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ABSTRACT

It is necessary predict the effect of aquifer stresses in surface water and wetlands and
consider the mutual effects that are produced by the conjunctive use of surface water and
groundwater. This was originally made with very simple idealized analytical methods. The
next development was the application of finite differences or finite elements numerical
models, but poses problems when the model has to be run many times to analyze
different management alternatives. When aquifer behavior is linear, as in confined, semi-
confined, or unconfined aquifers with not too large changes in its saturated thickness, it is
possible to apply the superposition strategy through influence functions. That has
simplified significantly modeling and improved the effectiveness of management models.
However, for large models, long modeling periods and a large number of alternatives, it is
needed to handle and store many influence functions and to consider and store all the
previous stresses. In that case, the eigenvalue method can be a more appropriated
option. This approach solves the spatially discretized flow equation explicitly and
continuously in time, obtaining modal orthogonal components through very simple explicit
state equations in function of time. To reduce the computational load, the simulation can
be simplified with appropriate truncation using only dominant modes of the components
at the expense of a small error. Efficient methods have been developed to get the modal
components as well as to perform truncation with limited errors.
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1. INTRODUCTION

The interest in conjunctive use of groundwater and surface water is increasing because of
the growing demand for water supply, irrigation, and the environment in wetlands and
riparian habitats, and the effect of declining water resources due to global warming. The
characteristics and behavior of surface waters and aquifers are different and complementary
to fill needs of water quantity and quality. Aquifers can provide storage and distribution that
can be combined with surface water and hydraulic structures to increase water availability
timely and at lower cost than if both resources are used separately. Aquifers store large
volumes of water, tens to hundreds of times their annual recharge. Also the storage provided
by a relatively small fluctuation of groundwater in unconfined aquifers considerably exceeds
the available or economically feasible surface storage. That allows the use of water in
storage during dry seasons or droughts and the use of the subsurface space for storing
surface or reclaimed water.

In river-aquifer systems groundwater pumped initially comes from aquifer storage. With time
the cone of depression extends, storage is depleted more slowly and increases the capture
from surface water. The capture comes in the form of increase from recharging boundaries
and from decrease in springs, wetlands or river flow. The capture can be expressed as an
instantaneous flow divided by the flow rate which eventually becomes asymptotically equal
to one in infinite time. As the distance from the river to the well increases, also the time
required reaching a determined proportion of capture increases, and so does the aquifer
storage depletion. The dynamics of ground water is qualitatively and quantitatively different
from surface water. Groundwater behaves almost deterministically and its flow is much
slower than the flow of rivers, whose behavior is stochastic and by nature unpredictable. So
aquifers can be used more intensively in dry seasons or in droughts and surface water
stored on dams or derived from rivers should be used more in wet seasons. This strategy is
what we call alternate conjunctive use to distinguish from the artificial recharge. It is widely
done spontaneously by the farmers in the Mediterranean basins of Spain [1]. Artificial
recharge and alternate conjunctive use are used to store surface water in aquifers.

The solution of the groundwater flow equation can be obtained with numerical and analytical
methods. This was originally made with analytical methods that represented natural systems
in a highly idealized manner. Up to now only a few analytical solutions for limited aquifers
have been developed. The analytical solution [2] for the depletion of a river fully penetrating
a semi-infinite aquifer was one of the first quantitative methods applied to quantify capture
through the concept of stream depletion factor (sdf) introduced by Jenkins [3]. That value is
the time in days at which accumulated change in stream flow volume equals 28% of the
volume pumped by a well pumping at a constant rate. The lines of equal sdf obtained from
the modeling results of a finite aquifer were mapped to be used in a management model [4].
The artifice of using the sdf concept in finite aquifers has been used until very recently and
probably will continue to be widely used [5,6] because of its simplicity. Numerical models are
much more flexible and can be applied to aquifers with complex geometries and
heterogeneous properties. They are not only very useful and robust, but essential tools for
the analysis of aquifer response.

To simulate the operation of a conjunctive use system it is necessary to include the storage
in dams, the flow through canals, pipelines and rivers, diversions or uptakes for the different
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uses, the aquifer behavior and the flow interchanges between aquifers and rivers. Surface
and subsurface components must be simultaneously simulated, owing to their hydraulic
interactions, the operating rules and legal, institutional and social constraints inherent in
surface and subsurface components. Besides if we want to take into account the stochastic
behavior of surface runoff and its uncertainties, aggravated by climate change and the
increase of water demand, it would be desirable to run repeated simulations of many
alternatives over long time periods. That implies large and repeated simulations of the
aquifer of the system. But, only the results of hydraulic head in a few points, and the aquifer
river relationship, are needed from aquifer simulation [7].

Capture that results in a loss of water in springs, rivers, and wetlands is extremely important
because of depletion of groundwater dependent ecosystems and reduction of surface water
supplies with water rights. The simulation of multiple captures in different areas and reaches
of the river throughout prolonged periods of time also requires large and repeated
simulations of a model [8].

The influence function concept, widely used in physics and engineering, adds new
improvements and possibilities. The utilization of functions of influence needs the linearity of
the equation of flow, as does the eigenvalue method. Later, several aspects of linearity are
discussed in some detail. Also, there is discussed the concept of linear reservoir and the
structure of its simple solution that is identical to that of the eigenvalue method. Then, the
eigenvalue method and its applications are presented.

2 LINEAR MODELS

2.1 Linearity of the Flow Equation

The flow equation for confined aquifers or for aquifers where transmissivity, or the product of
hydraulic conductivity multiplied for the saturated depth, does not significantly change during
the exploitation, is the well-known partial derivatives equation in 2D+ + ( , ) = (1)

Where h is hydraulic head, Tx and Ty are the principal components of transmissivity tensor, S
is storage coefficient, ( , ) = ( , ) + ∑ ( − , − ) is composed by
distributed and point stresses and δ( ) is the Dirac delta function. In the flow equation the
sign of the stress is positive for aquifer recharge and negative for extraction.The solution
needs adequate initial h0 (x,y,0) and boundary conditions (BC). BC can be specified flow or
no flow (Newman), specified or constant head (Dirichlet), or head dependent flow (Cauchy).
Equation (1) can be written in the following way(h) + ( , ) = ( , ) (2)

Where is a lineal operator() = ( ) + ( )
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The solution of equation (1) or (2) is the sum of three components,

a) A steady state solution hs(x,y), with the same boundary conditions of (1), Newman,
Dirichlet and Cauchy, and zero stress.[ℎ ( , )] = 0 (2a)

b) A transient solution w(x,y,t) for zero stress, with zero value in the three types of
boundary conditions. The initial condition is the difference of the initial condition of the
whole problem h0(x,y,0) minus the steady state solution h0(x,y,0) - hs(x,y) and[ ( , , )] = ( , ) (2b)

c) The sum of all transient solutions sm with zero initial and boundary conditions for each
distributed and point stresses[ ( , , )] + ( , ) = ( , ) (2c)

being ( , ) any linear combination of the distributed or point stresses.

This decomposition is schematized in the Fig. 1. Three steps are usually followed to obtain
the influence produced by an additional pumping or recharge on aquifer heads or in flow
capture from a river reach. The first step is a simulation without the added stress. The
second step is to re-run the simulation with no other changes except for the added stress.
The third step is to compute changes from the base case for selected simulation times [8].
To compute the influence on heads or flows at any point in the aquifer, in the case of linear
models it is clear from the above described decomposition in steady and transient
components that it is not needed run two times the model, but only one with zero initial and
boundary conditions. The capture produced by pumping in an aquifer with linear behavior is
identical to that which would occur in it, with null initial and boundary conditions. Likewise, as
it is correctly pointed in [8], and because in an aquifer without recharge and zero initial and
boundary conditions, there are no flow or stream lines, does not exist up gradient nor down
gradient, and does not exist any base flow originated by any recharge, statements like the
following: capture depends on rates and directions of groundwater flow, capture mostly
occurs in stream reaches down gradient of pumping locations, or capture is limited to the
fraction of base flow that originates in the pumped area, are incorrect.

Instead of running the model for each alternative of exploitation, the response function
technique has been proposed [9,10,11]. If the simulation is divided in periods of the same ∆t
length, each period ending in time n∆t can be identified as the period n. If ℎ is the head in
point i due to unmodified conditions and ℎ is its head influenced by the stresses, the
effect of K different stresses, of different size at every period, at the end of the n period is
given by:



British Journal of Environment & Climate Change, 3(3): 480-498, 2013

484

ℎ ( ∆ ) = ℎ ( ∆ ) + ∑ ∑ ( ∆ )=1=1 [( − + 1)]∆ (3)

Where ( ∆ ) is the magnitude of stress k and ( ∆ ) is the influence of a k unit stress
on ℎ head. Very often the most interesting effect to control is the capture of flow in a river
reach. Calling (n∆t) and (n∆t) the influenced or natural flow, respectively, and
the influence of a k unit stress on the flow of reach j, it results:( ∆ ) = ( ∆ ) + ∑ ∑ ( ∆ ) [=1=1 ( − + 1) ∆ ] (4)

In aquifers of medium size it is common to use influence functions for monthly periods for 20
to 50 years. Stresses do not need to be limited to point stresses; they can be point,
distributed or a combination of different kinds of pumping or recharge. In any case, influence
functions, or , where flow or head is required, must be stored, and similarly all
stresses during all the previous periods. This requires in most cases an important
computation and storage capacity, although usually much less that in the case of the full run
of the aquifer model for every alternative. In case we are only interested in capture or in
heads in a few points in the aquifer, simulation by superposition is clearly superior to the
complete simulation [12,13]. Usually stresses on aquifers can be decomposed into a
relatively small number of unitary stresses; influence functions can be obtained to simulate
the aquifer. This may provide significant advantages in many management problems.

In [8] is presented a method to simulate and map capture using an automated procedure to
run the model repeatedly, each time with a well in a different location. To make the capture
map of the San Pedro aquifer, Arizona, cells were considered at every fourth row and every
fourth column, requiring 1530 model runs to compute capture values on a grid with a spacing
of 1 km in both horizontal dimensions.  In the model of the upper Deschutes Basin, Oregon,
pumping locations included all of the active cells in the model domain, requiring 53,589
simulations. As for the San Pedro model, the Deschutes model was modified to start with
predevelopment steady state conditions and to simulate 100 years with 100 1-year time
steps and constant stresses. An improvement to the use of the influence functions is the
implementation of the method of the eigenvalues. This method solves the differential
equation of unsteady flow of aquifers explicitly and continuously over time. This solution has
significant advantages when running the model for several alternatives during multiple time
periods. This advantage comes in conjunctive use problems, especially when the system
has several aquifers, canals and pipelines, reservoirs, and many areas of water demand.
The eigenvalues method can also greatly simplify the mapping of the capture in different
river reaches, of a unitary pumping along the aquifer.
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Fig. 1. Components of the piezometríc head, initial conditions, boundary conditions,
and aquifer stresses

.
Before describing the method it seems appropriate to consider both the linear reservoir
model and the so-called embedded multi-reservoir model, the last being based on the
eigenvalue solutions.

2.2 The Linear Reservoir Model

The model represents the aquifer as a single cell with a stored volume of water, V, receiving
recharge and subject to pumping. The natural outlets of the aquifer are rivers or springs. The
volume stored above the outputs is V. Discharge is D = αV, being α coefficient of discharge
with dimensions of [T-1]. If R is aquifer recharge per unit time, the differential equation
describing the balance in the cell is:

R – α V = (5)

Its solution for constant R is:
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= + (1 − ) (6a)

Or expressed in terms of discharge:= +R (1 − ) (6b)

The unicellular model is simple and easy to include in any calculation scheme. As the model
is linear, superposition can be applied. The effect of a continuous pumping B considering
zero volume and flow initial conditions results in the last terms of equations (6a) and (6b) to
be changed respectively by(1 − ) and B(1 − ). (7)

2.3 The Eigenvalue Solution of the Linear Flow Equation

If we know the solution of the steady state hs(x, y) of equation (2a) with the same boundary
conditions of (1), we only need to solve for zero B.C the equationℒ[ ( , , )] + ( , ) = ( , ) ( , , )

(8)

Using the method of separation of variables( , , ) = ( , ) ( ) (9)

Yields the following two equations [17]:ℒ[ ( , )] + ( , ) ( , ) = 0 (10)( ) +⁄ ( ) = 0 (11)

Equation (10) is subject to the same zero boundary conditions as w in equations (2b) and
(2c). It is a Sturm-Liouville problem which implies that it has only a solution for some values
of α [14, 15]. Each of them is parallel with their eigenfunction Ai(x, y), resulting in infinite
eigenvalues αi; all of them are real and positive. For each pair eigenvalue-eigenfunction the
solution is given by:( , , ) = ∑ ( , ) ( ) + ∬ ( , ) ( , ) Ω∞ (12)

The eigenfunctions form an orthonormal basis with respect the storage coefficient S (x, y)∬ ( , ) ( , ) ( , ) = , i.e. =1 If i=j, or =0 if i≠j. (13)

It is more convenient and efficient to express the solution at the base of the eigenvectors li(t)
obtained explicitly and so any state of the system is defined by the values of li.
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(t) = ( ) + ∬ ( , ) ( , ) Ω (14)

The initial conditions are reflected in the values of (0) obtained as:(0) = ∬ℎ( , , 0) ( , ) ( , ) (15)

An important practical aspect is the determination of river flows and aquifer volumes that
correspond to each component of the ith eigenvalue. Let’s call Fi to the volume under the
surface of the eigenfunction Ai.= ∬ ( , ) ( , ) (16)

The volume under each component is liFi and the total volume above the zero level isV(t) = ∑∞ (17)

It is easy to show that the action = ∬ ( , ) is partitioned between each
component as biQ, being= ∬ ( , ) ( , )

being ∑ = 1 (18)

Comparing the results with the discharge of a linear reservoir it appears that the discharge
from the aquifer through their boundaries is equivalent to the output from infinite linear
deposits with a discharge coefficient αi. The external action Q is split between them in the
form biQ. This is the conceptual approach from the embedded multicellular models
expressed schematically in Fig. 2. Very few analytical solutions of this problem have been
derived and those existing are in general for 1D infinite aquifers, with simple external actions
and initial conditions. With the proposed methodology, the analytical solutions for more
complex cases have been obtained, including any external action and any initial condition,
[14].

Fig. 2. Conceptualization of the embedded multicelular model
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2.3.1 Embedded multicellular model

Here some aspects of the two simplest solutions are discussed. Let’s consider a rectangular
aquifer of length L and width W in the directions x and y connected to a river at the side x = L
with two possible situations: perfect connection or partial connection.

2.3.1.1 Perfectly connected river

The eigenfunction are

, ( , ) = ( )
For m = 0,1, 2, . ; n= 0          (19a)

, ( , ) = ( )
for m = 0,1, 2, . ; n= 1, 2 ,3 .  (19b)

And the eigenvalues , = ( )
+

The b values for actions uniformly distributed in the aquifer are

, = ( ) for n = 0 (19c)

And is zero for n ≠ 0, i.e. when there are components the directions parallel to the river OY.
Two important consequences are:

1) Any pumping at the same distance from the river will produce the same detraction,
although differently distributed along their course.

2) Fi, the volume of water stored below their corresponding eigenfunction is zero being
A(x,y) an odd function. Those eigenvalues are valid for the determination of the piezometric
heights, but do not participate in the capture of water from the river due to pumping. In
heterogeneous aquifers with more complex geometries there are a limited number of modes
that explain most of the capture and there is other much more numerous that can be omitted
to determine it without incurring major errors.

The eigenvalues of the main modes, without component in the direction 0Y are =( )
or = (2 + 1) α, being α= the lowest eigenvalue of the most dominant

mode. The larger the dimensions of the aquifer (L) and the lower its diffusivity T/S the
smaller is α, which implies larger inertia of the aquifer.

The successive values of = ( ) , from i = 0 onwards, are 0.8106, 0.0900, 0.03242,

0.0165, 0.0100, .. . This shows that in any case using a small number of modes sufficient
accuracy can be obtained. In simulations with ∆t of one month, in most cases, except for
wells very near- the river, five terms suffice to decrease the relative error to less than 0.01.
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To preserve the mass balance is advisable to change the last bi by = 1 − ∑ [16,
17].

2.3.1.2 River with partial connection

In the case of a river with partial connection, the strength factor of the semi-pervious layer= must be considered. It depends on, its thickness e, its hydraulic conductivity κ,
and their saturated thickness B. The eigenfunction have also separate components in
directions OX and OY, being the OY components the same that for the case of perfectly
connected river. The partition coefficients and discharge depend on a dimensionless
hydraulic connection parameter λ through a factor ρ whose values are the infinite solutions
of the equationtan = Being = (20)

For the eigenfunction with component on the OY axis the bi values are zero indeed. For the
dominant modes, those with only OX components= ( )( ) (21)

The eigenvalues are = 2 ; where α is as before. In Table 1 the influence of the
resistance of the semipervious layer through the parameter λ can be assessed. Infinite λ is
equivalent to the perfect connection and decreases with impaired connection. In these
cases, the minor eigenvalue decreases smoothly from λ = 1000 to λ = 10, and becomes 0.3α
for λ=1 and 0.04α for λ= 0.1, values of that are possible in real situations. For such low
values, the volume stored in the aquifer, and as consequence their heads, would be much
higher.

Table 1. Values of as a function of

 i=0 i=1 i=2 i=3 i=4
0 0.0004 4.0008 16.0008 36.0008 64.0008
0.01 0.004 4.0081 16.0081 36.0081 64.0081
0.1 0.0392 4.0806 16.0809 36.081 64.081
1 0.3 4.756 16.7945 36.8032 64.8064
10 0.8275 7.5139 21.1743 42.168 70.7687
100 0.9803 8.8228 24.5084 48.0382 79.4141
1000 0.998 8.982 24.9501 48.9022 80.8383

The capture will also be much lower as could be computed from (6a and b). In Table 2 the
variation of the partition coefficients bi is shown when the value of λ varies. For λ = 1000 it is
virtually identical to the case of perfect connection, 0.8114, increasing to 0.87 for the lower
mode for λ = 10 and being 0.9861 for λ = 1 with very low contribution of the modes that
follow it. The need to use more modes is less when λ decreases; i.e. when the ratio L/T
decreases, and the semipermeable layer resistance increases. In such cases the error of
using a single mode is lower; i.e. the one-cell model is more justified. The influence of the
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parameter on the capture of the river flow by pumping from the aquifer is substantial, being
its influence on groundwater levels very important.

Table 2. Variation of the partition coefficients bi when the value of λ varies

 i=0 i=1 i=2 i=3 i=4
0.001 1.0000 2.1 x10-8 1.3 x10-9 2.5 x10-10 8 x10-11

0.01 1.0000 2.1 x10-6 1.3 x10-7 2.5 x10-8 8 x10-9

0.1 0.9998 2.1 x10-4 1.3 x10-5 2.5 x10-6 8 x10-7

1 0.9861 0.0124 0.0011 0.0002 7.7 x10-5

10 0.8743 0.0839 0.0236 0.009 0.004
100 0.8185 0.0908 0.0326 0.0165 0.0099
1000 0.8114 0.0902 0.0325 0.0166 0.0100

3. THE EIGENVALUE DISCRETE METHOD

In cases where there is a calibrated numerical model of finite difference or finite element
without significant nonlinearities, the discrete eigenvalue method can be used. For doing it,
only the transient component of equations (2b) and (2c) is considered. If only space is
discretized, but not time, as it is usually done in the case of finite differences or finite
elements, a vector equation system is obtained that can be expressed in matrix form as
follows | | + = | | (22)

where | T | is a banded symmetric positive definite matrix of size N by N whose values only
depend on the geometry of the system, the space discretization, the boundary conditions
and  the values of transmissivity. is the N component vector of piezometric heads at each
node of the space discretization, Q is a N component vector representing net incoming flow
at each node, which changes for each time increment, | SF | is a diagonal matrix of N by N
size, with the storage of each node being S ∆x ∆y, when the method of finite differences is
employed, and t is time. The solution is analogous to the analytical solution presented
before; equation is split into a component in the space and another in time, [7,15].= | | ( ) (23)

From (22) and (23) separated equations similar to (10) and (11) are obtained| || | = −| || || | (24)

(t)=| | (25)

Being | | a diagonal matrix with terms . Expression (24) is an eigenproblem
whose solution provides the eigenvalues α, which are the diagonal components of the matrix| | , and their corresponding eigenvectors, which are the columns of | A |. Both matrices of
dimensions N by N are the “modes” of equation (24). Piezometric head can be defined
indistinctly by vector or expressed in the orthonormal basis of the eigenvectors as .
Ortho-normality being expressed by the equation
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´ | || | = | | (26)

Where ´ is the transpose of matrix | |, and | | is the identity matrix. The diagonal matrix
of eigenvalues | | is ordered from the lowest value to the greatest. The eigenvectors in | |
are ordered as their companion eigenvalues, the first one corresponds to the smallest and all
its components are always positive. The solution of (22) can be obtained from vector L for
piezometric heads through (23). But the vector L also contains the complete solution of the
state of the aquifer and is much more interesting and easy to operate with very small
computational requirements.

When the boundary conditions are not null, vector | | must be added to the solution of the
piezometric heads. That vector would be obtained for nonzero boundary conditions without
any pumping or recharge in the aquifer. This is the solution of equation (2a) as stated above.
But this is not necessary when superposition is used, or to determine exclusively the effect
of pumping or recharge on river flow, or piezometric heads.

If we use the simulation of the aquifer as a component of a management model, time can be
divided into periods of equal length ∆t. L1 can be obtained from L0 and Q1, L2 from L1 and Q2,
and so on. Thus:= | (∆t)| + | | − | (∆t)| | | ´ (27a)

or = | (∆t)| + | || (27b)

Being | (∆t)| a diagonal matrix with terms ∆ and | || a matrix that has to be
computed only once

being | | = | | − | (∆t)| | | ´ (28)

Notice the equivalence between the analitical and the discrete formulacions, eigenfuncions
versus eigenvectors, or (9), (10), (13), (14) … versus (23), (24), (26), (27)…. This indicates
the identical methodologies used.

3.1 Basic Actions and Control Variables

Alternatives to simulate aquifers commonly do not imply a detailed assignation of stresses
on each cell. Instead, alternatives are defined for pumping or recharge in larger areas,
although they may include some point actions, [7]. In this case, it is possible to express
these actions with a small number of basis vectors by introducing

(29)
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= | |. (31)

The method has the great advantage of being explicit and also does not need to store
neither influence functions nor actions previously applied to the aquifer. The vector is a
state vector and equations (27) or (30) are explicit state equations that solve the flow
equation sequentially and can be integrated directly in a conjunctive use management
model.

In the Plana de Castellón aquifer (eastern Spain), of 450 km2 and 240 cells, the number of
basic stresses used was 25: eleven correspond to distributed recharge or pumping in zones,
two to recharge from seepage in reservoirs, two to recharge from streambed infiltration,
three to artificial recharge facilities, four to important pumping at specific points and one to
lateral recharges and non irrigated zone infiltration. The number of control variables used
was 24: eleven correspond to piezometric heads in selected cells of the aquifer, eight
correspond to the volume of water over sea level in selected zones of the aquifer, one to the
total volume in storage in the aquifer over sea level, and four correspond to the flow to or
from the sea level through coastal segments. The dimensions of matrix | | are 25 by 240
and the dimensions of matrix | | are 240 by 24. Two optimization models were used as
screening models to obtain operating rules of the system for three scenarios of alternate
groundwater surface water irrigation, with a total of 48 major alternatives, [7].

In the eastern Snake River Plain in Idaho there are over 100,000 water right adjudication
claims within the basin [18]; so basin management plans that attempt to delineate the
impacts of individual groundwater users on individual surface-water users are impractical.
Individual assessments of impacts of groundwater use on senior surface-water supplies
could result in tens of thousands of evaluations, even only considering steady state
evaluation of capture. They propose the use of some twenty zones defined through cluster
analysis, and modified to better conform to existing political and administrative units. It
seems clear than the use of the eigenvalue approach offers advantageous possibilities in
this and similar cases. All the water pumped on each zone can be grouped as a basic action,
and influence functions for pumping in each zone can be obtained. It seems possible
simulate all different management alternatives considering decisions on each zone with no
more than twice the number of basic actions and a relatively reduced number of control
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variables: piezometric heads on each zone, flow interchange between the aquifer and
specific  river reaches and stored water volumes in several aquifer zones. As the model has
1083 cells of 5km x 5km, the size of matrices | | and | | would be at most on the order of
1083 columns by between 100 to 150 rows

3.2 Computation of Influence Functions

Similarly to obtain the influence function of a unitary pumping in a well p for a reach of a
river, r it is not needed to run the model, but obtain the vector Lp(t) through

, = ( ) , (32)

Being , the corresponding element of matrix | |.
The influence function in the river reach r would be for every time t is= ∑ , , , (33)

To calculate the influence function of a unitary basic stress, , , , … , , the vector
Lp(t) is

, = ∑ , , (34)

And the influence function would be= ∑ , ,1 (35)

Even the influence function of a cyclic action can be calculated. For example, for an irrigation
pumping distributed annually in twelve months according to a coefficient ci, such that∑ = 1, it is easy to determine the influence function for the year n and month m. If we
start the cyclic pumping in month zero of the year 0, at the end of the month m, for a unitary
pumping

,, = ∆ ∑ ( ) ∆ (36)

Being i the eigenvalue mode, p the action, n the year (for this case zero), and m the month.
The dimension of eigenvalue is month-1. For an annual pumping of B

,, = ∆ ∑ ( ) ∆ (37)

At the end of the year, with a constant value for all the = 1 12⁄ monthly values, the li for a

pumping value of B´ would be
´ (1 − ∆ ), that must be equal to (37); notice that
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12 αi expressed inmonth-1, is equal to αi expressed in year-1. The value of B´ would be very
close, but not equal to B, so B´ should be computed from´ (1 − ∆ ) = ,, = ∆ ∑ ( ) ∆ (38)

So the influence function for a cyclic unitary pumping would be deduced from the
components of vector ,

, , = ´ ( ∆ ) , + ∆ ∑ ( ) ∆ (39)

3.2.1 Nonlinearity

Both the application of the influence function method or the eigenvalues method requires
that the system behaves linearly or almost linearly. The nonlinearity may occur in the
following situations:

a) Relatively large variation in the saturated thickness,
b) Change in the river-aquifer relationship: changing the river from connected and

looser to disconnected - the shower effect of hydrologists - or connecting a river
reach previously disconnected after recharge increases,

c) Drying of a spring, or his reappearance if levels rise
d) Not having enough flow in the river to provide the required infiltration to an aquifer

whose levels are below the riverbed.

Methods have been developed to address these problems. Exploited aquifers connected
with the surface system are mostly unconfined, and linear models are not adequate when
significant water level changes exist. A two-step explicit method to liberalize the Boussinesq
equation based on the eigenvalue approach has been developed. Using a change of
variable, it is possible to define an equation with a structure similar to the linear groundwater
flow equation. The only difference is found in a term that depends on the initial solution.
Approaching this term by means of a fictitious stress a linear equation analogous to the
confined groundwater flow equation is obtained [19]. So the problem is solved by applying
the superposition principle with a reduced computational cost. By the moment it has been
only applied to synthetic examples. Nonlinearities due to changes of the configuration of
boundary conditions, as in the cases b) to d) above, have been solved very often using a
fictitious action to compensate for deviations between the linear model and the actual
situation. Application of this procedure conserves the computational advantages of the
Eigenvalue Method. It is based on correcting the non-linear boundary conditions by
superposing fictitious stresses in the cells where these boundary conditions are modeled.
The intensities of these additional stresses are obtained by solving a system of linear
equations. These equations are defined by specifying that the volume exchange in each of
these cells is equal to what would exist under non-linear boundary conditions. The
methodology has been applied to simulate the groundwater flow of the ‘‘Molar” and ‘‘Vega
Alta” aquifers in the Segura River Basin (south-eastern Spain), and the accuracy of the
results has been demonstrated through comparison with those obtained using MODFLOW
[20].
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The last cases, b) to d), need to implement a checking device to test if nonlinear situations
are being produced, as connection or disconnection, spring drying or re-appearing, or lack of
river flow. In those cases, additional head variations in several cells need to be computed in
the eigenvalue simulation process.

4. IMPROVEMENTS AND RESEARCH NEEDS

The eigenvalue method presents significant advantages in the analysis of the conjunctive
use, particularly in cases with multiple alternatives and large simulation periods. It has been
implemented in AQUATOOL, a generalized Decision Support System (DSS) developed at
the Polytechnic University of Valencia (UPV), Valencia- Spain. The DSS was designed for
the planning stage of complex basins, including multiple reservoirs, aquifers and demand
centers. Up to now the more complex system analyzed in terms of the number of aquifers is
the Segura basin, in south-western Spain. It includes some 15 reservoirs, 18 inflows, 93
channels, 50 demand centers, four hydropower plants, 19 aquifers and five additional
pumping stations [21]. Until now the code AQUIVAL included in the SDS AQUATOOL has
not been used to obtain the eigenvalues and eigenfunctions of aquifers with more than
several hundred nodes.

Another aspect that needs improvement in the eigenvalue method to reduce the computation
time and the needs of storage, is the elimination of modes with less significance. So far, it
has been done excluding the eigenvalues which exceed a certain value [22] so-called
traumatic truncation, but the goal is to make a reduction that explicitly considers the
influence on the error involved in the elimination of a large number of nodes. AQUIVAL uses
QL algorithm with implicit shifts to calculate all eigenvalues and eigenvectors using Jacobi
and Givens rotations. If the size of the model to be solved with eigenvalue method is too big,
the QL algorithm is inefficient. Álvarez-Villa, in his Ph.D. dissertation, (under review), has
implemented efficient algorithms to solve the generalized eigenvalue problems and has
developed programs to truncate highly discretized models to gain efficiency without losing
accuracy. Numerical experiments have been performed using a highly heterogeneous
aquifer. The groundwater flow equation has been solved using finite differences and the
eigenvalue method: 22000 blocks have been used to discretize aquifer´s spatial domain and
the simulation horizon consisted of 5113 days. The flow simulation lasted about 5.5 hours
when finite differences were used. The disperse linear system involved was solved via
incomplete LU preconditioned conjugate gradient. When eigenvalues method is used, the
simulation lasted about 4 minutes. The calculation of the 500 eigenvalues used was
performed in about 2 hours via the rational Lanczos method [23]. Both simulations were
performed on an Intel core i7 processor.

5. CONCLUSIONS

The eigenvalue method is a general solution procedure applicable to lineal groundwater
models. Piezometric heads can be presented as the L vector of components in the
eigenvector´s orthogonal base | | of an algebraic eigenproblem that is computed once. The
result of any external stress on the aquifer is obtained directly and explicitly by a simple
equation of state, which involves the eigenvectors of the matrix A, the eigenvalues αi of the
eigenproblem and the vector of external stresses. The operation that requires more
computational effort is the determination of the eigenvalues and eigenvectors. Instead, it is
very easy to calculate the response of the aquifer to external actions and is made directly
and explicitly through a very simple state equation. So the method does not need to store
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influence functions or actions previously applied to aquifer. It is more useful the greater is the
overall number of time steps in all simulations. If the total number of increments of time to
perform all simulations is small, obtaining the eigenvalues and eigenvectors may not be
appropriate and would result costly for problems with high number of cells.

Until now, the eigenvalue technology has been applied to aquifers with some hundreds of
cells, but there is a need of efficient algorithms to solve the generalized eigenvalue problems
of several thousands of nodes. Another aspect that needs improvement in the eigenvalue
method to reduce the computational burden and the needs of storage is the elimination of
unnecessary modes. Up to now, it has been done aplying the traumatic truncation. The
progress made in the above-mentioned ph dissertation of Alvarez Villa to efficiently
determine only dominant modes appears to be an interesting step for the management of
aquifers with high number of nodes. Similarly when is needed to obtain hundreds or
thousands of influence functions for many values of time the application of the formulas
presented in 3.2 may be much more convenient that performing  thousands of runs of the
model. And similarly it may also be interesting its application in optimization models for linear
programming, dynamic programming or other optimization methods.
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SYMBOLS

Tx, Tx (x, y) and Ty, Ty(x, y) L2/T principal components of transmissivity tensor
S L0 storage coefficient,
Q (x, y),  Qd(x, y), Qi(x, y) L/T, L3/T stress
h, w, s L piezometric head, hydraulic potential( ∆ ) L0 magnitude of stress k( ∆ ) L, influence of a k unit stress

(n∆t), (n∆t) L3/T, L3/T influenced, or natural flow,
Ai (x, y), Am,n (x ,y) L-1 eigenfunction
αi T-1 eigenvalue
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li L2 components of vector L of eigenfunctions or
eigenvectors

bi L0 partition coefficient
Fi L volume under the surface of the eigenfunction Ai.

L0 dimensionless hydraulic connection parameter| | L2/T banded transmissivity matrix| | L2 cell storage diagonal matrix
| A | L2 eigenvectors matrix| | T-1 eigenvalues diagonal matrix| | L2 reduced eigenvectors matrix
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