral mapping is triggered when the point (x, y) in
the image is clicked. Assuming that the coordinates of the ori-
gin point of the cube (two-dimensional size is H × W) in the
first-stage image are (x’, y’), if (x, y) satisfies (25), it means that
this point is located within the cube and its absolute coordin-
ate is (x – x’, y – y’). Then, the spectral information S(x – x’,
y – y’) can be obtained through the absolute coordinate. How-
ever, the time complexity of this solution is O(mn) which is
not efficient. Therefore, the order of the matrix and variability
of search step length are used to reduce the search time and
improve the real-time performance of the software.{

x ′ ⩽ x⩽ x ′ +W
y ′ ⩽ y⩽ y ′ +H

. (25)

It is obvious in figure 11(e) that the x-coordinates of pixels
in each row increase from left to right and top to bottom, and
the y-coordinates of pixels in each column increase from top
to bottom and right to left. According to the order of the mat-
rix, the binary search method will speed up the algorithm and
the time complexity will be O(lg(mn)). However, this method
cannot satisfy the variability of search step length. Therefore,
an heuristic algorithm is designed in this paper: look for the
position in the horizontal direction first and the position in
the vertical direction second. Then, the upper-right corner of
the matrix is selected as the search starting point by setting
the direction marker DTrigger to control the search direction
(1 means horizontal, −1 means vertical). The specific search
steps are as follows:

If x ≤ x’, search to the left until x’ ≤ x ≤ x’ + W; If
x’ +W ≤ x, search to the bottom until x’ ≤ x ≤ x’ +W. Then
set DTrigger = -DTrigger.

If y’+W≤ y≤ y’+H, setDTrigger= -DTrigger and ree-
valuate whether x is within the range. If the condition is sat-
isfied, the cube to which the coordinate belongs can be found
out. Otherwise, repeat step a. If y ≤ y’, search to the up until
y’ ≤ y ≤ y’ + H; If y’ + H ≤ y, search to the bottom until
y’ ≤ y ≤ y’ + H. Then, repeat step b.

This method does not need to traverse the entire two-
dimensional matrix to find the target. Simultaneously, in the
case of constant step size, the time complexity is O(m + n)
and the length of a search path is the Manhattan distance (the
shortest).

Additionally, the variability of the search step length is also
useful for improving search efficiency. The variables used in
this method are shown in table 2.

△x and △y are defined as{
∆x= |x− x ′|
∆y= |y− y ′| . (26)

Table 2. Variables used in search.

Variable name Variable symbol

Unit step length Stepmin

Lateral displacement difference
threshold

Thresholdrow

Longitudinal displacement difference
threshold

Thresholdcol

Horizontal distance △x
Vertical distance △y

The step size for each move is defined as{
Stepx =∆x/Thresholdrow ·Stepmin
Stepy =∆y/Thresholdcol ·Stepmin

. (27)

The default unit step size is set as 1, i.e. one grid at a time,
and the empirical values for Thresholdrow and Thresholdcol are
1350 and 950 (depending on the cube size). With the help of
variable search step size, the search distance is shorter and thus
the number of attempts is greatly reduced and the time com-
plexity can be reduced to O(1).

2.5.2. Regional spectral mapping algorithm The regional
spectral mapping algorithm can be triggered by drawing a
closed area or curve. This problem can then be simplified
to multiple single-point spectral mapping by sampling M
coordinate points of the circle trace or the closed region, i.e.
P1, P2, … , PM. The regional spectra can be obtained by adding
and averaging the spectra at all points of the point set which are
acquired through single-point spectral mapping. This method
is quite simple but ignores the spatial correlation of each point
and always needs to search from the top right corner of the
two-dimensional array. Therefore, the search time will be too
long if M and the two-dimensional array are too large. Con-
sequently, after the mapping of the initial sampling point P1 is
completed, the search starting point of the remaining point Pn
is set to the cube which contains Pn-1 (Pn-1 and Pn are adjacent
as shown in figure 11(f)). This method can effectively shorten
the search time. If Pn-1 and Pn do not belong to the same cube,
the cube number of Pn will be ideally found by moving at most
one step.

3. Experimental results and analysis

All data used in this paper were collected by a homemade
AOTF microscopic hyperspectral imaging system. The HSI
system used in this paper is composed of a microscope (Nikon
80i, Nikon Corp.), an AOTF (VA310-.37-.80-L, Brimrose
Corp.), an AOTF controller (VFI130-140SPFB2C2exSTS,
Brimrose Corp.), a gray scientific complementary metal oxide
semiconductor (sCMOS, Dhyana 400D, Tucsen Corp.), a
color charge-coupled device detector (color CCD, DigiRet-
ina 16, Tucsen Corp.) and a personal computer [7]. In addi-
tion, multidimensional imaging software is developed to con-
trol these devices, supplying a friendly interface to obtain color
images and HSIs simultaneously. On top of this, the autofocus
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Figure 12. Physical map of the CW-DY objective micrometer. It
has three standard scales: 10 mm subdivided into 100 cells, 1 mm
subdivided into 100 cells and 10 mm subdivided into 200 cells.

Figure 13. Images captured under different objective multiples:
(a) 4×; (b) 10×; (c) 20×; (d) 40×; (e) 100×.

algorithm in this systemmade it possible to acquire large-scale
microscopic HSIs and color images.

3.1. Measurement of magnification factor

In this system, the relative position of two adjacent micro-
scopic HSIs is used to correct the offset vectors. However, the
relative position is based on the physical coordinate system
of the platform, while the vector correction is based on the
pixel offset. Therefore, a magnification factor is needed for
the conversion between the two quantities and the magnifica-
tion factor is related to the microscope objective multiple. The
measurement of the magnification factor is operated by cap-
turing the objective micrometer, which is a calibration facility
of size 785 mm × 25 mm. The objective micrometer used in
this system is a CW-DY objective micrometer from Beijing
Pediwei Instrument Co. Ltd. It is shown in figure 12 that the
objective micrometer has three standard scales: 10 mm sub-
divided into 100 cells, 1 mm subdivided into 100 cells and
10 mm subdivided into 200 cells.

The images of the second standard scale are captured under
different objective multiples in figure 13 and the number of
pixels per unit calibration is calculated from these images. As
illustrated in table 3, several different calibrations are captured
and they are averaged in consideration of image quality and
artificial measurement error. These magnification factors are
utilized in offset correction.

3.2. Image registration and refusion

It is shown in figure 14 that there is some lateral offset between
the two adjacent mosaic microscopic HSIs. The two images
are stitched through the SURF method (⃗pinit), position vec-
tor calculation (⃗ppos) and the image fusion method (⃗pfinal). To
verify the necessity of the three processing steps, three experi-
ments are operated in this paper. First, only the SURF method
is used in linear-based synthesis and the result in figure 15(a)
shows that there will be displacement in the stitched image.
Second, only the triaxial coordinate information is used in
linear-based synthesis and the result is similar to the first
experiment shown in figure 15(b). Third, image fusion is adop-
ted in linear-based synthesis, generating the correct resultant
image in figure 15(c).

If the microscopic HSI is stitched only using its texture
information, there will be offset in the stitched image. In addi-
tion, the coordinate-information-based matching method will
import movement error which will be magnified to a large
image offset in the microscopic imaging system. Although
both types of information will lead to some offset, they are
indispensable in an image mosaic. Therefore, the microscopic
HSImosaicmethod based on the spatial redundancy character-
istic and position correction integrates the basic image match-
ing algorithm, the position information of the imaging sys-
tem and the HSI information, effectively improving the accur-
acy of the image mosaic. Besides, the multi-wavelength fusion
method is adopted in this paper, removing wavelength selec-
tion and enhancing the efficiency of the algorithm. Compared
with existing fusion methods, there is no need for both HSIs
and MSIs in the multi-wavelength fusion method, avoiding
spending too much time on image collection.

3.3. Blank microscopic HSI screening

Continuous multiple histopathological HSIs with large blank
areas will seriously influence the autofocus and large-scale
microscopic HSI mosaic. Therefore, this experiment calcu-
lates the ratio of blank area in the histopathological HSIs. First,
one microscopic HSI with histopathological tissue and one
blank image are taken in the system and then the ratio image
of the two images calculated by (20) is shown in figure 16(a),
i.e. preprocessed image. To calculate the ratio of blank area in
this image, the image is divided into two parts with the average
brightness of the image as the threshold. Then, the ratio image
is turned into a binary image with the same threshold, as illus-
trated in figure 16(c). Next, the ratio of blank area is separately
calculated in six parts of the binary image in figure 16(d). If
the ratio is higher than a certain threshold, the autofocus will
ignore the concerned HSI in the case of blurred HSIs and then
the sharpness of the stitched image will be ensured.

This method can also be utilized to compare two blank
microscopic HSIs to screen a clearer blank image for image
preprocessing. The screening will supply a better blank image
as the reference image in autofocus and assist in image prepro-
cessing with better spectral correction and removal of intrinsic
interference in the optical path. Given the two blank micro-
scopic HSIs in figure 17, it is obvious that there is less dust in
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Table 3. Magnification factor between the number of pixels and unit calibration.

Unit Calibration (mm)

Objective 0.01 0.02 0.05 0.1 0.2
Magnification
Factor

4× 9.513 17.846 44.698 89.045 177.113 902.715
10× 23.371 45.044 110.432 220.531 442.566 2243.216
20× 46.043 91.611 222.090 448.286 891.022 4521.924
40× 87.052 178.817 443.807 896.807 – 8872.565
100× 222.081 453.486 453.486 – – 22311.7

Figure 14. Schematic map of two adjacent microscopic HSIs.

Figure 15. Resultant image of different methods: (a) only using the
SURF method; (b) only using triaxial coordinate information;
(c) using image fusion.

image (b), so it is set as the clearer blank image in calculating
the ratio of blank area. Simultaneously, it is calculated that the
ratio of blank area in image (a) is 3.83 and that in image (b) is
4.01, meaning that image (b) is clearer. A unified conclusion
is drawn from both subjective and objective aspects, verifying
the reliability of the algorithm.

Figure 16. (a) Ratio image; (b) histogram of the image; (c) binary
image; (d) ratio of blank area in six parts.

Figure 17. Respective ratios of blank area in the two blank
microscopic HSIs.

3.4. Large-scale microscopic HSI generation

The linear-based synthesis strategy is leveraged to generate a
large-scale multidimensional image. This paper displays the
stitched image of four images of a melanoma sample as well
as the intermediate output images. In this experiment, four
HSIs of a melanoma sample (40×) are collected with 30 bands
from 400 nm to 800 nm. Figure 18 shows the 15th band,
i.e. 606 nm, of the stitched image of four microscopic HSIs.
It is demonstrated that the multidimensional image mosaic
method used in this paper realizes large-scale pathological HSI
acquisition in figure 19(d) and solves the problem of small
field of view at high magnification. The resultant HSI con-
tains both rich information and a large observation field which
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Figure 18. Mosaic process of four microscopic HSIs in melanoma
samples at 40×. (a) Lower right corner of the final stitched image;
(b) stitched image of two images; (c) stitched image of three
images; (d) stitched image of four images.

Figure 19. (a) 15th band of pre-stitched HSI and spectral curve;
(b) 15th band of stitched HSI and spectral; (c) 88 15th-band images
with single field of view; (d) large-scale microscopic HSI of a
lymph node sample taken at 40×.

Figure 20. Software interface of HyperViewer. The image shown
on the screen is the pseudo-color image of the original HSI.

can be browsed in figure 20, providing more extensive and in-
depth information for the subsequent pathological analysis. As

Table 4. Main elements in HyperViewer.

Variable
Name Description

(a) Pseudo-color image display area: The dis-
played image is the pseudo-color image of the
large-scale microscopic HSI.

(b) Toolbar: The image dragging tool, annotation
tool, spectrum acquisition tool and history back
tool are included here.

(c) Spectrum curve rendering area: When the
spectrum acquisition tool is clicked, the spectrum
is displayed in this area. The horizontal axis is
the wavelength and the vertical axis is the trans-
mittance or pixel value, and they are adaptive to
the band and pixel value range of the underlying
cube.

(d) Thumbnail interactive area: In addition to
dragging the image in the central image dis-
play area, users can also roam in the thumbnail
interactive area. The yellow box represents the
relative position of the current display area in a
large-scale image. By moving the yellow box,
fast positioning can be realized under a high-
multiple field of view.

(e) Snapshot of regions of interest: When a user is
interested in part of the image, the image inter-
ception function can be used to intercept the
two-dimensional index and then the compos-
ite cube can be exported according to the two-
dimensional index.

(f) Magnification dial: The magnification button on
the magnification dial can be used to zoom in and
out of the central image area quickly.

(g) Section label area: This area displays the label
information of the pathological section entity
corresponding to the current image.

(h) Annotation information display area: Annota-
tion information will be displayed in this area
after circling in the displayed image with the
annotation tool.

shown in figure 20, the initial display multiple is 2.5× and
the main elements in HyperViewer are introduced in table 4.
Moreover, as shown in figures 19(a) and (b), the shape of the
spectral curves of the pre-stitched HSI and stitched HSI are
almost the same, which reveals that the mosaic method will
preserve the spectral characteristics of HSIs.

To evaluate the proposed method,
Table 5 compares SURF with SIFT on ten microscopic

HSIs of lymph node samples in the feature detection time. The
comparison experiments are operated on a 2.3 GHz Intel Core
i5 GPU with 16 GB 2133 MHz LPDDR3 memory. The sys-
tem environment is MacOS Mojave 10.14.4. It is obvious that
SURF outperforms SIFT in all experiments. SURF can save
half the detection time in comparison to SIFT.

Moreover, the RMSE (root-mean-square error) and CS
(cosine similarity) are leveraged to evaluate the accuracy of
matching results. RMSE is a standard statistical metric to
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Table 5. Time consumption comparison of feature point detection.

Number SIFT (ms) SURF (ms)

1 760.22 233.88
2 501.55 211.37
3 732.70 224.19
4 642.66 218.28
5 471.46 227.74
6 510.27 216.61
7 512.08 231.43
8 460.40 226.85
9 449.59 199.29
10 476.71 207.84

Table 6. Comparison of matching precision in the first nine
matches.

SIFT + RANSAC SURF + RANSAC

Number RMSE CS RMSE CS

1 4.33 0.9969 4.17 0.9969
2 3.12 0.9949 53.06 0.9933
3 3.04 0.9977 3.24 0.9977
4 3.28 0.9980 2.73 0.9980
5 4.12 0.9970 3.72 0.9972
6 709.16 0.9853 580.15 0.9921
7 3.53 0.9967 4.08 0.9970
8 2.77 0.9986 2.98 0.9986
9 4.11 0.9959 4.04 0.9964

measure model performance, calculating the coordinate error
between matching points of two images [50]. It is given by

RMSE=

√√√√ 1
N

N∑
i=1

(H12Xi−Yi)
2 (28)

where Xi and Yi represent the interior point coordinates of two
microscopic HSIs (I1, I2) which are to be stitched together.
N represents the number of interior points. H12 represents the
transformational matrix from I1 to I2. The smaller the RMSE,
the more accurate the match.

CS measures the spectral angle between two vectors to
calculate the spectral similarity of two images [51]. It is
given by

cos⟨X, Y⟩= 1
N

N∑
i=1

xTi yi√
xTi xi

√
yTi yi

(29)

where xi and yi represent the spectral curves of two match-
ing feature points (X and Y). The smaller the angle between
two vectors, the more similar the two vectors are and the
more accurate the algorithm is. Table 6 compares the match-
ing accuracy of the first nine matches in the lymph node image
mosaic. The RMSE and CS of the twomatching algorithms are
close and their CE are both very high. However, SURF can
detect feature points much faster than SIFT.

4. Conclusions

In this work, we have presented a microscopic HSI mosaic
method to generate large-scale microscopic HSIs. The prob-
lem is simplified into the mosaic of two adjacent images, so
the images will be stitched well when the offset vectors of
the two images are calculated precisely. This paper utilizes a
SURF-based mosaic method to extract the features of adja-
cent HSIs and meanwhile the position information is used to
assist in obtaining more accurate offset vectors. Then, a spatial
redundancy-based multi-wavelength image matching method
is applied in this paper thanks to different texture structures
and grayscale between different wavelengths to obtain the final
fusion vectors. Moreover, a blank microscopic HSI screen-
ing method is also introduced to obtain a clearer blank image
for better image preprocessing. Finally, adjacent microscopic
HSIs are merged by the linear-based synthesis method due
to its simple synthesis structure and good generality. The
method in this paper will save a lot of time in image acquisi-
tion because the fusion method is only based on HSIs instead
of both HSIs and MSIs. There is no need for special instru-
ments in image acquisition or particular sample types in the
image mosaic. The experiments demonstrate the necessity of
combining SURF and coordinate information and there are no
gaps in the resultant images of the microscopic HSI mosaic
method, proving its validity and practicability. In addition, this
paper defines a file format that is named hyperslide and opened
with software HyperViewer for large-scale microscopic HSI
browsing. However, each group of microscopic HSIs is pre-
processed by the same blank image, ignoring the possible devi-
ations of the incident light. Moreover, the proposed method
relies on the imaging technology and mosaic algorithms of
two-dimensional images and there may be some breakthrough
in future research.
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