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ABSTRACT

Global change is recognized as an additional potential stressor on already over-tapped
groundwater systems.  Mitigation of impacts due to global change requires planning for
sustainable use of groundwater systems.  Identifying and developing mitigation plans for
sustainable use of groundwater resources require detailed knowledge of aquifer
dynamics and temporal behavior for a higher level of certainty on which decisions can be
made by a knowledgeable group of stakeholders.  The principal hypothesis of this study
was that a robust set of uranium (238U) and thorium (232Th) decay series data from
multiple wellfields representing different confining and geochemical conditions would
cluster in a meaningful manner using a fuzzy c-means technique for better understanding
of aquifer dynamics for management purposes. Three conceptual models were
represented by the wellfields: 1) a well-confined artesian aquifer; 2) an area receiving
recharge via a confining layer window; and 3) a regional recharge zone where the aquifer
sub-crops near the land surface.  These conceptual models were defined as C1, C2, and
C3 according to the respective definitions.  Eleven samples from the three wellfields were
analyzed for ten parameters consisting of 238U and 232Th decay series isotopes.  The data
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clustered successfully into three cluster types providing discrimination of behavior within
each wellfield. Clusters C2 and C3 were characterized by the higher values of 222Rn,
226Ra, 228Ra, and 224Ra.  Whereas, C1 was characterized by a higher values of 228Th,
which was mostly absent from C2 and C3.  The data clustered as expected between the
well-confined, window, and regional recharge conceptual models with insights into
individual well behavior.  The data offer a robust conceptualization of aquifer dynamics in
the regional area that may benefit decision makers.

Keywords: Climate change; groundwater; naturally occurring tracers; cluster analysis.

1. INTRODUCTION

Global climate change is recognized as one of the stressors on already over-tapped
groundwater systems [1]. Mitigation of impacts due to global climate change requires
planning for sustainable use of groundwater systems that is dependent upon a detailed
understanding of the storage and flow dynamics of the system.  Accurate conceptual models
and observational data are needed to understand the complex relationship between
groundwater reservoirs and sources and sinks that may alter storage dynamics locally or
over larger regional areas. The role of recharge and the importance of better understanding
of diffuse versus focused recharge mechanisms as they relate to potential aquifer
vulnerability have been recognized in the literature as an important need [2-5]. More recently
the focus of the discussion in the literature has been on how groundwater storage may
provide a more stable resource under extreme hydrologic variation due to the stress of
global climate change [1].

The purpose of this study was to test the hypothesis that fuzzy c-means clustering
techniques could identify groundwater system types (confined versus recharge regime)
using naturally occurring uranium and thorium decay-series isotopes. The setting for the
method testing included three wellfields (Morton, Shaw and Sheahan wellfields) in the
Memphis Tennessee, USA area, as shown in Fig. 1.

1.1 Hydrogeology of Case Study Area

The case study application is focused on the Memphis aquifer, formally defined as a part of
the Claiborne group within the regional context of the Mississippi Embayment and has been
the focus of numerous studies, with the U.S. Geological Survey being a primary leader in the
effort [6,7]. A detailed description of the hydrogeology of the regional Mississippi Embayment
and the local county-level scale exists in the literature and is not repeated here for brevity [8-
10].

It is important to note that of The Memphis aquifer, defined regionally as a part of the
Claiborne group sequence, is the major drinking water resource for western Tennessee, and
for many years water resource managers remained concerned about the vulnerability of the
system from shallow leakage [6,8]. Of particular interest is the transition from the Quaternary
to Late Tertiary age fluvial deposits, which constitute the local regional shallow aquifer
system and the Tertiary age Cook Mountain formation that forms the upper confining unit to
the Memphis aquifer. Research has shown that there are areas near active wellfields where
the clay is known to be thin or absent [11]. The thinning or absence of clay in these areas
allows for the direct exchange of recharge fluxes from the shallow aquifer and potentially
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other near surface features and these have been termed aquitard or confining layer windows
[10,12,13].

Fig. 1. Geographical extents of regional aquifer area showing wellfields included in
the sampling campaign. Figure has been adapted from Gentry et al. [10]; and,

Kingsbury and Parks [11]

The focus of more recent research has been on the spatial identification and assessment of
the aquifer vulnerability, using modeling and geochemical techniques, within the localized
source water area. A map of the regional study area, local municipal wellfields and the
suspected or confirmed confining layer window locations is shown on Fig. 1.  The figure also
shows the wellfields that were sampled as a focal point of this study.

Previous studies in the literature have identified various mixing regimes and hydraulic fluxes
associated with diffuse and focused recharge areas (i.e. through faults, or confining layer
windows) to the Memphis aquifer and have sought more efficacious ways of identifying the
presence of recharge from a confining layer window through various chemical, isotopic and
modeling approaches [8, 10-12, 14-19].  For the purpose of the discussion in this study,
three primary recharge types have been considered for identification, shown in Fig. 2, which
would likely require differing source water management approaches due to potential
vulnerability.
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Fig. 2.  Example conceptual models for groundwater recharge systems in the regional
Memphis aquifer: (a) diffuse uniform recharge through a confining layer; (b) focused
recharge through a confining layer window; (c) diffuse recharge through a regional

sub-crop zone.  Note:  As shown, R denotes precipitation, and qr denotes a volumetric
flux over an areal opening to an aquifer, or through a low conductivity matrix

1.2 Uranium and Thorium Decay Series

Uranium and thorium decay series analyses have been used as a valuable tool for the study
of groundwater systems.  A graphical representation of the relevant decay series is shown in
Fig. 3. A good presentation of the early research and a review of the behavior of uranium
and thorium isotopes in groundwater can be found in Nimz [20].  Later research by Luo et al.
[21], demonstrated that 234U/238U, 234Th/230Th, and 224Ra/228Ra activity ratios exhibit a strong
correlation with aquifer recharge and flow paths. In systems with active groundwater
exchange, the movement of radionuclides can be retarded by multiple chemical and physical
processes [22].

Luo et al. [21] noted in the study at Idaho National Engineering and Environmental
Laboratory (INEEL) that 238U was not entirely free of interactions with the aquifer solids.
Implicit in the literature is that redox conditions can strongly influence the phase or pool in
which the isotopes preferentially reside [23,24]. For short-lived radionuclides, sorption and
desorption also play an important role [25]. Gentry et al. [10] observed that the Th isotope
activities in a semi-confined area of the Memphis aquifer are all similar to those observed
from the unconfined (oxygenated) basaltic aquifer at INEEL, Idaho [21] as well as other
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sandy unconfined aquifers [26]. Tricca et al. [26] hypothesized that the concentration of Th in
groundwater was dominated by the chemical solubility of Th minerals.  However, as noted in
Gentry et al. [10], this hypothesis was not supported by observations of groundwater
samples from the Memphis aquifer area with the most likely source for the variance being
due to the occurrence of colloids in groundwater [21]. Gentry et al. [10] demonstrated that
redox and pH control of uranium behavior can be used to explain the source and mixing
behavior in and near a confining layer window.  A conceptual model was proposed, where
high uranium concentration near-surface waters enter the Memphis aquifer through an
aquitard window and due to redox reactions and changes in pH occurring within the redox
barrier, uranium is depleted.  Downgradient flow paths gain 234U through alpha-recoil
mobilization from 234Th, and possible dissolution and precipitation of uranium along reducing
flow paths from the confining layer window.  The current study provides a more robust
testing of differences in uranium and thorium isotope hydrochemical facies across multiple
hydrologic recharge regimes.

Fig. 3. 238U and 232Th decay series relevant to the study

1.3 Fuzzy c-Means Clustering

For the purpose of describing the approach, the nomenclature and variable definitions used
by Güler and Thyne [27] were used for consistency.  Building upon the work of Bezdek [28]
and Güler and Thyne [27], the FCM technique used multivariate data analysis to partition a
dataset, p

nxxX  ),,{ 1  (of p-dimensional Euclidean space), into }1,,2{  nc 

fuzzy clusters, which are identified by the cluster prototypes, ),,1( civi  .  The
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partitioning process is an optimization problem, with the goal of minimizing the following
objective function [27]:
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where, M is the membership matrix, C is the cluster prototypes (centers) matrix, c is the
number of clusters, n is the number of data points, and uik is the degree of membership of
sample k in cluster i.  If we consider the Euclidean distance (p) as the straight line distance
between the datum xk and cluster prototype vi, then when p is large, JFCM is minimized.  If p
is small then the membership value approaches unity [27,29]. m is a weighting exponent
that controls the degree of fuzziness of the classification, such that ),1( m , with m=2
having been shown to be a widely accepted value [27,30,31].    Elements of the membership
matrix, M, are constrained over the range of (0, 1), given the following constraints [27,30]:
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As identified in the literature, a two step iteration process is used to minimize JFCM, where C
is initialized randomly and M is estimated using the dataset of X, m>1, and C, where the
degree of membership and cluster prototypes are calculated as follows [27]:
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Several stopping criteria for the algorithm have been suggested based upon the relative
change in M or the cluster prototypes in subsequent iterations [27,32].

2. METHODOLOGY

The implementation of this study was dependent upon samples collected from production
wells in the Memphis aquifer and fuzzy c-means cluster analysis of the U- and Th- decay
series data.  The details associated with the sampling, analysis and study specific fuzzy c-
means algorithm development are provided in the following sections.

Suspected confining
layer window
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2.1 Radiochemical Sample Collection and Assay

As described in Gentry et al. [10] samples were collected from eleven wells with top of
screen (TOS) depths ranging from 76 to 236 meters below ground surface (mBGS). In this
manuscript we include the data from two wellfields with differing hydrogeologic conditions
(i.e. near the aquifer sub-crop and well-confined with no suspected leakage) that have not
been reported in the literature. However, the samples reported in the literature and here
were collected at the same time and under the same sampling methodology [10]. For brevity,
the radiochemical analysis techniques are not repeated here since they were analyzed at the
same time as those reported in the literature using the same conditions and [10, 21,33].

2.2 Fuzzy c-means Cluster Analysis

The theoretical and mathematical basis for fuzzy c-means cluster analysis was summarized
in equations 1 through 5.  For the purposes of implementing fuzzy c-means analysis for this
study a modified algorithm from Bezdek et al. [34] was used.  For specificity the only
modifications made to the algorithm were to allow input and output to the computer screen
and files, as opposed to older forms of input.  In addition, modifications were made for
providing run-time diagnostics to assess any failure modes. The modified algorithm allows
for differing norms (Euclidean, Diagonal, or Mahalonobis) in the calculation of JFCM, from
equation 1. For the purposes of this study, a Euclidean Norm (the identity matrix) was used.
Also, for the weighting factor, m in equations 4 and 5, a value of 1.7 was used.  Bezdek et.
al. [34] suggested that values of 1.5 ≤ m ≤ 3.0 would give a good result for most data, and is
consistent with Güler and Thyne [27]; and, Hathaway and Bezdek [31].  The algorithm input
and output routines were modified and compiled using a FORTRAN 77 standard using
Absoft Pro Fortran 7.5 (http://www.absoft.com).  For the purposes of conducting the fuzzy c-
means analysis, any data that were non-detect were input as a value of 0.001 which is
several orders of magnitude less than detectable levels of U and Th isotopes measured in
other samples and their associated uncertainties.

3. RESULTS AND DISCUSSION

Analysis of samples from the Sheahan, Shaw and Morton wellfields were performed, with
the results from the Sheahan wellfield having been presented previously in the literature [10].
The results from the U and Th analyses are summarized in Table 1, which also includes the
uncertainty associated with each value.  All isotopes were detected in all samples except for
228Th, which was non-detectable in select samples.
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Table 1.  Uranium and thorium decay series analytical results.

Well ID TOS U-238 Th-234 U-234 Th-230 Ra-226 Rn-222 Th-232 Ra-228 Th-228 Ra-224
(mBGS) (dpm/m3) (dpm/m3) (dpm/m3) (dpm/m3) (dpm/m3) (dpm/kg) (dpm/m3) (dpm/m3) (dpm/m3) (dpm/m3)

Sheahan Wellfield
87 101.84 43.5 ±

4.3
1.46 ±
0.08

0.137 ±
0.005

0.137  ±
0.005

109.6  ±
0.9

66.3  ±
2.0

0.104  ±
0.010

190.1  ±
0.9

1.448  ±
0.105

298.2  ±
6.5

88 94.54 31.0 ±
3.4

9.31 ±
0.09

0.062 ±
0.003

0.062  ±
0.003

323.9  ±
1.3

110.8  ±
2.6

0.030  ±
0.004

323.9  ±
1.3

nd 1115  ±
15

99 107.92 29.7 ±
3.9

1.04 ±
0.10

0.284 ±
0.018

0.284  ±
0.018

484.1  ±
1.9

75.6  ±
2.1

0.189  ±
0.020

484.1  ±
1.9

nd 653  ±
12

78 124.94 9.6 ±
1.4

1.63 ±
0.08

0.091 ±
0.004

0.091  ±
0.004

136.0  ±
0.7

78.2  ±
2.4

0.038  ±
0.005

136.0  ±
0.7

0.861  ±
0.065

251.9  ±
6.5

95 236.21 12.1 ±
1.3

8.90 ±
0.10

0.072 ±
0.004

0.072  ±
0.004

73.5  ±
0.7

67.6  ±
2.2

0.042  ±
0.006

73.5  ±
0.7

3.673  ±
0.237

124.5  ±
5.3

Shaw Wellfield

722 167.20 11.8 ±
0.9

2.66 ±
0.09

0.063 ±
0.003

0.063  ±
0.003

594.2  ±
1.9

126.1  ±
3.0

0.032  ±
0.004

1595.1  ±
5.2

nd 2383  ±
19

721 175.71 18.9 ±
6.1

1.82 ±
0.10

0.016 ±
0.001

0.016  ±
0.001

775.9  ±
2.3

46.6  ±
1.6

0.007  ±
0.001

1603.7  ±
5.7

nd 1868  ±
15

704 76.00 17.2 ±
1.8

1.05 ±
0.12

0.015 ±
0.001

0.015  ±
0.001

395.4  ±
1.1

98.5  ±
1.5

0.007  ±
0.001

841.9  ±
2.8

nd 1400  ±
10

Morton Wellfield

619 100.62 14.5 ±
1.6

2.28 ±
0.18

0.036 ±
0.004

0.036  ±
0.004

65.5  ±
0.6

70.3  ±
1.5

0.019  ±
0.005

103.0  ±
1.4

0.261  ±
0.072

129.4  ±
5.4

604 201.55 13.0 ±
2.2

2.34 ±
0.23

0.101 ±
0.012

0.101 ±
0.012

62.1  ±
0.4

70.1  ±
1.6

0.062  ±
0.017

68.7  ± 0.8 0.846  ±
0.146

121.5  ±
3.4

601 115.22 26.5 ±
6.8

1.28 ±
0.36

0.079 ±
0.018

0.079  ±
0.018

19.2  ±
0.2

64.0  ±
2.2

0.052  ±
0.021

28.4  ± 0.4 2.058  ±
0.555

35.4  ±
1.2

Note: TOS = top of screen.
mBGS = meters below ground surface.
dpm/m3 = disintegrations per minute per cubic meter of sample.
dpm/Kg – disintegrations per minute per kilogram of sample.
nd = non-detect.
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The non-detect data were input into the fuzzy c-means algorithm with a value of 0.001 to
represent the non-detectable values of 228Th.  The algorithm was allowed to choose between
two to four primary clusters.  After inspection, the most meaningful results based upon the
recharge system types were three primary clusters.  The three clusters were designated as:
C1, a regional confined area (presented earlier in Fig. 2a); C2, an area receiving recharge
from a localized confining layer window (presented earlier in Fig. 2b); and C3, recharge via a
regional sub-crop (presented earlier in Fig. 2c). Clustering with membership between two
primary clusters was successful for identifying recharge versus confined characteristic wells,
but any clustering above 3 was not meaningful based upon the hydrogeological
interpretation of the area.  The results of the cluster analysis and the partitioned membership
of each well within C1, C2 and C3 are summarized in Table 2.

All wells located in the Morton wellfield partitioned primarily to C1 membership, the regional
confined system.  All wells in the Sheahan wellfield partitioned membership to either C1
(wells 78, 87 and 95), or C2 (wells 88 and 99), previous research has shown that wells 87
and 99 in the Sheahan wellfield receive a component of modern water with unique U- and
Th- decay series behavior [10, 12]. The membership distribution in the wellfield further
demonstrates the behavioral differences in the transport and retardation of U- and Th- decay
series isotopes in regional well-confined systems versus those impacted by localized
recharge, which was reported earlier by Gentry et al. [10] for the Sheahan wellfield but did
not include the additional data from the Morton wellfield in the analysis. Similar to the
Sheahan wellfield, the Shaw wellfield partitioned membership between C2 (well 704) and C3
(wells 721 and 722). Well 704 is the most shallow well in the Shaw wellfield dataset and the
membership distribution demonstrates that the wells receiving recharge via a confining layer
window have a similar hydrochemical facie to shallow regional recharge zone wells.  Thus,
C3 is indicative of the regional recharge system. These results demonstrate the information
rich nature of the data based upon the behavior of the isotopes due to changing redox
conditions with the differing recharge regimes and the likely influence of colloidal transport of
select isotopes, which is consistent with the geochemical conceptual model presented by
Gentry et al. [10].  Further, the fuzzy c-means membership partitioning tends to likely follow
a correlation to the likely mixing between the end member conceptual models represented
by C1, C2 and C3.  This further demonstrates that these types of data are helpful in the
identification of hydrochemical facies, which have relevance for managing the resource with
respect to vulnerability.

To further explore these mixing relationships and their patterns, the data were normalized to
the maximum value for each isotope.  The distinct cluster centers determined from the fuzzy
c-means analysis were also normalized to sample maximums for the purpose of pattern
comparison.  The normalized cluster centers are shown in Fig. 4, where each axis on the
radar plot is scaled between 0 and 1. The regional confined zone cluster (C1) is
characterized by lower values of radium and radon isotopes and the presence of 228Th.
Whereas, the localized confining layer window cluster (C2) has higher values associated
with uranium and thorium isotopes than C1, but 228Th is absent.  The regional recharge zone
cluster (C3) had the highest values of radium and the lowest values of 238U, 234Th, and 230Th,
with 228Th being similarly absent. For purposes of exploring these patterns, the data from
each wellfield in Table 1, was normalized and plotted in a similar manner.
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Table 2.  Fuzzy c-means analytical results

Well ID TOS
(mBGS)

C1
Membership

C2
Membership

C3
Membership

Sheahan Wellfield
87 101.84 0.994 0.006 0.001
88 94.54 0.003 0.996 0.001
99 107.92 0.181 0.803 0.016
78 124.94 0.997 0.003 0.000
95 236.21 1.000 0.000 0.000
Shaw Wellfield
722 167.20 0.001 0.006 0.992
721 175.71 0.002 0.012 0.986
704 76.00 0.018 0.941 0.042
Morton Wellfield
619 100.62 1.000 0.000 0.000
604 201.55 1.000 0.000 0.000
601 115.22 0.997 0.003 0.000

Note: TOS = top of screen.
mBGS = meters below ground surface.
C1 = cluster 1: regional confined – no leakage.
C2 = cluster 2: localized confining layer window recharge.
C3 = cluster 3: regional recharge zone.

Fig. 4.  Cluster centers from fuzzy c-means analyses using normalized values.  Note:
Data have been normalized to maximum value for each isotope. Axes are scaled from

0 to 1
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The normalized data for Sheahan are shown in Fig. 5a, for wells not in close proximity to the
known focal window recharge area, and in Fig. 5b, for wells 88 and 99 which are known to
receive recharge from a near-window area [10, 12]. The normalized data for the Shaw and
Morton wellfields were plotted in a similar manner and are shown in Fig. 6 and Fig. 7,
respectively.  It is apparent from the data patterns that the hydrochemistry from the three
conceptual models can distinguish patterns in each wellfield with respect to wells that
behave as deep more well confined systems and those influenced by shallow recharge
systems. The Sheahan non-window wells shown in Fig. 5a show a very similar pattern to the
Morton wells shown in Fig. 7, particularly for the presence of 228Th.  The primary difference
noted between the Sheahan non-window wells and the Morton wells is the high value of
234Th noted in well 95 in the Sheahan wellfield, which is likely due to the colloidal behavior of
thorium in the system as noted by Gentry et al. [10,21].

Fig. 5.  Sheahan wellfield normalized uranium and thorium decay series data from: (a)
wells classified as non-window sites; and (b) wells classified as window sites.  Note:

Data have been normalized to maximum value for each isotope.  Axes are scaled from
0 to 1
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Fig. 6.  Shaw wellfield normalized uranium and thorium decay series data.  Note:  Data
have been normalized to maximum value for each isotope. Axes are scaled from 0 to 1

Fig. 7.  Morton wellfield normalized uranium and thorium decay series data. Note:
Data have been normalized to maximum value for each isotope.  Axes are scaled from

0 to 1

The data from the Shaw wellfield and the window recharge wells in the Sheahan wellfield
show the same absence of 228Th and the similar pattern of higher radium and radon isotope
concentrations. The variability seen in the Sheahan wellfield is the result of mixing between
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window recharge sources and deeper confined aquifer water. It is likely that the membership
partition values in Table 2 correlate with the mixing ratios from these two sources. Explicitly
captured by the cluster analysis, are the differences between the regional recharge wellfield
(Fig. 6 shows the highest radium isotope signature) and the confining layer window recharge
area (Figs. 5a and 5b) shows the highest uranium and thorium isotope concentrations,
except for the absence of 228Th. Further research should be done to corroborate these
findings and to investigate the causation for the high radium isotope signature associated
with both recharge sources. This approach using data-rich hydrochemical information may
be useful as a future technique for better understanding the sources and behavior of
individual wells in complex regional aquifer settings.  This is particularly true given the state
of global climate change and the current scenarios of groundwater management globally.
These types of techniques would further provide understanding of the impacts from long-
term pumping and aquifer storage response from a long-term perspective.

4. CONCLUSIONS

Eleven wells from three wellfields with differing recharge source water were analyzed for
uranium and thorium decay series isotopes (ten parameters for each well). These data were
analyzed using a fuzzy c-means algorithm to determine the efficacy of the technique for
discriminating meaningful hydrochemical facies.    Overall the study conclusions can be
summarized as follows:

1. The findings have indicated the fuzzy c-means technique coupled with robust U- and
Th- decay series data can identify the differences between: (C1) well confined
settings with no leakage; (C2) localized confining layer window recharge; and (C3)
regional recharge zone settings.

2. The overall technique was efficacious given that it was capable of determining
behavior characteristics at the individual well level within the wellfield groupings with
meaningful interpretations to the given conceptual models.

3. The fuzzy c-means technique may be used with a robust hydrogeochemical dataset
to further elucidate aquifer storage behavior and response for management
purposes where vulnerability is linked to the aquifer recharge mechanism.
Demonstrated by the ability to identify possible mixing relationships representative of
conceptual model types.
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