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Abstract
Image based diagnostics are interpreted in the context of spatial resolution. The same is true for
tomographic image reconstruction. Current empirically driven approaches to quantify spatial
resolution in chemical species tomography rely on a deterministic formulation based on
point-spread functions which neglect the statistical prior information, that is integral to
rank-deficient tomography. We propose a statistical spatial resolution measure based on the
covariance of the reconstruction (point estimate). By demonstrating the resolution measure on a
chemical species tomography test case, we show that the prior information acts as a lower limit
for the spatial resolution. Furthermore, the spatial resolution measure can be employed for
designing tomographic systems under consideration of spatial inhomogeneity of spatial
resolution.

Keywords: resolution, tomography, bayesian inference, absorption spectroscopy,
spatial resolution

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the last decades absorption spectroscopic linear hard
field tomography of gas phase media has been applied to a
multitude of engineering problems, including turbines [2–5],
piston engines [6–8], exhaust gas aftertreatment [9, 10], and
coal combustion [11] to reconstruct the spatial distribution of
temperatures or concentrations. Tomographic reconstruction

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

of these distributions from several line integrals is generally an
inverse problem. Due to the limited number of measurement
beams these problems are often rank-deficient, requiring addi-
tional information to be introduced. In iterative reconstruc-
tion methods, like ART [12] or Landweber [13] algorithms,
information is introduced implicitly via the linear solver, while
for direct matrix inversion methods, which are the focus of
this work, regularizationmethods like Tikhonov regularization
[1, 9, 14, 15] can be employed. A more rigorous approach is
given by Bayesian inversion methods, which can reinterpret
many classical regularization methods like Tikhonov regular-
ization in a statistical framework.

A frequently arising question concerns the quantification
of spatial resolution of the reconstruction, be it for com-
parison to direct imaging methods or to help interpret the
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reconstruction in terms of resolvable scales in the process.
Unlike conventional imaging, the spatial resolution of tomo-
graphic reconstructions is not approximately constant but
highly inhomogeneous in the imaging domain. For many non-
Bayesian inversion methods the resolution matrix [16, 17], as
the name implies, is used as a measure of resolution, since
each row of the resolution matrix describes an effective point-
spread function (PSF) for one specific location in the ima-
ging plane. As noted by Tsekenis et al [1] the PSF, or its
Fourier transform the modulation transfer function (MTF), is
a convenient and rigorous way to describe spatial resolution
in tomography. In rank-deficient (limited data) tomography,
however, not every discrete spatial element is neccessarily cap-
tured by a measurement beam as opposed to full-rank tomo-
graphy like in medical imaging applications for which resolu-
tion has been approached with PSFs [18–20]. Hence, the res-
olution matrix in limited data tomography often contains null
PSFs corresponding to ‘blind spots’ in the tomographic beam
arrangement. These regions are difficult to interpret in terms
of a finite resolution.

Tsekenis et al [1] circumvent this problem by deducing a
PSF from the edge-spread functions (ESFs) of reconstructed
real world phantoms. The underlying assumptions hereby are
homogeneity and isotropy of the spatial resolution, both being
questionable for low beam count measurements. This way,
prior information introduced by the regularization is indir-
ectly regarded in the resolution measure and the extensive
edge phantoms circumvent the problem of blind spots, yield-
ing heuristic empirical spatial resolution estimates.

In this work we show that, in general, the concept of spa-
tial resolution does not apply to Bayesian tomography which
usually gives a finite posterior probability distribution contain-
ing arbitrarily large or small spatial frequencies with a certain
probability. Instead the posterior probability can be used for
uncertainty quantification, yielding credible intervals for the
value of each ‘pixel’. Nonetheless, in most real world applic-
ations it is common practice to only regard a point estimate,
e.g. the maximum a posteriori estimate (MAP), sampled from
the posterior distribution. This sampling process accounts to a
loss in resolution, which we address in this work.

We begin this paper by reviewing the Bayesian tomo-
graphy formulation and the deficiencies of the resolution mat-
rix approach in the Bayesian framework. We limit the discus-
sions to a linear hard field tomography problem with normally
distributed measurement error and priors formulated as mul-
tivariate normal distributions (MVN). In this context we give
an expression for the covariance of the MAP estimate and
demonstrate its suitability as a resolution measure. Finally, a
scalar resolution measure based on a thresholding method pro-
posed by Tsekenis et al [1] is presented.

2. Tomography

Linear hard field tomography problems arise from linear
integral equations (e.g. Beer–Lambert-Law), which connect
the unknown quantity f (χ, η), which is distributed over two
(or more) dimensions χ and η, to the narrow measurement

(projection) along the ith beam, bi,

bi =

Lˆ

0

f(r(s))

∥∥∥∥∂r∂s
∥∥∥∥
2

ds, (1)

where L is the beam length and r(s) is the beam path through
the measurement volume with parameter s∈ [0,L]. Discretiz-
ing the function f on a linear basis, e.g. a finite element grid
with N nodes, yields the representation

f(χ,η)≈
N∑
j=1

aj(χ,η)xj = Fx(χ,η), (2)

where aj are the finite basis functions and x is the unknown
weight vector. The beam integral (1) can therefore be approx-
imated by a vector product,

bi =

Lˆ

0

F(r(s))

∥∥∥∥∂r∂s
∥∥∥∥
2

ds=
N∑
j=1

Ai, jxj. (3)

Equation (1) assumes infinitely narrow beams and is a valid
approximation as long as the beam width is significantly smal-
ler than the size of the discretization elements in f. If this con-
dition is not fulfilled the beam profile needs to be incorpor-
ated into equation (1) as a blurring kernel. However, this does
not alter the structure of equation (3) and hence the methods
described in this work.

ForM beams the discretization in equation (3) can be sum-
marized in a matrix equation Ax= b, where A is the M×N
sensitivity matrix defined by the beam arrangement and the
grid.

For a fixed measurement system (number of beams and
beam arrangement), the rank deficiency of A depends on the
chosen discretization grid density, so that any tomography
problem may become rank-deficient if the grid resolution is
sufficiently fine. In fact the definition of a finite grid dens-
ity constitutes a prior onto itself [21]. Hence, ideally the grid
density should be chosen sufficiently high to ensure the grid
element size is well below any structure size of interest. There-
fore, the classification of the problem as rank deficient (limited
data, sparse) or full rank is de facto a function of the structure
sizes to be measured in the context of the beam arrangement.

We assume a general limited data tomography problem
with M< N. Modeling the sought after variables, x̃, as ran-
dom variables and accounting for measurement error, ϵ̃, leads
to the measurement model

Ax̃= b̃+ ϵ̃, (4)

where A is the beam sensitivity matrix, and b̃ is the random
measurement vector. Throughout this work random variables
are marked by a superscript tilde, □̃, while fixed values and
realizations of random variables are written without a tilde.

The measurement errors ϵ̃, introduced by, for example,
electrical noise or shot noise, are assumed to follow a MVN
distribution with mean value µϵ and covariance Γϵ. For many
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common tomographic problems the error can be assumed
independent and identically distributed with

µϵ = 0, (5)

and

Γϵ = σ2
ϵI. (6)

However, the following discussions are not limited to inde-
pendent identically distributed errors. Model error that mainly
arise due to insufficient grid resolution are assumed to be small
compared to measurement noise (sufficiently dense grid), and
hence are already accounted for by the error term. For the other
random variables different statistical models will be used as
explained in the following sections.

3. Standard solution approach

In the Bayesian methodology, the data in b and the unknowns
in x are treated as random variables that obey probability dens-
ity functions (PDFs). These PDFs are related by [22]

p(x|b) =
p(b|x)ppr(x)

p(b)
, (7)

where the posterior distribution, p(x|b), is defined by the
model likelihood p(b|x), which defines the likelihood of
observing the data for a hypothetical x, and ppr(x) defines what
is known about x before the measurement. The evidence, p(b),
is a constant, normalizing the posterior distribution to a proper
PDF. For a linear measurement model andMVNmeasurement
noise the likelihood is given by

p(b|x) = 1√
(2π)Mdet(Γϵ)

exp

[
−1
2
(Ax−b)TΓ−1

ϵ (Ax−b)
]
.

(8)
The prior PDF can model any expectations on the behavior

of x. For a limited data and therefore rank deficient problem
the prior is mandatory in order to avoid a degenerate posterior
distribution. The prior therefore constitutes an essential part of
themeasurement system, on the same level as the experimental
data. The priors should minimize information content beyond
the general attributes of the field, e.g. a spatially-smooth dis-
tribution due to diffusive transport. For convenience an MVN
PDF is often chosen as a model

ppr(x) =
1√

(2π)Ndet(Γpr)
exp

[
−1
2
(µpr − x)TΓ−1

pr (µpr − x)
]
.

(9)
TheMVN prior is defined by the expected mean value,µpr,

and, most importantly, the covariance matrix, Γpr. The spatial
structure expected by the prior is described by the off-diagonal
elements inΓpr. For example for turbulent flows it might make
sense to define a squared exponential covariance [21, 23, 24]

(Γpr)i, j = σ2
prexp

(
(ri− rj)T(ri− rj)

dcorr

)
. (10)

With both the model likelihood and the prior PDF modeled as
an MVN distribution, it can be shown that the posterior distri-
bution is also an MVN distribution [22] with mean

µpost = Γpost
(
ATΓ−1

ϵ (b−µϵ)+Γ−1
pr µpr

)
, (11)

and covariance

Γpost =
(
Γ−1
pr +ATΓ−1

ϵ A
)−1

. (12)

This MVN posterior describes the manifold of possible
solutions to the tomographic inversion with their correspond-
ing probabilities, and constitutes the outcome of the Bayesian
inference. Though it is not trivial to interpret this result dir-
ectly, it can, for example, be used to derive credible intervals
for the quantity of interest at each grid node. Alternatively it
is possible to randomly draw a set of solutions from the pos-
terior distribution to visualize credible solutions to the tomo-
graphic problem. Unfortunately, for high dimensional tomo-
graphic problems, obtaining a representative set of solutions
would require a very large number of draws, making this
approach impractical. Many practitioners hence default to giv-
ing only the solution with the highest probability density, the
MAP estimate.

4. Maximum a posteriori and Tikhonov
regularization

ForMVN posterior distributions theMAP is equal to the mean
value of the distribution,µpost = µMAP, given in equation (11),
but it can also be expressed as the solution to a least squares
minimization problem [22]

xMAP = argmin
x

∣∣∣∣(LϵA
Lpr

)
x−

(
Lϵb

Lprµpr

)∣∣∣∣2
2

, (13)

with

Lϵ = chol
(
Γ−1
ϵ

)
, and Lpr = chol

(
Γ−1
pr

)
, (14)

where the Cholesky decomposition can be replaced by any
other valid matrix square root. The MAP optimization prob-
lem can also be solved iteratively with, for example, conjugate
gradient methods [25]. These are distinct from iterative regu-
larization methods, which, e.g. exploit the semiconvergence
principle to suppress noise. The solution method does, how-
ever, not influence the applicability of the presented methods
as long as the given requirements (MVN error and prior model,
linear measurement model) are fulfilled.

The form of equation (13) highlights the resemblance
between the MAP estimation and classical Tikhonov regular-
ization: by setting Lpr = γLTik and µpr = 0, with the regular-
ization factor γ and the Tikhonov matrix LTik (for example an
identity matrix for zeroth order Tikhonov or an Laplace mat-
rix for second order Tikhonov), the MAP estimation becomes
the result of a Tikhonov regularization. Tikhonov regulariz-
ation, therefore, resembles a Bayesian inference with a prior
defined by the inverse prior covariance Γ−1

pr = γ2LT
TikLTik and
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the prior mean µpr = 0. Note that for the smoothing operat-
ors, like second order Tikhonov regularization, Γpr does not
exist as Γ−1

pr is rank deficient. However, this does not limit the
applicability of equation (11) as it depends on the inverse of
the prior covariance.

In summary, Tikhonov regularization amounts to determ-
ining a MAP after Bayesian inference, but neglects the actual
derivation of a posterior PDF describing the full resolution
manifold. Nonetheless, this single sample from the posterior
PDF is often given as the convenient solution to the infer-
ence problem. With regard to spatial resolution this leads to
the definition of the resolution matrix.

5. Resolution and point-spread-function

The problem of defining resolution in tomography has been
addressed for non-Bayesian methods. Definitions based on the
PSF seem reasonable and have already been adopted to tomo-
graphy in a framework based on the resolution matrix [17, 26]
as well as in practical approaches [1, 27, 28]. The interpret-
ation of the PSF as a pulse response of the imaging system
can be transferred to tomographic imaging when viewing the
tomographic inversion as a black box. The PSF is visualized
by applying a initial pulse input to the system in the form of
a vector xpulse,j consisting of all zeros except for the jth ele-
ment being unity. The noise free virtual measurements result-
ing from this pulse are

bpulse,j = Axpulse,j. (15)

Solving for the MAP estimate by applying the augmented
pseudo inverse [29],

A# =

[(
LϵA
Lpr

)T(
LϵA
Lpr

)]−1(
LϵA
Lpr

)T(
Lϵ

0

)
, (16)

under the assumption of Tikhonov regularization yields the
PSF of the jth point in the grid,

xPSF,j = A#bpulse,j = A#Axpulse,j = Rxpulse,j, (17)

where R= A#A is the resolution matrix of the inversion. As
indicated by equation (17) each column j of the resolutionmat-
rix defines the PSF of the jth grid point.

Problems arise when defining PSFs for sparse/limited data
tomography: many grid points are not traversed by a single
ray, resulting in a null PSF for the corresponding grid point.
This scenario is illustrated in figure 1. In order to ensure that
the grid as a prior does not influence the solution, a sufficiently
smooth peak at the off-center location iwas chosen as a ground
truth for this test case. The beam arrangement consists of only
two perpendicular projections, each with five infinitely nar-
row parallel measurement beams. This arrangement is typical
[2, 10] although not optimal [29] for CST experiments. How-
ever, the suboptimal choice of beam arrangement gives rise to
artefacts that need to be accounted for when quantifiying res-
olution. Many of the grid elements, e.g. point i, do not influ-
ence themeasurement data in ourmeasurementmodelAx= b,

Figure 1. Demonstration of posterior covariance and resolution
matrix on a Tikhonov regularized test case with beam array and grid
(a), phantom (b) and resulting MAP estimate (c). The posterior
covariance and resolution matrix are shown for two locations
marked with magenta circles: point i is not traversed by any
measurement beam, and point j is traversed by measurement beams.

and are therefore not probed in the measurement. The meas-
urement uncertainty, σϵ, is chosen to be 1 % of the noise-free
peak measurement value, the regularization parameter is set to
γ= 1, and LTik is a Laplace matrix that penalizes curvature.
The resulting MAP estimate shows the expected blurring as
well as the distortions due to the coarse beam arrangements.
For point j, which is intersected by two measurement beams,
the resolution matrix gives a reasonable result that explains
both blurring and distortions. For point i the resolution matrix
gives an null PSF (figure 1(g)).

The interpretation of these zero-PSFs or blind spots is not
trivial, as there is no direct analogue in conventional imaging,
e.g. amplifier and bus real estate on camera chips are usually
smaller than the optical blurring kernel of the camera. Also,
the interpretation that null PSF means that only infinitely large
structures can be resolved, is faulty as structures that span the
space between neighboring beams can be resolved.

Tsekenis et al [1] avoid these issues by employing the ESF
to first deduce the line-spread function (LSF) and then the PSF.
The large phantom structure (two constant value levels divided
by a straight line) used to measure the ESF ensures that some
information is preserved in the tomographic measurements
and the blurring introduced by the regularization ensures that
the edge can be resolved in the blind spots of the beam array.
Nonetheless, the commonly used direct relation between ESF
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and LSF implies that the PSF is the same for each grid point
(homogeneity). In tomography, however, this is not necessar-
ily true because of varying beam array density, varying qual-
ity of the prior, etc. The PSF is then derived from the LSF
with the assumption that the LSF represents a cut through the
PSF.While this is a crude approximation, exact analytical rela-
tions between PSF and LSF either require rotational symmetry
and homogeneity of the PSF [30] or for all possible LSF ori-
entations to be measured [31]. The validity of the recovered
PSFs is hence disputable. Therefore, the standard definition of
resolution does not apply to classical regularized, limited data
tomography. These issues can partially be resolved within the
statistical Bayesian framework.

6. Resolution in Bayesian tomography

Bayesian inference determines a posterior PDF describing the
wholemanifold of solutions as opposed to a single point estim-
ate. Hence, this solution manifold also contains solutions with
a very high spatial frequency content corresponding to small
structures. The only lower limit in the possible structure sizes
is given by the prior distribution, although this is not a hard
limit for Gaussian priors as the probability for very high spa-
tial frequencies is small but finite. Hence, as long as the prior
reflects real knowledge about the measurement volume and is
consistent with the maximum entropy principle [32], we can
assume that the prior does not distort the reconstructed image.
This gives rise to two possible interpretations of the posterior
distribution: either the tomography system resolves all pos-
sible fluctuations and therefore has perfect spatial resolution,
or it resolves only the possible fluctuations and therefore has a
resolution solely limited by the prior. The more conservative
conclusion is that the concept of spatial resolution is not trans-
ferable to a manifold or PDF of solutions as it simply describes
the current state of knowledge of the measurement volume.

This equally unsatisfactory conclusion only concerns
the resolution of the posterior distribution. As previously
explained it is common practice to depict only a single point
estimate from the posterior PDF, for which the definition
of spatial resolution again makes sense. However, it should
be emphasized that the actual posterior distribution holds
the most information and should be used instead of a point
estimate with a resolution and uncertainty measure, wherever
possible.

7. Resolution of the MAP estimate

Within the Bayesian framework it is convenient to define the
resolution of the MAP estimate based on statistical quantities
like covariance matrices instead of PSFs. However, there is a
strong connection between PSFs and covariance, as has been
already suggested in a non-Bayesian context for tomograms in
geostatistics [26]. This connection is illustrated in the follow-
ing thought experiment.

Suppose the tomographic imaging system were replaced
with a camera to image the physical distribution x̃, resulting in
the camera image x̃cam. The camera optics and imaging sensor

have a limited resolution described by the PSFs in the resolu-
tion matrix R, making the measurement model

x̃cam = Rx̃. (18)

We do not have prior knowledge about the structure sizes
or correlation lengths of x̃, but can estimate only its mean and
fluctuation width, making our prior choice an MVN prior with
meanµpr and covarianceΓpr = σ2

xI.With this prior knowledge
and equation (18) the covariance of the resulting camera image
is given as

Γcam = RΓprRT = σ2
xRR

T. (19)

This shows that the finite PSF of the camera introduces a
correlation between the pixels of the camera image. Note that
we do not assume a fixed ground truth x here, but regard the
uncertain random variable x̃ directly, making this covariance
matrix of the camera image a property of themeasurement sys-
tem and not of a single measurement. Reversing this operation,
i.e. inferring the PSFs from the camera covariance matrix, is
an ill-posed problem in itself as it does not feature a unique
solution, so it is not directly possible to derive effective PSFs
from these covariance matrices. However, the covariance of
the camera image itself can be used to define a resolution. For
a tomography system the question arises as to how to define
such a covariance for a point estimate without knowledge of
the PSFs.

While a common first thought is that the posterior covari-
ance matrix is suitable for this purpose, its meaning differs
from the covariance of the camera image given previously: it
describes possible deviations of the true physical distribution
from the given MAP estimate instead of the possible fluctu-
ations of the MAP itself. This is seen in figure 1, where the
plotted posterior covariance matrix columns of nodes i and
j do not show a direct relation to the distortions seen in the
reconstructed MAP. The posterior covariance instead shows
that there exists a negative correlation between the ‘arm’ arti-
facts introduced by the low projection count and the peak cen-
ter for the possible deviations from the MAP. Therefore, while
the posterior covariance defines the inferred posterior distribu-
tion, it cannot be used to determine the resolution of the MAP
estimate.

Instead, a covariance of the MAP point estimate itself can
be defined in a way that is analogous to the camera covariance.
We follow a similar scheme as the derivation of the resolution
matrix given above, but propagate statistical moments instead
of fixed values. Instead of ideal uncorrelated point sources, we
employ the statistical properties of x̃ given by Γpr and µpr.

Given this prior distribution for x̃ and the distribution of the
errors, ϵ̃, solving the measurement model in equation (4) for
b̃= Ax̃− ϵ̃, allows the prior distribution of measurements to
be determined,

p(b) =
1√

(2π)Mdet(Γb)
exp

[
−1
2
(b−µb)

TΓ−1
b (b−µb)

]
,

(20)
with mean

µb = Aµpr +µϵ, (21)
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and covariance

Γb = AΓprAT +Γϵ. (22)

The calculation of p(b) is analogous to the first step in
determining the resolution matrix given in equation (15), but
instead of a fixed set of point sources we propagate the statist-
ics of the prior and the measurement error. Accordingly, the
second step is the propagation of the measurement PDF to the
PDF for xMAP based on equation (11), which gives

p(xMAP) =
1√

(2π)Ndet(ΓMAP)
exp[

−1
2
(xMAP −µMAP)

TΓ−1
MAP(xMAP −µMAP)

]
,

(23)

with mean

µMAP = Γpost
(
ATΓ−1

ϵ (Aµpr −µϵ)+Γ−1
pr µpr

)
, (24)

and covariance

ΓMAP = ΓpostATΓ−1
ϵ ΓbΓ

−1
ϵ AΓpost

= ΓpostATΓ−1
ϵ

(
AΓprAT +Γϵ

)
Γ−1
ϵ AΓpost. (25)

By p(xMAP) the statistical properties of the random vector
x̃MAP are defined unconditionally on any concrete realization
of x̃ or b̃. The MAP covariance, ΓMAP, hence has a similar
meaning to the covariance Γcam given previously and is there-
fore expected to have a close relation to the theoretical PSFs of
the imaging system. This is demonstrated in figure 2. In this
example the same grid, beam arrangement and ground truth
were used as for the example in figure 1, but a squared expo-
nential prior according to equation (10) with dcorr equal to 10%
of the width of the measurement area is applied in place of the
Tikhonov prior. This ensures that Γpr exists, enabling the dir-
ect application of equation (25). Priors that do not posses a
valid covariance matrix like first and second order Tikhonov
priors, will be addressed in the following sections.

Figure 2 demonstrates that while the MAP covariance,
ΓMAP, gives a structurally similar result to the resolution mat-
rix for node j, it also gives a correlation structure for node i
in between the beams, where the resolution matrix fails (see
figures 2(g) and (k)). Furthermore, the structure at node i
closely resembles the inferred MAP from the ground truth
with a peak at i. The visible structure of the beam array is
an effect of the short correlation lengths not fully spanning
the space between measurement beams. This result exempli-
fies how beam arrangement influences resolution.

The MAP covariance does not exhibit the same
‘blind spots’ as the resolution matrix due to the incorpora-
tion of the prior information, as long as the prior spans the
unprobed grid nodes with a certain correlation. If the prior
does not fulfill this requirement the MAP covariance will also
feature blind spots similar to those in the resolution matrix.
However, if neither prior nor measurement beam span these
grid nodes, they are indeed blind (as opposed to the examples

given here), either defaulting to the mean value given by
the prior or leading to a degenerate posterior and therefor no
uniqueMAP. The prior in limited data tomography is therefore
an integral part of the measurement system; this is reflected by
theMAP covariance which incorporates the prior information.

Both the MAP and the MAP covariance resolution can
be highly anisotropic in low beam count tomographic ima-
ging. The definition of a scalar resolution quantity is there-
fore always connected to a further loss in information on the
behavior of the imaging system. Nonetheless, in most practical
applications a scalar resolution quantity at each location in the
tomography domain is preferred.

8. A resolution measure

While discussions of the resolution measures based on PSF,
optical transfer function (OTF), orMTF can be found through-
out optics textbooks [33, 34], Tsekenis et al [1] provide a thor-
ough discussion of the intricacies of their application in tomo-
graphy, concluding that a resolution quantity defined on the
MTF or OTF amplitude is more robust than resolution meas-
ures defined using the PSF. Following their definition, the OTF
for a node j is given as the discrete Fourier transform (DFT)
of the PSF,

OTFj(u,v) = DFT(FxPSF,j(χ,η)), (26)

where the DFT operates on the two dimensional grid instead of
the linear PSF vector itself. The resolution measure in spatial
frequency, f c, is then defined by an OTF amplitude threshold,
αth, relative to the peak OTF. The threshold αth therefore
describes the minimum relative amplitude for a spatial fre-
quency component to be resolved [1]. It is difficult to give a
rigorous physical justification for the choice ofαth, but a stand-
ard value should be agreed on for the sake of comparability.
Therefore, we follow the second (more conservative) propos-
ition by Tsekenis et al, αth = 20%, for the test cases, but will
also present a parameter study of αth in the results section.

The frequency limit, f c, is then transferred to a spatial res-
olution measure [1]

δj =
1

2fc,j
. (27)

As the PSFs are unknown, the OTF cannot be calculated dir-
ectly, but instead the Fourier transform of the MAP covariance
columns can be used:

Pj(u,v) = DFT(F(ΓMAP):,j
(χ,η)). (28)

Note that F(ΓMAP):,j
(χ,η) refers to the representation of

the spatial distribution on a linear basis, introduced in
equation (2). The complex Fourier coefficients Pj(u,v) then
describe the complex magnitude of the spatial frequency com-
ponent (u, v) for the jth column of the MAP covariance matrix.
Instead of the amplitude of the OTF, we apply the threshold
(relative to the maximum) to the amplitude of these Fourier
coefficients, |Pj(u,v)|. Therefore the question of choosing the
threshold for comparable results to the PSF/OTF basedmethod

6
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Figure 2. Demonstration of posterior covariance, resolution matrix, and MAP covariance on a test case with beam array and grid (a); square
exponential prior (b); phantom (c); and resulting MAP (d). Posterior covariance, resolution matrix and MAP covariance are shown for two
locations marked with magenta circles: point i is not traversed by any measurement beam, while point j is traversed by measurement beams.

arises. Note that the units of the amplitudes of Pj are always
the square of the units of the OTF amplitudes. Therefore, Pj

resembles a power spectral density of the (non-existent) PSF at
node j, although this is not a valid identity for a inhomgeneous
PSF function. Hence we propose to choose the threshold in P
as the square of the threshold in the OTF,

αth,P = α2
th. (29)

Alternatively the square root of the amplitude of |Pj| can
be employed.

As Tsekenis et al [1] assumed an isotropic PSF their
thresholding method gives an unambiguous value. Here we
account for the anisotropy of the resolution by calculating,
ΓMAP and PSD, which are not rotationally symmetric.
Thresholding therefore gives a contour line around the zero

spatial frequency point in the PSD. In order to attain a con-
servative scalar estimate of resolution we choose the lowest
frequency of the contour line for fc =

√
u2c + v2c .

Before this procedure is demonstrated on a test case, we
revisit the treatment of classic Tikhonov smoothness priors
with this method.

9. Application to improper prior distributions

While equations (11) and (12) can be applied to Tikhonov reg-
ularization without modifications, the determination of ΓMAP

according to equation (25) requires a valid prior covariance
matrix, Γpr, which does not exist in the case of Tikhonov
regularization. To get a resolution measure nonetheless, the
rank deficiency of the regularization operator (or whitening
operator), LTik, needs to be treated. This can be done by tak-
ing the singular value decomposition of the NTik ×N operator

7
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matrix LTik = USVT, with diagonal elements of S [22]

s1 ≥ s2 ≥ ·· · ≥ sp > sp+1 = · · ·= sn = 0,

n=min(NTik,N). (30)

Thus, the (p+ 1)th to nth column vectors of V describe the
directions in which the prior does not supply any information.
These null space basis vectors are summarized as a subspace

Q= (vp+1, . . . ,vn) , (31)

which is used to define the approximate prior covariance [22]

Γpr,Tik =
1
γ2

L†
Tik

(
L†
Tik

)T
+
a2

γ2
QQT, (32)

where L†
Tik is the pseudo inverse of LTik. As a becomes lar-

ger this covariance approaches the prior distribution. For com-
mon smoothness priors described by Laplace operators or
other difference operators, Q consists of only a single vec-
tor with all elements the same value (i.e. the mean value of
the distribution is unknown), enabling the discussion of the
asymptotic behavior of Γpr,Tik. In this case QQT is propor-
tional to a N×N matrix of ones, 1

cQQT = 1N×N. Further,
note that the absolute magnitude of P and therefor the mag-
nitude of ΓMAP is unimportant as the threshold is chosen
relative to the maximum value. It is hence valid to instead
regard an effective MAP covariance ΓMAP,eff = ΓMAP/(ca2).
For a→∞

ΓMAP,eff = lim
a→∞

1
ca2

ΓMAP =

= lim
a→∞

1
ca2

ΓpostATΓ−1
ϵ

(
A
(

1
γ2

L†
Tik

(
L†
Tik

)T

+
a2

γ2
QQT

)
AT +Γϵ

)
Γ−1
ϵ AΓpost =

=
1
γ2

ΓpostATΓ−1
ϵ A1N×NATΓ−1

ϵ AΓpost. (33)

The effective ΓMAP,eff can then be used to calculate the
PSD and determine the cutoff frequency fc. This results in
worst case estimates, as equation (33) results in prefect correl-
ation. In reality, the values of x are always bounded, although
this is not regarded in the prior. Therefore, regarding the
case of small mean x values is a more reasonable assump-
tion, similar to a small signal approximation. This is equival-
ent to a approaching zero, resulting in the small signal MAP
covariance

ΓMAP,Tik = lim
a→0

ΓMAP =

= ΓpostATΓ−1
ϵ

(
1
γ2

AL†
Tik

(
L†
Tik

)T
AT

+Γϵ

)
Γ−1
ϵ AΓpost. (34)

10. Results

To demonstrate the determination of a scalar resolution estim-
ate we again employ the example given in figure 2. The MAP
covariance for point i and the corresponding PSD column
are depicted in figure 3. In figure 3(b) a threshold value of
αth = 0.2 is used to determine fc = 1.21 m−1, resulting in a
scalar resolution measure of δ = 0.41 m. The dependency of
the acquired resolution measure, δ, on the chosen threshold
αth is shown in figure 3(c) for this specific case. The curve
of the resolution measure gently increases at small threshold
values and steepens when αth approaches unity. In the lower
threshold region the resolutionmeasure is therefore insensitive
to the exact choice of αth. This can be viewed as an advantage
of αth = 0.2 as proposed by Tsekenis [1]. For better compat-
ibility to common resolution measures we propose a threshold
value of αth = 1/

√
2 ≈ 0.707, which corresponds to a typical

–3 dB bandwidth (half power transmission). The correspond-
ing δ = 1.24 m is marked in figure 3(c) in blue, showing that it
already belongs to a steeper section of the curve. However, as
only an individual example is regarded here we cannot make
a statement about the best choice for the threshold value. An
extensive study covering a variety of typical beam arrange-
ments and priors is needed for this cause. For consistency, we
keep using αth = 0.2 for the following examples.

Determining this resolution measure for every grid point
yields the resolution map in figure 4.

Artifacts originating from the coarse beam array are visible
in the resolution pattern, but the detailed influence of the beam
count and arrangement, which is introduced by the beam sens-
itivity matrix, A, in equation (25), is not apparent.

Instead we again focus on the resolution in a single point
of the spatial domain to discuss the influence of the measure-
ment information quantity on resolution. In order to investigate
the influence of beam array density, randomly oriented beams
are added to the orthogonal array. Figure 5 shows that resolu-
tion improves as the beams are added as one would expect. By
increasing the beam count further the spatial resolution at each
single point approaches a fixed value given by the prior distri-
bution, which acts as a lower limit of the spatial resolution.
This is illustrated in figure 5, which depicts resolutions found
using two squared exponential priors, one with a correlation
length parameter β= 0.2 m (shorter spatial correlation length)
and one with β= 0.3 m (longer spatial correlation length). The
prior with the shorter correlation length is the less restrictive
prior, providing less support of the solution but allowing for
higher spatial resolution. The asymptotic resolution values of
0.173 m for β= 0.2 m and 0.256 m for β= 0.3 m match these
expectations.

Furthermore, the dashed lines in figure 5 represent the prior
resolution which is calculated by applying the scalar resolu-
tion measure to the prior covariance instead of the MAP cov-
ariance. In accordance with the previous explanation the prior
resolution represents the asymptote to the tomographic resol-
ution in figure 5. Hence, the prior gives a lower bound for the
spatial resolution, and when this lower bound is reached addi-
tional measurement beams do not significantly improve res-
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Figure 3. Determination of a scalar resolution measure from the MAP covariance. (a) MAP covariance for the squared exponential example
in figure 2 at point i. (b) PSD column for point i with the threshold contour at α2

th = (0.2)2 = 4% of peak (following the value used by
Tsekenis et al [1]). (c) Dependence of spatial resolution measure, δ, on the choice of αth.

Figure 4. Spatial resolution mapped to the reconstruction domain.

Figure 5. Spatial resolution over beam count for two squared
exponential priors with different spatial correlation lengths.

olution. This agrees with studies of the influence of the beam
arrangement on resolution using the Tsekenis approach: the
resolution approaches a limiting value, although this could not
directly be explained using Tsekenis empirical approach [35].

As a remark, for high beam density experiments with
low measurement noise, the measurement information can
dominate the prior information. Hence, if fed with data taken
from a high spatial frequency ground truth, that is incom-
patible (or very improbable) with the prior, the Bayesian
inversion can nonetheless reconstruct significantly higher fre-
quency structures. In such a case, resolution measures pro-
duced from a deterministic black-box approach (PSFs, etc)
will yield more optimistic resolution values than the presen-
ted statistical measure.

11. Conclusion

This work discusses spatial resolution measures for linear
Bayesian hard field tomography. For the posterior PDF a
spatial resolution measure cannot be directly defined due to
the arbitrarily large frequency content of candidate solutions.
Rather, it is only possible to define the resolution of a spe-
cific point estimate, in this case the maximum a posteriori
estimate. Especially in the case of rank deficient tomographic
problems the classical approach of measuring or calculating
the point-spread function suffers from indefiniteness in blind
spots that are not traversed by measurement beams. These
problems stem from the contradiction between the assumed
prior and the assumption of point spread functions, or, put dif-
ferently, from disregarding the prior knowledge used for inver-
sion. To remedy these problems we propose a statistical meas-
ure, the covariance matrix of the maximum a posteriori estim-
ate, instead of PSFs. The statistical formulation allows for the
incorporation of the prior PDF into the resolution measure.
The use of spatial correlations of the MAP allows for a similar
treatment as point-spread functions, namely transfer to spatial
frequency domain and thresholding, giving a scalar resolution
measure for each point in the measurement domain. For ensur-
ing comparability between results a common theshold value
still needs to be agreed upon, as a rigorous physically motiv-
ated threshold is difficult to define.

This resolution measure is influenced by measurement
noise, beam arrangement, and the prior. It constitutes an
important mathematically-valid quality criterion that can be
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employed in the concept phase of the design of a tomographic
measurement system.

Acknowledgment

The authors thank Professor Jari Kaipio for the helpful discus-
sions about Bayesian inference and tomography in general.

Funding

Deutsche Forschungsgemeinschaft (Projektnummer
215035359—TRR 129). Natural Sciences and Engineering
Research Council of Canada DG RGPIN-2018-03765.

ORCID iD

Johannes Emmert https://orcid.org/0000-0002-6920-228X

References

[1] Tsekenis S A, Tait N and McCann H 2015 Spatially resolved
and observer-free experimental quantification of spatial
resolution in tomographic images Rev. Sci. Instrum.
86 035104

[2] Ma L, Li X, Sanders S T, Caswell A W, Roy S, Plemmons D H
and Gord J R 2013 50-kHz-rate 2D imaging of temperature
and H2O concentration at the exhaust plane of a J85 engine
using hyperspectral tomography Opt. Express 21 1152–62

[3] Wood M P and Ozanyan K B 2015 Simultaneous temperature,
concentration and pressure imaging of water vapor in a
turbine engine IEEE Sens. J. 15 545–51

[4] Wright P et al 2016 Implementation of non-intrusive jet
exhaust species distribution measurements within a test
facility 2016 IEEE Aerospace Conf. IEEE pp 1–14

[5] Fisher E M D et al 2020 A custom, high-channel count data
acquisition system for chemical species tomography of
aero-jet engine exhaust plumes IEEE Trans. Instrum. Meas.
69 549–58

[6] Carey S, McCann H, Hindle F, Ozanyan K, Winterbone D and
Clough E 2000 Chemical species tomography by near
infra-red absorption Chem. Eng. J. 77 111–18

[7] Wright P et al 2010 High-speed chemical species tomography
in a multi-cylinder automotive engine Chem. Eng. J.
158 2–10

[8] Terzija N, Karagiannopoulos S, Begg S, Wright P, Ozanyan K
and McCann H 2015 Tomographic imaging of the liquid
and vapour fuel distributions in a single-cylinder
direct-injection gasoline engine Int. J. Eng. Res. 16 565–79

[9] Stritzke F, van der Kley S, Feiling A, Dreizler A and Wagner S
2017 Ammonia concentration distribution measurements in
the exhaust of a heavy duty diesel engine based on limited
data absorption tomography Opt. Express 25 8180–91

[10] Deguchi Y, Yasui D and Adachi A 2012 Development of 2D
temperature and concentration measurement method using
tunable diode laser absorption spectroscopy
Proc. Int. Symp. Diagnostics and Modeling of Combustion
in Internal Combustion Engines Japan Society of
Mechanical Engineers pp 488–93

[11] Wang Z, Deguchi Y, Kamimoto T, Tainaka K and Tanno K
2020 Pulverized coal combustion application of laser-based
temperature sensing system using computed
tomography—tunable diode laser absorption spectroscopy
(CT-TDLAS) Fuel 268 117370

[12] Gordon R, Bender R and Herman G T 1970 Algebraic
reconstruction techniques (art) for three-dimensional
electron microscopy and x-ray photography J. Theor. Biol.
29 471–81

[13] Landweber L 1951 An iteration formula for fredholm integral
equations of the first kind Am. J. Math. 73 615

[14] Daun K J 2010 Infrared species limited data tomography
through tikhonov reconstruction J. Quant. Spectrosc.
Radiat. Transfer 111 105–15

[15] Cai W and Kaminski C F 2017 Tomographic absorption
spectroscopy for the study of gas dynamics and reactive
flows Prog. Energy Combust. Sci. 59 1–31

[16] Bertero M and Boccacci P 1998 Introduction to Inverse
Problems in Imaging (Bristol: IOP Publishing)

[17] Alumbaugh D L and Newman G A 2000 Image appraisal for
2-D and 3-D electromagnetic inversion Geophysics
65 1455–67

[18] Prieto E et al 2010 Evaluation of spatial resolution of a pet
scanner through the simulation and experimental
measurement of the recovery coefficient Comput. Biol.
Med. 40 75–80

[19] Nishikido F et al 2008 Spatial resolution evaluation with a pair
of two four-layer doi detectors for small animal pet scanner:
jpet-rd Nucl. Instrum. Methods Phys. Res. 584 212–18

[20] Thornton MM and Flynn M J 2006 Measurement of the spatial
resolution of a clinical volumetric computed tomography
scanner using a sphere phantom Proc. SPIE 6142 61421Z

[21] Grauer S J, Hadwin P J, Sipkens T A and Daun K J 2017
Measurement-based meshing, basis selection and prior
assignment in chemical species tomography Opt. Express
25 25135–48

[22] Kaipio J and Somersalo E 2005 Statistical and Computational
Inverse Problems vol 160 Statistical and Computational
Inverse Problems (New York: Springer)

[23] Vecherin S N, Ostashev V E, Goedecke G H, Wilson D K and
Voronovich A G 2006 Time-dependent stochastic inversion
in acoustic travel-time tomography of the atmosphere J.
Acoust. Soc. Am. 119 2579–88

[24] Batchelor G K 1999 The Theory of Homogeneous Turbulence
(Cambridge: Cambridge University Press)

[25] Mumcuoglu E U, Leahy R, Cherry S R and Zhou Z 1994 Fast
gradient-based methods for Bayesian reconstruction of
transmission and emission pet images IEEE Trans. Med.
Imaging 13 687–701

[26] Day-Lewis F D and Lane J W 2004 Assessing the
resolution-dependent utility of tomograms for geostatistics
Geophys. Res. Lett. 31 L07503

[27] Yu T, Liu H and Cai W 2017 On the quantification of spatial
resolution for three-dimensional computed tomography of
chemiluminescence Opt. Express 25 24093–108

[28] Yu T, Liu H and Cai W 2018 On the quantification of spatial
resolution for three-dimensional computed tomography of
chemiluminescence: erratum Opt. Express 26 2557

[29] Twynstra M G and Daun K J 2012 Laser-absorption
tomography beam arrangement optimization using
resolution matrices Appl. Opt. 51 7059–68

[30] Marchand E W 1964 Derivation of the point spread function
from the line spread function J. Opt. Soc. Am.
54 915

[31] Marchand E W 1965 From line to point spread function: the
general case J. Opt. Soc. Am. 55 352

[32] Jaynes E 1968 Prior probabilities IEEE Trans. Syst. Sci.
Cybern. 4 227–41

[33] Jähne B 2005 Digital Image Processing (Berlin: Springer)
[34] Lin P-D 2017 Advanced geometrical optics Progress in

Optical Science and Photonics vol 4 (Singapore: Springer)
[35] Liu C, Tsekenis S-A, Polydorides N and McCann H 2019

Toward customized spatial resolution in TDLAS
tomography IEEE Sens. J. 19 1748–55

10

https://orcid.org/0000-0002-6920-228X
https://orcid.org/0000-0002-6920-228X
https://doi.org/10.1063/1.4913922
https://doi.org/10.1063/1.4913922
https://doi.org/10.1364/OE.21.001152
https://doi.org/10.1364/OE.21.001152
https://doi.org/10.1109/JSEN.2014.2349796
https://doi.org/10.1109/JSEN.2014.2349796
https://doi.org/10.1109/TIM.2019.2895932
https://doi.org/10.1109/TIM.2019.2895932
https://doi.org/10.1016/S1385-8947(99)00139-4
https://doi.org/10.1016/S1385-8947(99)00139-4
https://doi.org/10.1016/j.cej.2008.10.026
https://doi.org/10.1016/j.cej.2008.10.026
https://doi.org/10.1177/1468087414544178
https://doi.org/10.1177/1468087414544178
https://doi.org/10.1364/OE.25.008180
https://doi.org/10.1364/OE.25.008180
https://doi.org/10.1299/jmsesdm.2012.8.488
https://doi.org/10.1016/j.fuel.2020.117370
https://doi.org/10.1016/j.fuel.2020.117370
https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.2307/2372313
https://doi.org/10.2307/2372313
https://doi.org/10.1016/j.jqsrt.2009.08.003
https://doi.org/10.1016/j.jqsrt.2009.08.003
https://doi.org/10.1016/j.pecs.2016.11.002
https://doi.org/10.1016/j.pecs.2016.11.002
https://doi.org/10.1190/1.1444834
https://doi.org/10.1190/1.1444834
https://doi.org/10.1016/j.compbiomed.2009.11.002
https://doi.org/10.1016/j.compbiomed.2009.11.002
https://doi.org/10.1016/j.nima.2007.10.001
https://doi.org/10.1016/j.nima.2007.10.001
https://doi.org/10.1117/12.654969
https://doi.org/10.1117/12.654969
https://doi.org/10.1364/OE.25.025135
https://doi.org/10.1364/OE.25.025135
https://doi.org/10.1121/1.2180535
https://doi.org/10.1121/1.2180535
https://doi.org/10.1109/42.363099
https://doi.org/10.1109/42.363099
https://doi.org/10.1029/2004GL019617
https://doi.org/10.1029/2004GL019617
https://doi.org/10.1364/OE.25.024093
https://doi.org/10.1364/OE.25.024093
https://doi.org/10.1364/OE.26.002557
https://doi.org/10.1364/OE.26.002557
https://doi.org/10.1364/AO.51.007059
https://doi.org/10.1364/AO.51.007059
https://doi.org/10.1364/JOSA.54.000915
https://doi.org/10.1364/JOSA.54.000915
https://doi.org/10.1364/JOSA.55.000352
https://doi.org/10.1364/JOSA.55.000352
https://doi.org/10.1109/TSSC.1968.300117
https://doi.org/10.1109/TSSC.1968.300117
https://doi.org/10.1109/JSEN.2018.2884085
https://doi.org/10.1109/JSEN.2018.2884085

	Quantifying the spatial resolution of the maximum a posteriori estimate in linear, rank-deficient, Bayesian hard field tomography
	1. Introduction
	2. Tomography
	3. Standard solution approach
	4. Maximum a posteriori and Tikhonov regularization
	5. Resolution and point-spread-function
	6. Resolution in Bayesian tomography
	7. Resolution of the MAP estimate
	8. A resolution measure
	9. Application to improper prior distributions
	10. Results
	11. Conclusion
	Acknowledgment
	Funding
	References


