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ABSTRACT 
 
Vibration is one of the most annoying problems faced during metal cutting operation, and it 
occurs frequently in manufacturing industries. The vibration level depends on many 
different parameters such as material type, rigidity of tooling structure, cutting data and 
operation mode. In milling the cutting process subjected to the tool vibrations having a 
milling tool holder will most likely result in high vibration levels. These vibrations have a 
consequence of reduced tool life, poor surface finish and sound distributions. This study 
presents a new approach of localization for an elastic periodic cutting tool holder of milling 
machine. A numerical model has been developed to describe the structure of the cutting 
tool holder. On the other hand, the behavior of periodic holder is investigated numerically. 
This paper examined the dominating milling vibration components and identified these 
vibrations which are related to structural dynamic properties of the milling tool holder. 

 
Keywords: Milling; vibration; modelling; periodic holder. 

 
NOMENCLATURE 
 
A: cross-sectional area, m

2
; Ad: axial depth of cut, mm; b: chip width, mm; C: cutting force 

coefficient; E: Young's modulus, N/m
2
; EI: holder rigidity: F: total force magnitude, N; Fu: 

axial force, N; Fw: bending force, N: f: transverse force, N/m: fT: feed per tooth, mm/tooth: h: 
undeformed chip thickness, mm; I: second moment of area, m

4
; K: coefficients of stiffness 

matrix; KE: kinetic energy, kgm
2
/s

2
; l: element length, m; m: equivalent mass per unit length, 

kg/m; M: coefficients moment of inertia, Nm; N: spindle speed, rev/s; PE: potential energy, 
kgm

2
/s

2
; Rd: radial depth of cut (mm); t:  time, s; x: axial co-ordinate of the beam holder, m; 

v: transverse displacement of the beam, m; w: i
th
 natural frequency of the beam, rad/s; Z: 
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number of cutting edges; θ: cutting force angle; ρ: material mass density, kg/m
3
; γ: torsional 

constant. 
 
  
 

1. INTRODUCTION  
 
The basic idea underlying the whole concept of periodic structures is that when a wave is 
travelling in a medium and meets a transition in those medium characteristics, a part of it will 
propagate through the new medium and another part will reflect. While, in a regular 
structure, the wave is expected to travel without any change until it reaches the boundaries 
of the structure. The ability of periodic structures to transmit waves from one location to 
another within the pass bands can be greatly reduced when the ideal periodicity is disrupted 
or disordered. In case of passive structures, the aperiodicity can result from unintentional 
material, geometric and manufacturing variability (Baz, 2001). 
 
A part of the reflected wave will interact with the incident wave in a manner that will 
characterize the interference. When constructive interference occurs, the frequency is 
characterized by being the pass band of the structure; while, in the case of destructive 
interference, the frequency is characterized by being the stop band of the structure, Gupta 
(1970). If the structure setup is repeated for several times, it is known as a periodic structure. 
The destructive effects will show more significantly when the repetitions of the structure unit 
increase in number, because as the part of the wave that propagates incorporates other 
similar changes in the medium, another part of it is destructed and so on. 
 
In a reviewing of the research performed in the area of wave propagation in periodic 
structures (Mead, 1996) defined a periodic structure as a structure that consists 
fundamentally of a number of identical structural components that are joined together to form 
a continuous structure. Examples of periodic structures can be seen in fuselages of aircraft, 
petroleum pipe-lines, railway tracks, and many others. An illustration of a simple periodic tool 
holder system is shown in figure 1. 
 

 
 

Fig.1. A simple schematic drawing of cutting tool system (A) Spindle, (B) periodic tool 
holder, and (C) cutting tool  

 
In general, when a wave propagating in a structure encounters a change in the geometry 
and/or the material properties, the wave is split into two components; a propagating 
component and a reflected component. The reflected part interacts with the propagating part 
in a manner that is controlled by the phase difference between them. Studies of the 
characteristics of one-dimensional periodic structures have been extensively reported by 
Unger (1966). These structures are easy to analyze due to its geometrical simplicity. Gupta 
(1970) presented an analysis for periodically-supported beams that introduced the concepts 
of the cell and the associated transfer matrix. Faulkner and Hong (1985) presented a study 
of mono-coupled periodic systems. Their study analyzed the free vibration of the spring-
mass systems as well as point-supported beams using analytical and finite element 
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methods. Mead and Yaman (1991) studied the response of one-dimensional periodic 
structures subjected to periodic loading. Their study involved the generalization of the 
support condition to involve rotational and displacement springs as well as impedances. The 
effects of the excitation point as well as the elastic support characteristics on the pass and 
stop characteristics of the beam are presented. Later, Mead (1994) proved that the power 
transmission in both direction of a simply supported beam excited by a point force was equal 
regardless of the excitation location. Those results were generalized by Langley (1996) to 
prove the same for generalized supports in the absence of damping. 
 
The vibration of cutting tool system under certain conditions has long been recognized as 
one of the most significant factors affecting the performance of a machine tool. In the past, 
several methods for the identification of milling vibrations have been proposed. Tlusty and 
Zaton (1983) considered the use of stability chart to predict self-excited vibration. It has been 
shown that, the complex mathematical calculations for milling dynamics based on large 
amount of cutting forces data are required to predict the onset of vibration by using the 
stability charts. Jalili Saffar (2008) proposed a simulation to predict cutting forces and tool 
deflection during end milling operation, and to verify the accuracy of simulation results 
compared with those based on the theoretical relationships. 
 

2. TRANSFER MATRIX ANALYSIS 
 

The transfer matrix approach, in general, is based on developing a relation between two 
ends of the structure element. The real power of the transfer matrix approach comes when 
the structure can be divided into a set of substructures with a set of elements and nodes that 
are connected to another set on some fictitious boundary inside the structure. Using the 
method of static condensation, the internal nodes/degrees of freedom of the substructure 
can be eliminated thus reducing the size of the global matrices of the structure. 
 
When a set of equations for structural problems, can be manipulated to collect the forces 
and displacements of one end of the substructure on one side of the equation and relate 
them to those on the other end with a matrix relation, that matrix is called the transfer matrix 
of the structure. The transfer matrix of a substructure is then multiplied by that of the 
neighboring structure, in contrast with the superposition that is used in conventional 
numerical methods. Thus, the matrix system that describes the dynamics of the structure 
becomes significantly smaller in size. The transfer matrix method becomes of even more 
appealing features, when identical substructures can be selected, thus, calculating the 
transfer matrix for one substructure is enough to describe all the dynamics of the whole 
structure. This particular feature is one that is inherent in all periodic structures by definition. 
 
The investigation of the periodic structures was approached by different methods; the vast 
majority of literature applied the transfer matrix approach. The obtained transfer matrix is 
characterized by being simplistic when derived from a symmetric, conservative or non-
conservative, dynamic stiffness matrix. The basic property of a simplistic matrix is that its 
eigenvalues appear in pairs one of which is the reciprocal of the other. This property of the 
transfer matrix has been looked at as one that introduces simplicity for the analysis; 
unfortunately, that same property causes the numerical instabilities in the analysis of 
structures with large number of cells. 
 
Gadala et al. (1983) presented an early attempt for the formulation of a transfer matrix 
problem for a two-dimensional structure. The proposed model was used for a structure that 
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could be divided into substructures in the form of strips whose nodes can be organized into 
two sets each lie on one side of the substructure. Due to complexity of the coupling between 
adjacent cells in two dimensional structures, the transfer matrix approach is not fully 
applicable. The analysis of the two-dimensional periodic structures has been primarily 
investigated through the graphical means of the propagation surfaces which were introduced 
by Mead and Parthan (1979). 
 
In this study, the relation between the results obtained from the transfer matrix approach and 
those presented by the propagation surfaces will be studied in an effort to obtain better 
understanding of the propagation surfaces. Also, an attempt to produce propagation and 
attenuation curves to describe the dynamic characteristics of periodic plates will be 
introduced. 
 
Static and dynamic deformations of machine tool holder play an important role in a 
machining process, which affecting the quality and productivity. Excessive chatter (self 
excited vibration) may cause tolerance violations. Cutting force and chatter models can be 
used to predict and overcome these problems. This would require dynamic data for the 
structures involved in a machining system (Montgomery and Altintas, 1991). These data are 
usually obtained by using mass -stiffness measurements and model analysis. 
 
In this study, generalized equations are presented which can be used for predicting the static 
and dynamic properties of milling system components. Due to its wide use in industry, milling 
process is considered, however the same methods can be applied to other machining 
operations as well. 
 
Modeling of milling process has been the subject of many studies some of which are 
summarized by Smith and Tlusty (1991). The focus of these studies has mostly been on the 
modeling of cutting geometry (Bayoumi et al., 1994; Min Wan et al., 2010). The mechanistic 
approach has been widely used for the force predictions and also has been extended to 
predict associated vibration of periodic system, (Faulkner and Hong, 1985; Langley 1996). It 
was recognized by the early researchers that the bending effect is the single most important 
factor in a transversely vibrating beam. The Euler Bernoulli model includes the strain energy 
due to the bending and the kinetic energy due to the lateral displacement. 
 
In the present study, periodic elements are considered because these elements exhibit 
unique dynamic characteristics that make them act as mechanical filters for wave 
propagation (Mead, 1996; Doyle, 1997). As a result, waves can propagate along the periodic 
elements only within specific frequency bands called the ‘pass bands’ and wave propagation 
is completely blocked within other frequency bands called the ‘stop bands’. The ability of 
periodic structures to transmit waves from one location to another within the pass bands, can 
be greatly reduced when the ideal periodicity is disrupted resulting in the well-known 
phenomenon of localization. 
 
Consider the vibration of an elastic tool holder, of length l and having unvarying circular 
cross sectional area in the xy-direction normal to the z-axis for vertical milling operation 
(figure 2). The vibration of the holder can be modeled as a shaft with one end at the bottom. 
The effects of the spindle motor are accounted for by including their collective inertia. 
 



 
 
 
 
 

British Journal of Applied Science & Technology, 2(2): 82-95, 2012 
 

 

86 
 

 
 

Fig. 2. Straight material cutting tool holder 
 
The vibration of the tool holder performs not only a translator motion but also rotational 
motion. The angle of rotation, which is equal to the slope of the deflection curve, is 

expressed by w  and the angular velocity and acceleration are w& and w&&  respectively. The 

continuous model, shown in figure 2, has a flexible support representing tool/holder/spindle 
interface at one end. The governing equation motion for the beam based on the Euler–
Bernoulli beam theory for each values of x in the interval from 0 to 1 will be: 
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Longitudinal translational displacements of the cutting tool holder normal to its length at each 

ends are denoted by iw  and jw . While w′  is the rotational displacement of endpoints, 

xxww ∂∂=′ /)( . 
iu  and 

ju  are longitudinal displacements at each ends. 

 

3. EQUATION OF MOTION AND BOUNDARY CONDITIONS 
 

Since there are six nodal variables for the holder element, four for bending and two for the 
axial forces, a cubic polynomial function is assumed for w(x), and first order for u(x). To 

consider the element which has three components at each end, iw , iw′  and iu  at the top of 

the holder, jw , jw′  and ju at the bottom parallel to the surface of the machine table. For 

constant values of EI and EA equation (1) may be integrated to yield equations (2), Where 

ic are constants of integration respect to x. 
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Using equation (3) to find the shape functions }{N , Where }{ [ ] }{wAN

1−= {N}. Substitution of 

}{N values into the expressions of )(xw  and )(xu  yields the approximation of the mode 

shapes in the following equations. 
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3.1 Potential and Kinetic Energies 
 
Consider the energy associated with approximation given by the previous equations (4) and 
(5). The potential energy (PE) of the tool holder is non-dimensionalized by EI/l¸ will be 
expressible as: 
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equations (4) and (5) will be: 
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Substitution of { }wN ′′  and { }uN ′ values into the expression of )(xw ′′  and )(xu ′ yields the 

approximation of equation (10): 
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The last expression can be recognized as proportional to the product of the transpose of the 
vectors w and u. assuming the holder rigidity EI and EA are constant within the elements. 
For each element the wu-stiffness matrix K is: 
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The kinetic energy of the element (KE) can be written in the alternative following form: 
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Considering the maximum kinetic energy at the end part of the holder KE=KEmax. 
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For linear systems that obey Rayleigh’s reciprocity principle, Srikantha Phani and Adhikari 
(2008), related the matrices M and K as follows: 
 

0
2 =− MK ω                     (15) 

 
Where ω  is the natural frequency of an element. An eignvalue analysis has to be performed 

in designing a structural system that is to be subjected to dynamics forces. By substituting 
an eigenvalue 

iλ  into equation (15): 

 

[ ] 0=− ii wMK λ  & [ ] 0=− ii uMK λ                 (16) 

 
Where eigenvectors wi and ui correspond to deflection mode that gives the shape of the 
element. Therefore, analysis of eignvalue equations gives important information on possible 
deflection modes experienced by the structure when it undergoes forces. In equation (16), 
since the mass matrix (M) is symmetric positive definite and stiffness matrix (K) are 
symmetric and either positive or positive semi-definite, the eigenvalues are all real and either 
positive or zero. The corresponding eigenvalue equations are having multiple eigenvalues. 
For an eigenvalue of multiplicity N, there are N vectors satisfying equation (16). The kinetic 
energy relative to the displacement will be: 
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Where M is the mass matrix for the system elements and defined by: 
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Using equations (12) and (18) the dynamic equations becomes: 
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3.2 Shape Function of Periodic Elements 

 
One element for the cutting tool holder model gives inaccurate results if higher modes are 
excited, therefore, more elements must be used to model the entire structure. If multiple 
elements are used, equations for all elements must be assembled into a model of entire 
structure as a whole. For dynamic analysis of the holder and merging equations (5) and (6), 
the deflection is interpolated within a holder element as: 
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4. MODEL OF VIBRATING TOOL HOLDER 
 

It is convenient to have formulations of motion which makes use of quantities relating to the 
whole system from which elements are made up. The equations of motion can be obtained 
from the preceding expressions for kinetic KE and potential PE energies using the variation 
or Lagrangian approach. Combining equations (11) and (14) for getting the total energies. 
The equations of motion for the vibratory system can be given in the structure as: 
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[ ]{ } [ ]{ } { }FKM =+ δδ&&                   (23) 

 
The value of vibration expressed as: 
 

{ } { } [ ]{ } [ ][ ]KMF /δδ &&−=                   (24) 
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Where { } { }NNNe uwwuww ′′= ....111δ  is nodal deflection vector of the element, n 

denoting number of nodal points and { }eF  is the vector of external forces. Taking the cutting 

tool holder path as circular arc moves by the feed per tooth (chip load), c, in case of up 

milling tooth 1 in position 
1φ  engages over the arc of cut, where 

ES θθφ 〈〈 1
 and 2/12 πφφ += . 

The force acting on the holder can be added and reflected into the Fu and Fw components in 
the tool axis: 
 

)](sin3.0)cos()[sin(
2 φφφ += cAKF dSu

                (25) 
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Both force components are periodic in φ2 , where tN )60/(2πφ = . 

 

4.1 Longitudinal Vibration 
 

Consider three elements model of the longitudinal vibration and with one degree of freedom 
as shown in figure 3. Since the three cells of the system with two different materials 
combinations (spring steel-rubber and spring steel copper) are rigid and rotating at the same 
time with one angle. Each element of the model has a kinetic and potential energy. The 
integral my take various forms for the tool holder. The flexural rigidity EI of the element must 
be taken into account. From equation (20) three sets of matrices and their corresponding 
with identical equations and different sets of unknown modal displacements ui, can be 
assembled together by superimposing them to yield equation (28) in the form: 
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Fig. 3. Periodic cutting tool holder model 
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4.2 Translation and Rotational Vibration 
 

The global mass and stiffness matrices for a clamped holder at the spindle and free with the 
cutting tool is shown in figure 1. Using three elements and four nodes with l=l/3, the 
equations for the finite element at (i=1, j=2), (i=2, j=3), (i=3, j=4), becomes:  
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General structure of equations of motion is: 
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General structure of equations of motion for three elements periodic holder: 
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5. SIMULATION RESULTS 
 

It is important to know that a harmonic force produces harmonic vibrations of the same 
frequency, and the amplitude of the vibrations depends on the amplitude of the cutting force 
and on the ratio of the frequency of the force over the natural frequency of the system. If the 
two frequencies are equal, the case of resonance and maximum vibration amplitude will be 
occurring. 
 

In this paper all simulations and illustrations are based on end mill with helical smooth edges 
using the proposed dynamic milling model with parameters listed in table 1, based on 
numerical theory and technique with Eulerian approach (Jalili Saffar et al., 2008). The 
analysis of the cutting force vibration and its effects on forced variation is plotted in the set 
diagrams in figure 4, which contain time plots that illustrate the stability improvements from 
straight to periodic tool holders, with four homogeneous teeth and various cutting 
engagement. The plots were obtained from the computer program written in MATLAB. 
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Table 1 . Milling Simulation Parameters 
 

Specific Cutting Force, Ks 
Nominal feed per tooth, fT 
Cutting tool diameter, D 
Too holder diameter, Dh 
Number of cutting edges, Z 
Axial depth of cut, Ad 
Radial depth of cut, Rd 
Spindle speed, N 
Number of samples, NS 
Modulus of Elasticity for Rubber, E 
Modulus of Elasticity for Copper, E 
Modulus of Elasticity for spring steel, E 

2100 N/mm 
2 mm 
16 mm 
24 mm 
4 
5 mm 
3 mm 
3000 rpm 
1000 
0.1 GPa 
117 GPa 
210 GPa 

 

 
(A) 

 
(B) 

 
(C) 

Fig. 4. Model simulation results of vibration patterns, (A) periodic spring steel-rubber, 
(B) periodic spring steel-copper and (C) straight spring Steel of milling tool holder. 
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The program follow the rotation of the cutter in 250 steps/revolution, dfi=360/240=1.44
o
, and 

it runs for 1000 steps, that is 4 revolutions. The tooth passing frequency is NZ, where N 
denoted the rotational speed and Z is the number of cutting edges of the milling cutter. The 
time between two consecutive cuts (T) causes a phase difference as T=1/NZ. The feed per 
tooth (fT) coupled with a variable spindle speed (N) in a changing feed rate (f) which causes 
modulation of the cutting forces Fu and Fw. During several initial tooth periods, vibrations 
start to develop and then reach the steady state in which the vibration at total time (t) is 
determined, where t = 0.25 sec, as shown in the following figure 4. 
 
The resultant cutting force of all simulations under the same cutting parameters of table 1, 
are in good agreement, as shown in figure 5. Waiting for vibration to settle look for the 
cutting force in the last revolution, i.e. the last 250 steps, just for the purpose of plotting this 
part, as shown in figure 6.     
 

 
 

Fig. 5. Milling component force on cutter with 4 straight teeth and 0.25 sec cutting 
time 

 

 
 

Fig. 6. Force in steady state for last revolution 
 

6. CONCLUSION 
 

Vibration is generally avoided either by stiffening the relative compliance between the cutting 
tool system and workpiece, or by reducing the axial and radial depths of cut. In this paper, a 
new approach for monitoring vibration during the machining process by regulating the 
periodic materials of the machine tool holder is presented. A digital dynamic simulation 
model was proposed to investigate the influence of periodic cutting tool holders as well as 
structural parameters on the stability of milling vibrations. The model written in MATLAB 
includes the contribution of the mass and stiffness and its affect on the cutting force 
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amplitudes. The paper presents a new class of periodic machine tool holder system for 
isolating the vibration transmission from cutting tool holder to the machine tool table in an 
attempt to produce a quiet surface finish. A theoretical model is developed to describe the 
dynamics of wave propagation in a periodic tool holder. The model is derived using the 
theory of finite elements. The model of three periodic elements, spring steel-rubber, spring 
steel-copper and straight spring steel to compute the vibration amplitudes and forces are 
presented. The transfer matrix formulation for each element is given. 
 
A comparison between those theoretical approaches with real measurements will be studied 
in the next investigation. 
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