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ABSTRACT
Audio streams, such as news broadcasting, meeting rooms, and
special video comprise sound from an extensive variety of
sources. The detection of audio events including speech, cough-
ing, gunshots, etc. leads to intelligent audio event detection
(AED). With substantial attention geared to AED for various
types of applications, such as security, speech recognition,
speaker recognition, home care, and healthmonitoring, scientists
are now more motivated to perform extensive research on AED.
The deployment of AED is actually a more complicated task when
going beyond exclusively highlighting audio events in terms of
feature extraction and classification in order to select the best
features with high detection accuracy. To date, a wide range of
different detection systems based on intelligent techniques have
been utilized to create machine learning-based audio event
detection schemes. Nevertheless, the preview study does not
encompass any state-of-the-art reviews of the proficiency and
significances of suchmethods for resolving audio event detection
matters. The major contribution of this work entails reviewing
and categorizing existing AED schemes into preprocessing, fea-
ture extraction, and classificationmethods. The importance of the
algorithms and methodologies and their proficiency and restric-
tion are additionally analyzed in this study. This research is
expanded by critically comparing audio detection methods and
algorithms according to accuracy and false alarms using different
types of datasets.

Introduction

Audio event detection (AED) is aimed at detecting different types of audio
signals such as speech and non-speech within a long and unstructured audio
stream. AED can be considered a new research area with the ambitious goal of
replacing intelligent surveillance systems (ISS) with traditional surveillance

CONTACT Shahaboddin Shamshirband shahaboddin.shamshirband@tdt.edu.vn Department for
Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/UAAI.

APPLIED ARTIFICIAL INTELLIGENCE
2017, VOL. 31, NOS. 9–10, 661–714
https://doi.org/10.1080/08839514.2018.1430469

© 2017 Taylor & Francis

http://orcid.org/0000-0002-6605-498X
http://www.tandfonline.com/uaai
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1430469&domain=pdf&date_stamp=2018-03-06


systems (Kalteh, Hjorth, and Berndtsson 2008). Traditional systems require the
regions of interest (ROI) that are equipped with cameras, microphones, or other
sensor types to be constantly monitored by human operators who record audio
data to multimedia datasets. A multimedia dataset often consists of millions of
audio clips, for instance environmental, speech, and music with other non-
speech noises to use in AED. The bases for most AED-related research fields
and applications are feature extraction and audio classification. These are
apparently significant tasks in many approaches employed in numerous areas
and environments. They comprise the detection of abnormal events (gunshots)
in security (Clavel, Ehrette, and Richard 2005), speech recognition (Choi and
Chang 2012; Navarathna et al. 2013; Scheme, Hudgins, and Parker 2007),
speaker recognition (Ganapathy, Rajan, and Hermansky 2011; Zhu and Yang
2012), animal vocalization (Bardeli et al. 2010; Cheng, Sun, and Ji 2010; Huang
et al. 2009; Milone et al. 2012), home care applications (Weimin et al. 2010),
medical diagnostic problems (Drugman 2014), bioacoustics monitoring (Bardeli
et al. 2010; Cheng, Sun, and Ji 2010), sport events (Li et al. 2010; Potamitis et al.
2014; Su et al. 2013), fault and failure detection in complex industrial systems
(Xu, Zhang, and Liang 2013), and several other fields. AED system performance,
such as complications, classification accuracy, and false alarms, is extremely
reliant on the extraction of audio features and classifiers (Dhanalakshmi,
Palanivel et al. 2011b, Zubair, Yan et al. 2013).

Feature extraction is one of the most significant factors in audio signal
processing (Dhanalakshmi, Palanivel et al. 2011a). Audio signals have many
features, not all of which are essential for audio processing. All classification
systems employ a set of features extracted from the input audio signal, where
each feature represents a vector element in the feature space. Therefore, a
number of different audio classification methods based on system performance
evaluation have been proposed. These approaches mostly differ from each other
in terms of classifier selection or number of acoustic features involved. From the
perspective of decomposition, the extracted features are classified into temporal,
spectral, and prosodic features. Audio classification is another major stage in
audio signal processing and pattern recognition, with possible applications in
audio detection, documentation, and event analysis. Audio classification refers
to the ability to precisely classify the selected feature vectors in corresponding
classes. Different classifier types, including manual classification, which is time
consuming, supervised, unsupervised, and semi-supervised learning algorithms
are employed to reduce classification problems.

A number of concerns relating to feature extraction and classification meth-
ods have been reviewed in existing literature. Lu (2001) reviewed a survey
covering time and frequency domain features. Regarding speaker recognition,
Kinnunen and Li (2010) reviewed features and speaker modeling and in another
review Kinnunen et al. (2011) covered types of features and the best-known
clustering algorithms in terms of accuracy. Prakash and Nithya (2014) reviewed
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a survey and addressed all aspects of semi-supervised learning algorithms.
Bhavsar and Ganatra (2012) considered and compared machine learning classi-
fication algorithms in terms of speed, accuracy, scalability, and other traits. This
has consequently helped other researchers study existing algorithms and develop
innovative algorithms for previously unavailable applications or requirements.

Although hundreds of audio event detection methods have been proposed in
various fields, unfortunately only a few extensive studies are actually devoted to
surveying or comparing them. While most works on AED focus on some key
acoustic events, none cover the state-of-the-art in AED. The present work differs
from all previous efforts in terms of emphasis, timeliness, and comprehensive-
ness. The need for detailed and comprehensive studies on the vital aspects of
AED methods has led researchers to orchestrate reviews of AED classification
methods and algorithms. The goal of this review is to highlight the classification
concerns and challenges with AED methods as a way to analyze audio event
detection methods and algorithms from a range of perspectives. Furthermore, a
comparative study is hereby presented based on key attributes, such as accuracy,
false alarm, precision, and recall. These are considered the most recent advance-
ments in this area for identifying future research trends that can greatly benefit
both general and expert readers.

This review is structured as follows. Section 2 contains the research methodol-
ogy. An overview of preprocessing, a feature extraction, and classification method
is provided in Section 3. Section 4 consists of a discussion about the evaluation and
performance of classification techniques with concerning to accuracy rate and an
argument on the comparison of techniques and their accuracy based on reviewed
articles. Finally, Section 5 presents some closing clarifications about this review.

Methodology

This review represents a detailed analysis of 66 different articles associated with
audio event detection and classification in different systems. The criteria utilized
to select sources of studies must contain a search mechanism that authorizes
customized searches using keywords and titles. Access to downloading full
articles is dependent on accessibility agreements between our university and
the target digital library as the resource provider. The sources were obtained
from different digital libraries including Science Direct, IEEE, and ACM with
highly cited and credible publications, after which every study was checked to
ensure the context is relevant to this review. This literature review includes
problems that have hindered further developments in AED. Well-established
researchers are interested in possible solutions related to the development of
adequate AED, which is achievable through analyzing classification approaches
and their performance. Table 1 presents literature works related to approaches
that employ unsupervised, supervised, and semi-supervised learning algorithms.
The list of journal-based articles expedites a general overview of the different
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classifiers pertaining to their characteristics. It also consists of the latest matters
surrounding intelligent AED development in surveillance systems.

These studies analyze two crucial factors concerning the comparison of
different AED methods’ performance. The first factor is the accuracy of classi-
fication steps and the second regards the false positives and negatives rate. Here,
the importance of the proficiency and accuracy aspects will be emphasized. For
example, Giannakopoulos, Pikrakis, and Theodoridis (2007) presented a multi-

Table 1. Audio classifiers in AED.
Methods Type of classifier References

Unsupervised
Learning
Algorithms

Hierarchical and
Partition Clustering

(Pomponi and Vinogradov 2013), (Tsunoo et al. 2011),
(Park 2009), (Lefèvre and Vincent 2011) (Yang et al. 2013)

Gaussian Mixture
Models (GMM)

(Chuan 2013), (Choi and Chang 2012), (P. Dhanalakshmi
et al. 2011b), (Cheng, Sun, and Ji 2010), (Chung-Hsien
and Chia-Hsin 2006)

Hidden Markov Models
(HMM)

(Navarathna et al. 2013), (Niessen, Van Kasteren, and
Merentitis 2013), (Itoh, Takiguchi, and Ariki 2013), (Wang
and Zhang 2012), (Milone et al. 2012), (Ya-Ti et al. 2009),
(Scheme, Hudgins, and Parker 2007)

Neural networks
(Self-organizing map,
ART)

(P. Dhanalakshmi et al. 2011a), (Schroeder et al.
2011), (Charalampidis, Georgiopoulos, and Kasparis
2000)

Supervised Learning
Algorithms

Instance-based or
K-nearest-neighbors
(KNN)

(Khunarsal, Lursinsap, and Raicharoen 2013), (Ravan and
Beheshti 2011), (Liu and Zhang 2012), (Lie, Hong-Jiang,
and Hao 2002), (Huang et al. 2009), (Malhotra, Nikolaidis,
and Harms 2008)

Neural Networks (RBF,
MLP)

(Balochian, Seidabad, and Rad 2013), (Ganapathy, Rajan,
and Hermansky 2011), (Mitra and Wang 2008), (Kotti
et al. 2007), (Shen, Shepherd, and Ngu 2006), (Turnbull
and Elkan 2005), (Khairnar, Merchant, and Desai 2005),
(McConaghy et al. 2003)

Rule-based Classifiers (Xu, Zhang, and Liang 2013), (Alcala-Fdez, Alcala, and
Herrera 2011), (Ruiz Reyes et al. 2010), (Temko, Macho,
and Nadeu 2008)

Ensemble Classifier (Younghyun, Hanseok, and Han 2013), (Dafna, Tarasiuk,
and Zigel. 2013), (Li, Wang, and Sung 2008), (Bin,
Haizhou, and Rong 2007), (Meyer and Schramm 2006)

Bayesian Networks (Giannakopoulos, Pikrakis, and Theodoridis 2007),
(Prodanov and Drygajlo 2005), (Daoudi, Fohr, and
Antoine 2003), (Zweig 2003)

Linear Discriminants (Gergen, Nagathil, and Martin 2014), (Lu and Wang
2012), (Lee et al. 2006)

Support Vector
Machines

(Andreassen, Surlykke, and Hallam 2014), (Muhammad
and Melhem 2014), (Costa et al. 2012), (Shuiping,
Zhenming, and Shiqiang 2011), (Temko and Nadeu
2009), (Dhanalakshmi, Palanivel, and Ramalingam 2009),
(Truong, Lin, and Chen 2007), (Temko and Nadeu 2006),
(Acır, Özdamar et al. 2006)

Semi-Supervised
Learning
Algorithms

Self-training (Triguero et al. 2014), (Neiberg, Salvi, and Gustafson
2013), (Santos and Canuto 2014), (Yanan et al. 2012)

Co-training & EM (Yunyun, Songcan, and Zhi-Hua 2012), (Cui, Jing, and
Jen-Tzung 2012), (Yangqiu and Changshui 2008),
(Moreno and Agarwal 2003)

TSVM (Guz et al. 2010),(Rongyan et al. 2010)

664 E. BABAEE ET AL.



class audio classification method for recorded audio sections from movies. The
method focuses on high-accuracy recognition of violent content in order to
protect sensitive groups (e.g. children). Schroeder et al. (2011) managed to
achieve a low false positive rate of less than 4% except for the knocking event.
Muhammad and Melhem (2014) attained the high accuracy of 99.9% (with a
standard deviation of 0.15%) in the detection of pathological voices. They also
achieved up to 100% accuracy for binary pathology classification. Each of these
algorithm techniques is normally applied on a sample dataset for training and
testing. For example, Table 2 displays six major benchmark datasets: GTZAN,
RWCP-DB, AVICAR, LVCSR, Aurora-2, and Ballroom. The proposed meth-
ods’ generalization performance is analyzed and evaluated. Due to the extremely
hazardous nature of operating AED systems in real-life environments, it is very
difficult and complicated to perform real-time testing. Generally, many
researchers prove their observations by creating experimental simulations that
artificially depict real environments to analyze recognition rate performance.

Audio event detection systems

The audio event detection system presented in Figure 1 has three essential
processing levels: preprocessing, feature extraction, and audio classification.
The preprocessing step is responsible for increasing method robustness and
for easing analysis by highlighting the appropriate audio signal characteristics.

Table 2. Types of datasets for AED.
Dataset Name Dataset Type Description

AVICAR (Navarathna
et al. 2013)

Speech and
Event

AVICAR is a speech dataset recorded using multi-sensory arrays
containing four video cameras and eight microphones in a car
environment. Speakers of various languages include 50 males
and 50 females.

GTZAN (Tsunoo et al.
2011)

Music/Speech GTZAN is a dataset containing 20 musical genre and 3 speech
excerpts with different qualities, each excerpt being 30 seconds
long.

Aurora-2 (Truong, Lin,
and Chen 2007)

Speech Aurora-2 is a dataset of recorded hands-free speech to explore
the influence on automatic speech recognition performance in
noisy situations.

RWCP-DB (Temko and
Nadeu 2006)

Event and
Environment

RWCP-DB is a dataset with 105 environmental sound events
and around 100 anechoic samples of each event in 3
categories: first, collisions such as wood; second, actions like
articles dropping; third, characteristics such as small metal
articles, paper and instruments.

LVCSR (Meyer and
Schramm 2006)

Word Dataset LVCSR is a rich word dataset when the testing audio is a word
stream. This dataset can produce very fast queries with high
accuracy, and it is easy to add to, and enhance it to address
current issues.

Ballroom (Shen,
Shepherd, and Ngu
2006)

Music/Speech Ballroom is a dataset containing excerpts of many music pieces
with real radio quality (low quality)
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The feature extraction section initially converts a processed audio signal into
attribute feature vectors based on suppressing redundant audio signals before
extracting the features. Each feature represents an element of the feature vector
in the feature space. A suitable model is developed in the final stage, followed by
training tomap the features to certain audio classes when important audio features
are extracted. System efficiency relies on the capability to recognize and classify
audio signals according to audio characteristics or content by using machine
learning methods (Dhanalakshmi, Palanivel et al. 2011b). The emphasis of this
overview is on classification methods. The subsequent sections present a brief
outline of preprocessing and feature extraction for the purpose of completeness.

Preprocessing

It is critical to perform pre-processing on input audio signals in order to develop a
robust and appropriate audio signal representation. In general, an audio signal
recorded with a microphone in the real world comes with a combination of
background noise and foreground acoustic objects. This audio cannot be used
straightaway as an input for machine learning-based classification. The reason is
that signals contain redundancy, which first needs to be removed. The preproces-
sing step involves noise reduction, equalization, low-pass filtering, and segmenting
the original audio signal into audio and silent events to be used in feature
extraction.

Feature extraction

Feature extraction has a vital role in evaluating and characterizing audio content.
Audio features are extracted from the audio signal frames. The ideal feature
characteristics are: a) easy adaptability, b) robustness again noise, c) easy imple-
mentation, and d) contains the necessary smoothing characteristics (Uncini 2003).
The number of feature space dimensions is equal to the number of extracted
features. If the quantity of selected features is too high, a dimensionality problem
occurs (Jain, Duin, and Jianchang 2000). Traditional techniques such as Gaussian
mixture model are not able to handle high-dimensional data (Reynolds 1995;
Reynolds, Quatieri, and Dunn 2000). Figure 2 classifies features into (1) temporal,
(2) spectral, and (3) prosodic features. Temporal features directly designate the
audio signal waveform for analysis. Low-level features are usually extracted via

Preprocessing

Noise Reduction
Equalization

Filtering

Feature Extraction

ZCR, MFCC,
Spectral Flux

Classification

SVM, HMM,
GMM, RBF

Audio data

Accept/Reject

Figure 1. Block diagram of an audio event detection system.
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spectral analysis (frequency domain) of the audio signal. Prosodic features have a
semantic meaning in the context of auditory perception. Consequently, as soon as
a feature is extracted, any type of classifier can use the prosodic features to classify
the samples into suitable groups.

(1) Temporal Features

Temporal features, or time amplitude, are represented as amplitude fluctua-
tion with time (waveform signal). Temporal audio features are extracted
directly from raw audio signals with no preceding data. Representative
instances of temporal features are zero-crossing rate, amplitude-based features,
and power-based features. Such features normally suggest a simple tactic to
investigate audio signals, although it is generally necessary to combine them
with spectral features. Therefore, the computational complexity of temporal
features is lower than that of spectral features.

(a) Short-term energy

Short-term energy signifies audio signal loudness (Giannakopoulos and
Pikrakis 2014; Lamel et al. 1981; Li et al. 2001; Lu 2001; Reaves 1991; Tong
and Kuo 2001; Ye, Zuoying, and Dajin 2002). Short-term energy is computed
according to the following equation (Giannakopoulos and Pikrakis 2014), where
xi nð Þ; n ¼ 1; . . . ; WL is the sequence of audio samples in the ith frame and
WL is the frame length.

E ið Þ ¼ 1
WL

XWL

n¼1

jxi nð Þj2 (1)

Figure 2. Feature categorization.
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(b) Zero-Crossing Rate (ZCR)

The Zero-Crossing Rate (ZCR) of an audio frame stands for the number of
times the audio signal passes the zero signal in a unit of time or audio signal sign
changes (Li et al. 2001; Lu 2001; Tong and Kuo 2001; Ye, Zuoying, and Dajin
2002). In other words, the number of times the value of the signal changes from
positive to negative or vice versa is divided by the frame length. To a certain
extent, ZCR connotes the specification of the signal spectrum, thus it approx-
imates the signal spectral nature. ZCR is defined according to the following
equation:

ZC ¼
PN

n¼1 sgnx nð Þ � sgn x n� 1ð Þ½ �j j
2N

(2)

where sgn sgn x nð Þ is the sign function

sgn xi nð Þ½ � ¼ 1; xi � 0;
�1; xi � 0:

�
(3)

(2) Spectral Features

Audio signals, mostly speech, speakers, and language recognition, rely on
spectral/cepstral features derived through short-term spectral features.
Cepstral computation is a composition of three processes: Fourier transform,
logarithm, and inverse Fourier transform (Lefèvre and Vincent 2011) that
permit identifying the basis frequency and discrete purification of an audio
signal. Figure 3 indicates the various steps involved in transforming a given
audio signal to its cepstral domain representation. The audio signal is gen-
erally pre-emphasized first and then multiplied by a smooth window func-
tion (normally Hamming). The window function is necessary due to the
limited-length results of the Discrete Fourier Transform (DFT) (Oppenheim,
Schafer, and Buck 1989; John R. Deller, Proakis, and Hansen 2000). In
contrast, the DFT is frequently utilized as it is simple and productive.
Generally, only the magnitude spectrum is hold because the process is of
little perceptual importance. The well-known Fast Fourier Transform (FFT)
decomposes an audio signal into its frequency elements (Oppenheim,
Schafer, and Buck 1989).

Windowing F(w) Log|F(w)|S(n)
Fourier

transformF(n) Log |F(w)| IDFT C(n)
windowed frame spectrum of

the windowed
sequence

Magnitude
spectrum

Figure 3. Block diagram of cepstrum computation.
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(a) Mel-frequency cepstral coefficients (MFCCs)

Davis and Mermelstein (1980) introduced the mel-frequency cepstral
coefficients (MFCCs) in 1980 as a type of cepstral representation of audio
signals. The frequency bands are disseminated according to the mel scale
instead of the linear spacing approach. Although various substitute fea-
tures like spectral subband centroids (SSCs) (Kinnunen et al. 2007) have
been deliberated, the MFCCs prove to be tedious in practice. The discrete
cosine transform (DCT) is computed to extract the MFCCs from a frame
and the resultant spectrum is a mel-scale filterbank. The mel-scale filter-
bank output is denoted as X mð Þ, m = 1. . .. M, and the MFCCs are
obtained as follows:

Cn ¼
XM
m¼1

log X mð Þ½ � cos ½πn
m

m� 1
2

� �
� (4)

where n is the index of the cepstral coefficient. The final MFCC vector is
obtained by retaining about 12–15 of the lowest DCT coefficients. Gergen,
Nagathil, and Martin (2014) considered a cepstro-temporal representation of
audio signals called Modulation MFCC (Mod-MFCC) features. (Li et al.
2001) demonstrated that cepstral-based features such as the MFCC and
Linear Prediction Coefficients (LPC) afford better classification accuracy
compared to temporal features.

(b) Spectral centroid

During signal distribution, the average point or midpoint of the spectral
energy is called the spectral centroid. It provides noise-robust estimation,
which represents how the dominant signal frequency changes over time. As
such, the spectral centroid is a popular tool in some signal processing
applications like speech processing. The spectral centroid represents the
center of audio frequency dissemination, meaning it connotes audio signal
brightness measurement and is formulated as follows:

SC ¼ �0 �wωjF ωð Þj2 dω
E

(5)

where the frequency is set as ωk , which defines ω ¼ ωk, where the
center frequency is ωk; E represents the energy, andjF ωð Þj2 is the
power spectrum of the audio signal. Centroid frequency serves to differ-
entiate between speech and music in the analysis window (Muñoz-
Expósito et al. 2007).
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(c) Spectral Rolloff

Spectral rolloff calculates the frequency Ft under a certain quantity in
which the spectrum magnitude (85%) resides. It also calculates the “skew-
ness” of the spectral shape. The Rolloff point is measured as

XRt

n¼1

Mt n½ � ¼ 0:85�
XN
n¼1

Mt n½ � (6)

where the threshold has a value between 0.85 and 0.99.

(d) Spectral Flux

Spectral flux calculates how the power spectrum of the audio signal rapidly
changes and it calculates the conversion in magnitude stability of the entire
spectrum across resultant spectrums. A change in the difference of energy
among resultant spectrums is evident when there is a transient or sudden attack.
The equation is

Ft ¼
XN
n¼1

Nt n½ � � Nt�1 n½ �ð Þ2 (7)

where Nt[n] and Nt-1[n] are the normalized magnitude of the FT at time
frame t and the previous time frame t−1, respectively.

(e) Spectral Entropy

Spectral entropy measures information content, which is interpreted as the
average uncertainty of an information source and is based on the following
equation:

H xð Þ ¼ �
XN
i¼1

p xið Þlog2p xið Þ (8)

where p xið Þ is a probability distribution and N is the number of frames.

(f) Signal Bandwidth

The signal width frequency of a syllable around the center point of a
spectrum is called the signal bandwidth and is calculated as:

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn¼0M n� sð Þ2 xj jPn¼0M xnj j2

s
(9)
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Syllable measurement is calculated as the average bandwidth of the DFT
frames of syllables.

(g) Sub-band Energy Ratio

Sub-band energy ratio is employed directly as a feature (Besacier,
Bonastre, and Fredouille 2000; Damper and Higgins 2003) to calculate
the sub-band energy of the total band energy. Dimensionality can be
diminished more by using other transformations. The voice signal energy
spectrum is primarily in the first sub-band. In contrast, music signal sub-
band energy is disseminated uniformly (Shuiping, Zhenming, and
Shiqiang 2011).

(h) Linear prediction

Linear prediction (Lamel et al. 1981) is a powerful spectrum estimation
technique for DFT, which offers good explanation in the time and fre-
quency domains to exploit redundancy in audio signals (Andreassen,
Surlykke, and Hallam 2014; Schuller et al. 2011). The LP equation is
defined as:

~s n½ � ¼
Xp
k¼1

aks n� k½ � (10)

where ~s n½ � is the predicted sample, ak is the linear predictor coefficient, and s
[n] is the detected signal. The main objective of LP is to calculate the LP
coefficients that minimize the error signal inference, which is formu-
lated ase n½ � ¼ s n½ � �~s n½ �.

e n½ � ¼ s n½ � �
Xp
k¼1

aks n� k½ � (11)

To achieve minimum prediction error, the total prediction error is represented as

E ¼
X1

n¼�1
e2 nð Þ (12)

The predictor coefficient ak is used as a feature by itself but it is converted into
a more robust and less correlated feature, like linear predictive cepstral coeffi-
cient (LPCC) (Atrey, Maddage, and Kankanhalli 2006), line spectral frequency
(LSF) (Campbell 1997), or perceptual linear prediction (PLP) coefficient
(Hermansky 1990).
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(3) Prosodic Features

Prosodic features, or perceptual frequency features, indicate information with
semantic meaning in the context of human listeners while physical features
describe audio signals in terms of mathematical, statistical, and physical proper-
ties of audio signals. Prosodic features are organized according to semantically
meaningful aspects of sounds including pitch/fundamental frequency, loudness/
intensity, and rhythm/duration.

(a) Pitch/Fundamental Frequency

Pitch/Fundamental frequency is a supra-segmental characteristic and the
most critical prosodic property of audio or speech signals (Busso, Lee, and
Narayanan 2009). The data are passed on over longer time scales over other
segmental audio correlates for example spectral envelope features. Therefore,
instead of utilizing the pitch amount itself, it is allowed to approximate global
statics (as mean, maximum, and standard deviation) of the pitch over whole
audio signals.

(b) Loudness/Intensity

Loudness/Intensity models the loudness (energy) of each audio signal simu-
lating the approach it is recognized by the human ear by computing the audio
amplitude in different pause. Thus, the extractingmethod is built fundamentally
with respect to two main characteristics. One, it refers to time the intensity of a
stimulus growth, the hearing response grows logarithmically. Second, audio
understanding also relied on the spectral distribution and on its duration.
Besides that, loudness feature is fame-based feature and put together into a so-
called loudness contour vector (Schuller et al. 2011).

(c) Rhythm/Duration

Rhythm/Duration models the temporal perspectives, process temporal prop-
erties regarding both voiced and unvoiced portions. Its extracted characteristics
can be recognized by their extraction nature. On the one hand, there are those
that represent temporal perspectives of other audio base contours. On the other
hand, those that represent the duration of specific phonemes, syllables, words, or
pauses. In general, different types of normalization can be done with all of them
(mean, averaging, etc.) (Schuller et al. 2011).
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Classification in audio event detection

There are two popular data mining methods to find hidden patterns in data,
namely clustering and classification analyses. Clustering and classification are
mostly used in the same situations despite being different analytical approaches.
Both classification and clustering approaches divide data into sets, but classifica-
tion defines the sets (or classes) before, with each training data belonging to a
specific class. In clustering, the similarities between data instances create the sets
(or clusters). No predefined output class is used in training and the clustering
algorithm is supposed to learn the grouping. In order to mitigate the classification
problem, traditional classification tactics are applied such as manual classification
performed directly by human analysts. The skill and experience of a good analyst
makes this approach reliable, particularly for panchromatic image classification
(Driggers 2003). However, it is time consuming and laborious despite the accurate
results. In order to diminish human intermediation toward automating the classi-
fication and detection processes, three approaches are applied in recent AED
research works that are highlighted according to predefined class labels. As
shown in Figure 4, three classification approaches are supervised, unsupervised,
and semi-supervised learning algorithms. In unsupervised learning, there are no
predefined class labels available for the objects under study, in which case the goal
is to explore the data and detect similarities among objects. The supervised
methodology is considered a high-accuracy classification and detection method
that alleviates the problem of unsupervised classification. It is based on utilizing
predefined class labels to establish a precise and excellent classification model to
automatically classify audio signals. Supervised learning confronts a number of
weaknesses from joining the semi-supervisedwith the autonomous supervised and
unsupervised methods. The aim of semi-supervised learning is to figure out how
themixture of labeled and unlabeled data can change learning behaviors, and how
design algorithms can take advantage of this combination.

Audio Event Classification

1) Unsupervised Learning Algorithms 2) Supervised Learning Algorithms 3) Semi-Supervised Learning Algorithms

a) Hierarchical & Partition Clustering

d) Gaussian Mixture Models

a) Artificial Neural Networks

b) K-Nearest Neighbor

c) Ensemble Learning

d) Rule-Base Classifier (Fuzzy)

e) Bayesian Networks

f) Linear Discriminant Analysis

g) Support Vector Machines

b) Co-Training & Expectation-

Maximization

c) Transductive support vector

machines

a) Self-training

b) Artificial Neural Networks

1) Self-Organizing Maps

2) Adaptive Resonance Theory

c) Hidden Markov Models

(1) Multi-layer Perceptron

(2) Radial Basis Function

(1) Bagging

(2) Boosting

(3) Random Forest

Figure 4. Classification category in audio event detection.
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(1) Unsupervised Learning Algorithms

Unsupervised learning algorithms, as type of machine learning methods are
applied to draw conclusions from dataset containing input data without labeled
reply. These algorithms serve to show natural data groupings. As such, all data
are unlabeled in unsupervised learning and the process involves determining the
labels and correlating them with appropriate objects. Thus, in this situation, the
aim is to investigate the data and find similarities among the objects. Here, the
similarities highlight and define the cluster or group of objects. Cluster analysis
is basically the most common method among unsupervised learning algorithms
that uses heuristic data to analyze and find groups or hidden patterns in audio
data. Clusters use similarity (Sharma and Lal Yadav 2013) measurement that is
defined uponmetrics such as Euclidean or probabilistic distance. Themost well-
known clustering algorithms include: hierarchical clustering where a cluster tree
is created and a multilevel hierarchy of clusters is built; partition clustering (k-
means clustering) where a cluster is built by partitioning data into k clusters
based on the distance to the centroid of a cluster; Gaussian mixture models that
build clusters as a combination of multivariate standard density components;
self-organizing maps where neural networks learn the data topology and dis-
tribution; adaptive resonance theory that applies clustering by detecting proto-
types; and hidden Markov models that utilize observed data to retrieve the
sequence of states.

(A) Hierarchical and Partition Clustering Methods

Hierarchical clustering (HC) is amethod of cluster analysis aimed at recursively
merging two or more patterns into larger clusters, or dividing clusters in the
opposite case (Andreassen, Surlykke, and Hallam 2014; Kaufman and Rousseeuw
1990). The algorithm involves building a hierarchy from the bottom up (agglom-
erative) by computing the similarities between all pairs of clusters iteratively,
where the most similar pair will be merged. Clearly different variations employ
diverse similarity measuring schemes (Zhao and Karypis 2001). Pellegrini et al.
(2009) carried out an experiment and used hierarchical clustering to identify
similarities and dissimilarities between audio samples without awareness of
audio classes for the task of audio event detection. This is intended to avoid the
requirement of listening to the sample datasets. In a surveillance or homeland
security system, the aim is mostly to automatically detect any abnormal situations
within a noisy environment based only on visual clues. In certain conditions, it is
easier to detect sound classes that could be used in a hierarchical detection system
without any prior knowledge (Clavel, Ehrette, and Richard 2005).

Partitioning approaches involve repositioning samples by transferring them
from one cluster to another, beginning with an initial partitioning. This method
typically first requires the number of clusters that will be pre-set by the user.
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K-means and its variants (Kaufman and Rousseeuw 1990; Larsen and Aone
1999) that create unsupervised, flat, non-hierarchical clustering consisting of k
clusters are well-knownmethods in this field. Owing to its ability to cluster huge
data, the k-means method is very beneficial in resolving cluster problems with
relative ease, speed, and efficiency.

The kernel k-means (Schölkopf, Smola, and Müller 1998) and global kernel
k-means (Tzortzis and Likas 2008) are two extensions of standard algorithms.
The kernel k-means maps data points from the input space to a higher dimen-
sional feature space via non-linear transformation while the global k-means
extension is a deterministic algorithm used for enhancing clustering errors in the
feature space and uses the kernel k-means as a local search technique (Tzortzis
and Likas 2008). The major drawback of the most common conventional
algorithms such as k-means and fuzzy c-means is that they are iterative in
nature. Thus, with inspiration from the sequential k-means algorithm, a non-
iterative variant of the classic k-means was proposed for real-time applications
(Pomponi and Vinogradov 2013). To overcome the problem of audio signal
micro-segmentation, a new combination of k-means and multidimensional
HMM was proposed. The k-means method provides the possibility for change
detection and clustering in audio events. Though identifying the actual meaning
of every audio event class is not possible, k-means can assist with interference of
audio event semantics (Yang et al. 2013). Furthermore, in music genre classifi-
cation for bass-line patterns, a technique based on k-means capable of handling
pitch shifting was suggested (Tsunoo et al. 2011).

(b) Artificial Neural Networks

Artificial neural networks (ANNs) are defined as massive parallel computing
systems that consist of extremely large numbers of simple processors and
interconnections. ANNs have the properties of high adaptability and high
error tolerance due to efficient and reliable classification performance
(Principe, Euliano, and Lefebvre 2000). The most generally used neural network
models are self-organizing map (SOM) and adaptive resonance theory (ART) for
unsupervised learning algorithms.

(1) Self-Organizing Maps

Kohonen (1982) proposed the self-organizingmap (SOM), which is primarily
used for clustering data into 2D or 3D lattices. However, varying data samples
are separated in the dimensional lattice. In the defined lattice, the integers or
neurons (i.e. units) are arranged to make a self-organizing map. The distance
between the input vector and output map (associated with weights) is calculated
during the training phase (Davis and Mermelstein 1980) using the Euclidean
distance as shown in Equation (13).
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Uw tð Þ ¼ argminijjx tð Þ � wi tð Þ (13)

As a neuron gets nearer to the input vector, it is considered a winning unit
and the related weight is notified. Simultaneously, the neighbor units’
weights are updated as shown in Equation (14).

wi t þ 1ð Þ ¼ wi tð Þ þ αi tð ÞhUi tð Þ x tð Þ � wi tð Þð Þ (14)

In each iteration, the neighborhood shape (defined by a neighbor function
and a Gaussian function) is reduced as follows:

hUi tð Þ ¼ e
� rU�rij jj j

2σ tð Þ2 (15)

The output space (i.e. 2D or 3D) position is the space among the unit i and
winning unit in the output space, which is represented by rU � rij jj j. However,
in each iteration, Gaussian neighborhood reduction is controlled by σ tð Þ , where
σ tð Þ is converted into exponential decay form as follows:

σ tð Þ ¼ σ0e
�t
T1

� �
(16)

Correspondingly, the learning rate σ tð Þ in Equation (14) also reduces over
time. Nevertheless, σ may decay in linear or exponential fashion.

To calculate the responses of each unit, the unsupervised classification
method adopts the eventual self-organizedmap version. Hence, it is the opposite
of classical SOM implementation, meaning that when a new data sample arrives,
it calculates the activation level of each map unit (Davis andMermelstein 1980).
The class membership is determined in the acoustic monitoring classification
phase. In the determination phase, the events under inspection are compared by
utilizing the self-organizing map, which is measured during the training phase
(Schroeder et al. 2011). An analytic method was proposed to evaluate similarities
and differences among multiple SOMs that were trained on a similar dataset
(Mayer et al. 2009). A set of visualization supports output space analysis map-
ping to show co-locations of data and shifted SOM pairs considering the
different neighborhood sizes in the source and target maps.

(2) Adaptive Resonance Theory

Grossberg (1976) introduced the adaptive resonance theory (ART). This
model is used for unsupervised category learning. It is also used for pattern
recognition as it is capable of stable categorization of an arbitrary sequence in
real-time unlabeled input patterns. ART algorithms are able of continuous
training with any non-stationary inputs. The fuzzy ART (Carpenter,
Grossberg, and Reynolds 1991) incorporates fuzzy logic into the ART pattern
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recognition process, thus improving its general ability. One optional useful
feature of fuzzy ART is complement coding, which is a means of incorporating
absent features into pattern classification. This feature goes a long way in
preventing inefficiency and unnecessary category proliferation. A classification
method for noisy signals was described in Charalampidis, Georgiopoulos, and
Kasparis (2000) based on the fuzzy ARTMAP neural network (FAMNN). In
order to overcome classification problems, a fuzzy adaptive resonance theory
was utilized to cluster and classify each frame (Charalampidis, Georgiopoulos,
and Kasparis 2000).

(c) Hidden Markov Models

A hidden Markov model (HMM) is defined as a discrete stochastic
Markov chain based on a set of hidden variable states. These hidden states
are generated based on a specific emission function, which is derived from
observable symbols (Baum and Petrie 1966). An HMM have the following
characteristics:

● Set S = (S1,. . ., S N), which represents the hidden states of the HMM,
● Set V = (V1,. . ., V M), which represents the symbols generated by the
HMM,

● A probability distribution matrix B of symbol generation,
● A probability matrix A of transitions (between states and probability
distribution vector Π of the initial state).

An HMM can then be modeled with the triple λ = (A, B, Π). The synchro-
nous HMM (SHMM), which couples the audio and visual observations at all
frames, appears to be similar to a unimodal audio (or visual) HMM, but it
has several observation-emission GMMs for every feature stream in each
HMM state (Navarathna et al. 2013). Hierarchical HMMs (HHMM) handle
audio events with recessive configurations to increase classification perfor-
mance (Ya-Ti et al. 2009). Furthermore, another HHMM automatically
clusters the intrinsic structure of audio events from the data. The HHMM
output is combined with a discriminative random forest algorithm into a
single model by using a meta-classifier (Niessen, Van Kasteren, and
Merentitis 2013). A speech recognition method based on myoelectric signals
(Buckley and Hayashi) and phonemes (Scheme, Hudgins, and Parker 2007)
was considered, where words are classified at the phoneme level using an
HMM technique. On the other hand, Milone et al. (2012), extended the use
of HMM to recognize the ingestive sounds of cattle. In sports, to improve
recognition accuracy, for events in a soccer game such as ‘free kicks’ and
‘throw ins’ a new method based on the whistle sound was proposed (Itoh,
Takiguchi, and Ariki 2013). Ice hockey videos are difficult to analyze due to
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the homogeneity of frame features, so to overcome this problem a new audio
event analyzer based on HMM was proposed (Wang and Zhang 2012).

(d) Gaussian Mixture Models

Gaussian mixture models (GMMs) as unsupervised classification are widely
used in speech recognition and remote sensing. Parametric and nonparametric
methods are two models of the probability distribution of feature vectors
(Zolfaghari and Robinson 1996). Parametric models are commonly used for
the probability distribution of continuous measurements while in nonpara-
metric methods, the probability distribution of feature vectors is minimal or
with no assumption. By mixing Gaussian densities, the distribution of feature
vectors adapted from a possible class modeled. For d-dimensional feature vector
x, the combination density function x is determined as:

p xjγð Þ ¼
XM
i¼1

wipi xð Þ (17)

where M is the number of components in
PM
i¼1

wi ¼ 1 , γ is the sound model,

and pi is a density function of component i which is parametrized by a D� 1
mean vector μi and covariance matrix

P
i:.

In audio signals, to detect feature changes in the feature vector, a multiple
change-point Gaussian model was proposed (Chung-Hsien and Chia-Hsin 2006).
The standard GMM employs Expectation-Maximization (EM) to estimate these
models’ parameters by maximizing the likelihood function (Cheng, Sun, and Ji
2010; Chuan 2013). In abnormally-to-detect suspicious audio events, a parame-
terized GMM is used to model the distribution of low-level features for each
chosen sound class (Radhakrishnan, Divakaran, and Smaragdis 2005) and a super-
vector GMM estimates the joint distribution of all feature vectors in each audio
segment (Xiaodan et al. 2009). To recognize different levels of depression severity,
a particular set of automatic classifiers based on GMM as well as Latent Factor
Analysis (Zolfaghari and Robinson) were employed (Sturim et al. 2011). The best
points of the major parameters such as weight, long-term smoothing, and control
parameters for a wide variety of noise environments can be identified with the
help of a maximum likelihood (ML)-based GMMmodel (Choi and Chang 2012).

(2) Supervised Learning Algorithms

Supervised learning algorithms aimed to find the association among the inputs
features, which are occasionally called independent variables, the target attributes
or dependent variables. When the association is figure out, it is demonstrate in a

678 E. BABAEE ET AL.



structure noticed to as a pattern. Patterns normally describe and explain a certain
phenomenon hidden in the dataset. By knowing the values of the input attributes,
these attributes are also used to predict the target attribute values. Supervised
learning algorithms are widely used in artificial neural networks (multi-layer
perceptron and radial basis function), instance-based (k-NN), ensemble learning
(bagging, boosting and random forest), Bayesian networks, rule-based, linear dis-
criminant analysis, and support vector machine algorithms. One obvious specifica-
tion of these procedures is the requirement for labeled data to train the behavioral
model. This procedure places high demand on resource usage.

(a) Artificial Neural Networks

The Multi-layer Perceptron (MLP) and Radial Basis Function (RBF) were
implemented in Artificial Neural Networks (ANNs) for supervised audio
classification-based AED in order to decrease error function misclassifica-
tion. Via applying weight tuning to indicate the efficient hidden units, neural
networks are easily defined by their flexibility and compatibility to create
fuzzy rules. To classify the different types of audio features in order to
determine which audio signals are related to which class, this classification
approach is frequently employed.

(1) Multi-layer Perceptron

The Multi-layer Perceptron (MLP) maps out input datasets onto appro-
priate output sets. It is commonly used in automatic phoneme recognition
tasks. The multi-layer perceptron is used to estimate phoneme posterior
probabilities (Bourlard and Morgan 1993). An MLP consists of multiple
layers of nodes in a directed graph, with each layer fully connected to the
next one. Each node is a neuron (or processing element) that has a nonlinear
activation function except for the input nodes (Rojek and Jagodziński 2012).
In speech activity detection (Lin, Li et al.), MLPs evaluate the noisy and
reverberating versions of a subset of NIST 2008 (Schwarz, Matejka, and
Cernocky 2006). A speaker recognition evaluation (SRE) dataset was used
to address the problem of SAD (Ganapathy, Rajan, and Hermansky 2011).
The MLP-based SAD results were compared to other SAD techniques
experimentally in terms of robust speech segment detection. MLP takes
advantage of the supervised learning technique and calls on backpropagation
to train the network. It is a modified version of the standard linear percep-
tron and is able to distinguish un-linearly separable data (Balochian,
Seidabad, and Rad 2013). To overcome problems related to human music
perception and music signal computational complexity, a rapid and robust
descriptor generation method was proposed called InMAF.1 (Shen,
Shepherd, and Ngu 2006).
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(2) Radial Basis Function

The Radial Basis Function (RBF) is a special case of a feed-forward net-
work that maps input space nonlinearly to a hidden space followed by linear
mapping from the hidden space to the output space. The network represents
a map from an M0 dimensional input space to an N0 dimensional output
space written as S : RM0 ! RN0 . When a training dataset of input output
pairs ½xk; dk�; k ¼ 1; 2; . . . ;M0 is presented to the RBF model, the mapping
function F is computed as

F xð Þ ¼
Xm
j¼1

wjk; ð x� dj
�� ���� ��Þ (18)

where, ; x� dj
�� ���� ��	 


; j ¼ 1; 2; ::;m is the set of m arbitrary functions known
as RBFs. A commonly considered form of ; is a Gaussian function. The
above equation can also be written in matrix form as

F xð Þ ¼ W; ; xð Þ ¼ exp � x� dj jj j2
2σ2

� �
; xð Þ ¼ exp � x� dj jj j2

2σ2

� �
(19)

RBF networks have two advantages over other classifiers. The first advantage is
that in addition to SLA methods, ULA methods can be used to find clusters of
audio sounds without presupposed class labels. The second advantage is that
when given good initialization methods, the RBF networks do not require much
training time compared with other classifiers (Turnbull and Elkan 2005). An
RBF method was employed to detect the existence or absence of an identified
signal corrupted by Gaussian and non-Gaussian noise components (Khairnar,
Merchant, and Desai 2005). In a multi-resolution wavelet-based feature, an RBF
function was used to propose the mapping function to modify speaker-specific
characteristics (Nirmal et al. 2013). Furthermore, RBF was combined with
supervised and unsupervised methods to achieved human-level accuracy with
fast training and classification (Turnbull and Elkan 2005). An RBF-based
method was employed to categorize real-life audio radar signals gathered by
ground surveillance radar attached on a tank (McConaghy et al. 2003).

(b) Instance-based (K-Nearest Neighbor)

Instance-based learning as a form of data mining based on the concept that
samples can be re-used directly in classification problems is still used intensively
by machine learning and statistic researchers. The k-nearest neighbor algorithm
(K-NN) is a type of instance-based learning (Cover and Hart 1967) and is one of
the simplest, most efficient and effective algorithms available. K-NN is used as a
prediction method that decides the predicted value of Xtþ1 by finding the
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k-nearest neighbor of the input data Ptþ1 and using the observed outputs. The
Euclidean distance is typically used to assess similarity (Huang et al. 2009).
When k-nearest neighbors are found, and assuming their corresponding output
values are vi, i = 1, 2, k the predicted valueXtþ1 can be determined by calculating
the weighted average of the neighbors as follows (Lin, Li, and Sadek 2013):

Xtþ1 ¼ 1
k

XK
i¼1

vi (20)

K-NN is also a robust approach that is capable of segmenting and classifying audio
streams into speech, music, environment sounds, and silence (Lie, Hong-Jiang,
and Hao 2002). The value of k does affect the result in some cases although this
technique is quite easy to implement. Memory requirements and computation
complexities are limitations due to which many techniques have been developed
to overcome them (Bhatia 2010). Bailey and Jain (1978) used a weights parameter
with the classical k-NN, which eventually resulted in an algorithm named
weighted k-NN. k-NN along with neural networks improved the values of two
relevant factors concerning classification accuracy, such as window size and
sampling rate (Khunarsal, Lursinsap, and Raicharoen 2013). A new Mutual
k-NN Classifier (MkNNC) employs the k-NN to predict the class label of a new
instance (Liu and Zhang 2012).

Unlike classical k-NN, theMkNNC first applies a concept calledmutual nearest
neighbors (MNNs) to eliminate noisy instances, thenmakes a prediction for a new
instance and ensures the predicted result has more reliability despite ‘fake’ neigh-
bors or instances. The belief-based k-nearest neighbor (BK-NN) method allows
each object to belong to specific classes and also to sets of classes with different
masses of belief(Liu, Pan, and Dezert 2013). A time-series classification technique
depending on instance-based k-NN methodology applies churn prediction in the
mobile telecommunications industry as a form of evaluation with an underlying
learning strategy for time-series classification problems (Ravan and Beheshti
2011). In animal species identification, k-NN and SVM were used to recognize
frog species based on feature vectors (Huang et al. 2009).

(c) Ensemble Learning

The concept of ensembles has been studied in several forms and appeared in
classification literature as early as Nillson, N. (1965). Currently, the three most
popular ensemble methods are Bagging (Breiman 2001), Boosting (Freund and
Schapire 1996), and Random Forests (Breiman 2001). Ensemble learning has
emerged as a powerful method that combines multiple learning algorithms and
improves robustness and prediction accuracy (Bauer and Kohavi 1999, Dietterich
2000a). It has become an effective technique that is increasingly being adopted.
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Reducing the sample size (Dietterich 2000b) and mitigating binary classification
problems (Bin, Haizhou, and Rong 2007) are two main advantages of ensemble
techniques.

(1) Bagging

In the bagging technique, every trained classifier (on a set of m examples) is
replaced randomly from the original training set (i.e. size m) (Breiman 1996).
This is called the bootstrap replicate of the original set. From the original
training set, every bootstrap replicates an average of 63.2% with samples that
occur multiple times. For every new example, anticipations are based on the
majority ensemble vote. Bagging is applied on unstable learning algorithms,
meaning if a small change is made to the training set, it leads to a noticeable
change in the model produced. Hence, all ensemble members are not based on
the same set of samples, instead they act in a different way from each other. From
these classifiers voting is predicted, which helps bagging reduce the error rate
due to the base classifier variance. However, stable learning bagging does not
reduce errors such as Naive Bayes (Qiang and Cox 2011).

(2) Boosting

The idea of boosting is to add classifiers one by one to increase the classifier
ensemble. Each ensemble member uses the training set. Selection in the ensem-
ble is based on the earlier classifier(s) performance. Similar to boosting, previous
incorrectly predicted classifier examples are chosen more often than examples of
correctly predicted classifiers (Neiberg, Salvi, and Gustafson 2013). Adaptive
Boosting (AdaBoost) was the first practical boosting algorithm introduced
(Freund and Schapire 1997). It remains one of the most widely utilized and
studied algorithms withmany applications in different fields. This algorithmwas
originally developed to increase the classification performance of weak classi-
fiers. It also works efficiently on both basic and complex recognition problems
(Polikar et al. 2001) and rarely suffers from over-fitting. However, over-fitting
still occurs in highly noisy datasets (Sun, Todorovic, and Li 2006).

Several variations of boosting algorithms include ‘AdaBoostNorm2’ and
‘AdaBoostKL’ (Sun, Todorovic, and Li 2006) that overcome the problem of
over-fitting. ‘AdaBoost.M2’ (Meyer and Schramm 2006) is applied to HMM in
speech recognition to show the best testing error rate obtained with standard
maximum likelihood training. ‘AdaBoostSVM’ (Li, Wang, and Sung 2008)
demonstrates superior generalization performance compare to SVM. In order
to improve abnormal acoustic event detection of indoor surveillance systems,
‘multicast-AdaBoost’ (Younghyun, Hanseok, and Han 2013) was proposed.
Furthermore, to validate a robust, high-performance, and sensitive whole-
night snore detector based on non-contact technology, automatic snoring
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event detection (Dafna, Tarasiuk, and Zigel. 2013) was developed. An AdaBoost
classifier was trained and validated for manually labeled non-snoring and snor-
ing acoustic events.

(3) Random Forest

The random forest (RF) method is a combination of bagging and decision
trees (with random feature selection) (Breiman 2001). Like bagging, every
member of the ensemble is trained on a replicate bootstrap. The decision tree
then splits the features for selection. These split and selected features can occur
on each node randomly from F. RF is run two times: the first time when F = 1
and the second time when:

F ¼ int log2M þ 1ð Þ (21)

Here, M denotes the total number of features. Pruning is not performed on the
random trees. One of the benefits of RF is that it can handle thousands of input
variables without deleting any. It also provides an estimation of the generalization
error from generating internal unbiased and important variables as well (Breiman
2001; Kulkarni and Sinha 2013). This method can handle and estimate missing
data from a large proportion of data while maintaining accuracy. From unba-
lanced class population datasets, themethod can balance class error. In contrast to
the random forest algorithm, it uses the random subspace method (Tin Kam
1998), which can be applied to other inducers like linear discriminators or nearest-
neighbor classifiers (Rokach 2009; Skurichina and Duin 2002).

(d) Rule-Base Classifier (Fuzzy)

The fuzzy rule-base classifier (FRBC) has been effectively applied for different
classification tasks, such as pattern recognition and image processing. FRBC has
become an alternate framework for classifier design (Cordón, Del Jesus, and
Herrera 1999). Originally, FRBC was designed based on linguistic and expert
knowledge, but the so-called data-driven approaches have become dominant in
fuzzy system design (Zadeh 1996). Fuzzy set-oriented AED corresponds to audio
data related to a set of rules that identify the different attributes of the fuzzy rule
base from the training data (Tao 2002). The fuzzy set theory also prevents the
creation of unnatural frontiers in the partitioning of attribute domains, thus
increasing the generated model’s interpretability. An essential part in designing
a fuzzy system is to define the attributes in terms of fuzzy sets (Cintra et al. 2011).
In order to minimize the large number of attributes FRBC presents beneficial
methods for high-dimensional pattern classification problems (Alcala-Fdez,
Alcala, and Herrera 2011; Stavrakoudis, Gitas, and Theocharis 2011; Yaochu
2000).
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The drawback is that there is no unique way to define fuzzy operators such as
fuzzy implication or membership functions for linguistic variables, especially
symbolic variables. Many classifiers directly provide accurate predictions by
using real variables without the need to create fuzzy variables. The fuzzy rule
frequently sets the complexity too high, thus it is hard to understand what it really
means (Nozaki, Ishibuchi, and Tanaka 1996). With the fuzzy integral (FI) and
associated fuzzy measure (FM), the classification problem of a small set of human
non-speech voices was solved (Temko, Macho, and Nadeu 2008). The inductive
learning of FRBC suffers from the exponential growth of rule space when the
number of variables becomes high; consequently, an innovative fuzzy association
rule-based classifier with low computational cost for high-dimensional difficulty
was proposed (Alcala-Fdez, Alcala, and Herrera 2011).

(e) Bayesian Networks (BNs)

The Bayesian network (Friedman, Geiger, and Goldszmidt 1997) is a graphical
model which specifies a factorization of the joint probability distribution (JPD)
over a set of variables. The JPD structure is defined by a directed acyclic graph
(Atrey, Maddage et al.), in which the nodes represent variables and edges encode
independencies between variables (Daoudi, Fohr, and Antoine 2003). A Bayesian
network B is defined by a unique JDP over N variables (X1, X2, . . ., Xn) after
declaring the conditional independence assumption given by:

PB X1; . . . ; Xnð Þ ¼
Yn
i¼1

PBðXij
Y

xiÞ (22)

where
Y

Xi are parent nodes for Xi:

Three variants of the Bayesian network include serial, divergent and con-
vergent, as represented in Figure 5. The naive Bayes classifier, as a special
case of Bayesian networks, has received frequent attention for its simplicity
and surprisingly good performance. The ability to handle data that are
missing during the inference period and training is one of the motivating
factors to use Bayesian network classifiers (Cohen et al. 2003). Due to the
Bayesian network’s simplicity and linear run-time (Hall 2007), it continues to
be a popular learning algorithm for data mining applications. It is suitable for
large-scale prediction and classification tasks on complex and incomplete
datasets owing to its fast supervised classification.

Multi-class classification (Giannakopoulos et al. 2006), multi-modal input
(Prodanov and Drygajlo 2005) and multi-band automatic speech recognition
(Daoudi, Fohr, and Antoine 2003) have been proposed to overcome the problems
of audio segmentation for movies, error handling in human-robot speech under
adverse audio conditions and classical multi-band systems. Bayesian networks are
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also used to model an extensive variety of phenomena in speech production and
recognition (Zweig 2003).

(f) Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is a technique for transforming raw data
into a new feature space whereby classification can be carried out more robustly
(Fisher 1936). If the training set includes M classes, nj indicates the number of
samples in the jth class, fi

j 2 Rn is the ith sample of the jth class, and the within-
class scatter matrix Sw is given by:

Sw ¼
XM
j¼1

Xnj
i¼1

fi
j �mj

	 

fi
j �mj

	 
T
; mj ¼ 1

nj

Xnj
i¼1

fi
j (23)

The between-class scatter matrix Sb is defined as:

A

B

C

A

CB B

CA

Serial

Divergent Convergent

Figure 5. Basic bayesian network structure.

Figure 6. Year versus distribution of articles on different classifier types.
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Sb ¼
XM
j¼1

mj �m
	 


mj �m
	 
T

; m ¼ 1
N

XN
i¼1

fi (24)

where m denotes the mean of the total dataset.
LDA maximizes the between-class scatter to within-class scatter ratio, which
involves maximizing the separation between classes and minimizing the
variance within a class (Yang et al. 2013; Ye and Ji 2009). A null space-
based LDA (NLDA) (Lu and Wang 2012) was proposed, where in the null
space of the within-class scatter matrix the between-class distance is max-
imized. An LDA-based classifier (Gergen, Nagathil, and Martin 2014) was
proposed as a new method to reduce reverberation and interfering sounds in
a match between testing and training data when a classifier is trained with
clean data. LDA is used to reduce feature dimensions and increase classifica-
tion accuracy (Lee et al. 2006).

(g) Support Vector Machines (SVMs)

Support vector machines (SVMs) are evaluated as a useful machine learning
technique for solving data classification problems (Vapnik 1998). The goal of
SVMs is to obtain the best hyperplane that separates two classes by maximizing
the margin among separating boundaries and the closest samples to it (support
vector) by implementing a particular training set given by a set (input vector,
class)

xi; dið Þ (25)

where i ¼ 1; 2; 3; . . . ; p. For a binary classification problem in linearly separ-
able training pairs of two classes, the hyperplane g(x) is given by:

g xð Þ ¼ ωTxþ b ¼ 0 (26)

where ω are weights and b are biases. The optimal values of ω and b are
obtained by computing the following optimization problem:

minω
1
2
ωTω (27)

Subject to:

di ω
Txi þ b

	 
 � 1 (28)

This equation leads to Lagrange function minimization.

J ω; b; αð Þ ¼ 1
2
ωTω�

Xp
i¼1

αi di ωTxi þ b
	 
� 1

� �
(29)

where the nonzero Lagrange multiplier is α.
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If two classes are non-linear, Equations (27) and (28) will have different forms
and the new function ∅ that should be minimized in 27 is given as:

� w; εð Þ ¼ 1
2
ωTωþ C

Xp
i¼1

εi; εi > 0 (30)

di ω
Txi þ b

	 
 � 1� εi (31)

where ε is the ith so-called slack variable and C is the upper bound for α . By
using a kernel trick (Janik and Lobos 2006) tomap the training samples from the
input vectors to a high-dimensional feature space, SVM finds an optimal
separating hyperplane in the feature space and uses a regularization parameter,
C, to control model complexity and training error. Several functions including
linear, polynomial, sigmoid, and radial basis function (RBF) can be used in SVM
(Janik and Lobos 2006). The RBF kernel is applied in SVM to achieve better
accuracy than other kernels (Muhammad and Melhem 2014). By learning from
training data, SVM achieves the optimum class boundary among the classes
(Dhanalakshmi, Palanivel, and Ramalingam 2009). Soft-margin SVM in multi-
speaker segmentation separates given points into two target classes, where the
SVM uses an upper-bound C to define a hyperplane and improve the SVM
(Truong, Lin, and Chen 2007). Several SVM-based classifiers have been devel-
oped using clustering schemes based on the confusion matrix to deal with the
problems in multi-class classification (Temko and Nadeu 2006) and overlapped
sound detection (Temko and Nadeu 2009). In binary classification, the SVM
classifier maps the feature vectors into a single binary output (1,−1) using its
generalization ability to distinguish auditory brainstem responses (R. Sathya and
Abraham 2013) in hearing threshold sensing (Acır, Özdamar et al. 2006). To
classify bat call and non-bat events, an SVM-based method combines both
temporal and spectral analyses (Andreassen, Surlykke, and Hallam 2014).

(3) Semi-Supervised Learning Algorithms

A semi-supervised learning algorithm is defined as ‘A process of searching for a
suitable classifier from both labeled and unlabeled data.’ An advantage of this
methodology is that by utilizing unlabeled data, it provides high classification
performance. This methodology facilitates a variety of situations through identify-
ing the specific relationships between labeled and unlabeled data. It also improves
unlabeled data by reconstructing the optimal classification boundary (Prakash and
Nithya 2014). For instance, graph-based methods are often used as a semi-
supervised method. Prakash proposed a graph-based method to define the
nodes and edges in a graph. Here nodes are labeled and unlabeled examples in
datasets, while edges (potentially weighted) reflect the similarity between samples.
Graph approaches are in the form of nonparametric, discriminative, and
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transductive (Prakash and Nithya 2014). Tianzhu et al. (2012) proposed a new
approach where semi-supervised learning takes information according to inter-
esting annotation events in videos from the internet. To handle the difficulties of
generic frameworks in various video domains (e.g., sports, news and movies) an
algorithm was proposed called Fast Graph-based Semi-supervised multiple
instance learning (FGSSMIL). One purpose of this algorithm is to train themodels
to explore both small-scale expert-labeled and large-scale unlabeled videos. Semi-
supervised learning is a possible quantitative tool for comprehending human
category learning, in which the majority of input is self-evidently unlabeled.
Some popular semi-supervised learning algorithm methods include self-training,
co-training, expectation maximization (EM), and transductive support vector
machines (Zhu and Goldberg 2009).

(a) Self-training

Self-training is one of the popular semi-supervised learning algorithmmethods.
First, it is specially trained on a small quantity of labeled data, after which it uses a
classifier to classify unlabeled data. In the training set, the most confident unla-
beled points and their predicted labels are added. This process is repeated by re-
training the classifier. The classifier also uses its own predictions to teach itself,
which is known as self-teaching or bootstrapping, something different from the
statistical procedure with the same name. Sometimes the prediction confidence
drops below the threshold level. To solve this problem, a number of algorithms
attempt to avoid the ‘unlearn’ unlabeled points (Agrawala 1970). Triguero pro-
posed discriminating the most related filter features in the self-training method
from a mixture of an extensive range of noise filters (Triguero et al. 2014). In self-
training classification, HMC-SSBR, HMC-SSLP and HMC-SSRAK EL (three new
approaches) were proposed to solve the multi-label hierarchical classification
problem (Santos and Canuto 2014). A semi-supervised gait recognition algorithm
depends on (1) self-training with labeled sequences and (2) a big amount of
unlabeled sequences. Self-training classification is useful for improving gait recog-
nition system performance (Yanan et al. 2012).

(b) Co-Training & Expectation-Maximization

In co-training features are split into two sets. Each feature subset is trained
sufficiently by a good classifier (Blum and Mitchell 1998; Mitchell 1999). These
two sets are independent conditionally. In the beginning, with the two feature
subsets, data are labeled with two separately trained classifiers. Unlabeled data are
classified by each classifier. This classifier also teaches the subsequent classifier
with the help of some unlabeled samples and predicted labels. This process is
repeated by further training the classifier. One of the advantages of unlabeled data
is that it reduces the form of space size. A multi-view semi-supervised learning
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algorithm was proposed to solve the classification issue with sentence boundaries
by using lexical and prosodic features (Guz et al. 2010).

The expectation-maximization (EM) algorithm is broadly used as a
semi-supervised learning algorithm. It works in different stages (Yunyun,
Songcan, and Zhi-Hua 2012). First, it is presented by Dempster (an iterative
algorithm), which calculates the maximum likelihood function and estimates the
posterior probability distribution under an incomplete sensible circumstance.
Dempster is also used for marginal distribution calculation. To reduce the error
rate in binary and multi-class classifier problems, an EM-based semi-supervised
learning algorithm can be used (Moreno and Agarwal 2003). Yangqiu and
Changshui (2008), decreased the labeling work and increased the accuracy rate
with a least squares framework used for EM-based semi-supervised learning,
which is distance-based music classification. HMM-based large-vocabulary con-
tinuous speech recognition (LVCSR) was created to operatemulti-view andmulti-
objective learning for semi-supervised learning algorithms (Cui, Jing, and Jen-
Tzung 2012). Yunyun, Songcan, andZhi-Hua (2012) proposed a new classification
algorithm tomodify cluster assumption by allowing each instance to be amember
of all classes with a corresponding membership. In the learning process informa-
tion is gained about other members, which is very helpful when the largest
memberships are classified with corresponding classes.

(c) Transductive support vector machines

Transductive support vectormachines (TSVMs) are an extension of SVMswith
unlabeled data. When SVMs are applied, two matters are considered during
classification. First, due to the large numbers of support vectors, SVM classifier
complexity can be considerably high during run time. Moreover, unlabeled sam-
ples are often more readily available than labeled samples, which are always scarce
and expensive to generate. In such conditions, SVMmodel training time increases
as new samples are continually being entered (Guz et al. 2010). To overcome the
above problems, Joachims (1999), proposed a TSVM with a semi-supervised
learning approach. The purpose of TSVM is to improve the performance of the
classifier trained with fewer labeled samples by utilizing unlabeled ones. For
automatic AED annotation, Rongyan et al. (2010), applied semi-supervised learn-
ing with a TSVM algorithm. TSVM distinguishes between labeled and unlabeled
datasets by making boundaries of classes instead of estimating conditional class
densities. In this way, it needs considerably less data to perform accurate
classification.

Performance evaluation of classification algorithms

AED efficiency is evaluated based on how confident its detection methods are at
correct audio detection and accurate classification. According to the nature of any
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given audio signal, the performance of AED algorithms is both subjectively and
objectively evaluated (Arnold 2002). Generally, subjective evaluation is done via a
listening test with various decision errors detected based on humanperception.On
the other hand, objective evaluation is more reliant on mathematical judgment
such as true positive, true negative, false positive, and false negative. The True
Positive Rate (TPR) calculates the amount of real positives and is precisely
recognized as such. The True Negative Rate (TNR) calculates the amount of
negatives that are precisely recognized as such. The False Positive Rate (FPR) is
specified as the amount of false alarmswhen an event is incorrectly identified. FPR
is also defined as the number of normal events that weremisclassified as abnormal
events, divided by the total number of normal events. Similarly, the False Negative
Rate (FNR) is defined as the proportion of misses. When an event is incorrectly
rejected, it is called a miss. As such, FNR can be defined as the total false negatives
divided by the total positive instances (Dafna, Tarasiuk, and Zigel. 2013).

The system’s performance is seriously affected by high FPR and FNR, both of
which should be minimized along with simultaneously maximizing the true
positive (TPR) and true negative (TNR) rates. Both TPR and TNR are based on
Equations (1)–(7) and the following measures of performance of audio event
detection systems.

TPR ¼ Sensitivity ¼ Recall ¼ TP
TP þ FN

¼ No: of detected event
No: of all annotated events

(1)

TNR ¼ TN
TN þ FP

¼ No: of true alerts
No: of alerts

(2)

FP ¼ FP
TN þ FP

¼ 1� TN
TN þ FP

(3)

False negative rate FNRð Þ ¼ FN
TP þ F

(4)

Accuracy ¼ TN þ TP
TN þ TP þ FN þ FP

(5)

Precision ¼ No: of correct event
No: of detected events

¼ TP
TPþ FP

(6)

F �measure ¼ 2 � Precision � Sensitivityð Þ
Precisionþ Sensitivityð Þ (7)
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Most systems being studied use similar evaluationmetrics, which include detection
rate (DR) and false alarm rate (FAR). Other revisions also address problems with
AED by offering different metrics to evaluate system efficiency and accuracy.
Table 3 provides the proposed evaluation metrics in different AED systems.

Classification approaches

Audio event detection approaches are traditionally studied from two major
standpoints: manual and imposed criteria classification. Because it is time con-
suming, there is no considerable research on these two views. New classification
approaches have appeared in event detection with respect to data mining and
machine learning algorithms. Pimentel and Clifton divided detection approaches
into five separate subcategories, namely probabilistic, distance-based, reconstruc-
tion-based, domain-based, and information-theoretic novelty detection (Pimentel
et al. 2014). On the other hand, a different approach has been introduced with
three clear divisions: unsupervised, supervised, and semi-supervised or fusion.
These approaches have been studied distinctly but still suffer from a lack of more
detailed and comprehensive research on classification approaches, mainly in
audio event detection. This review documents a classification approach with
three different subclasses along with a detailed review of each:

● unsupervised learning algorithms;
● supervised learning algorithms; and
● semi-supervised learning algorithms.

We have carefully collected the latest audio event detection methods, speci-
fically those for speech and non-speech event detection (see Table 4). These are
not for comparison but as a review of current illustrative approaches. The
datasets applying in these researches vary and they come from different
resources include public and private or standard datasets. Furthermore, they
have different explanations for classification errors.

Table 4 illustrates existing classification methods based on supervised, unsu-
pervised and semi-supervised learning algorithms. As shown in Table 4, speech
and non-speech are two different perceptions of audio signals in audio event
detection. In contrast, the performance level is analyzed by grades of high,
moderate and low. The sources comprise the datasets available for each method,
as elaborated in Table 2. The data are used to differentiate audio features from
audio streams and assign them suitable classification. The efficiency of supervised,
unsupervised and semi-supervised classification methods is compared based on
the accuracy metric and false alarm, particularly in noisy environments.
Classification efficiency in supervised learning algorithms indicates performance
beyond expectations. The vital aspects of supervised learning algorithms are high
accuracy, self-learning, and robustness.
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Figure 6 depicts the total number of manuscripts studied over a decade from
2003 to 2014. Although some research have been reported from before the
investigated period, research relating to supervised classification methods
reached a peak in 2006 and a second peak in 2013 while it was quite stable
during the last seven years. It seems this type of classification is still an interest-
ing area for researchers. Likewise, unsupervised classification reached a peak
from 2011 to 2013. It did not have very good reputation over the first half of the
investigation period but during the second half it was moderately stable. It is not
as easy to apply unsupervised classification as it is to apply the supervised
method, and it might not be receiving increasing consideration recently. Semi-
supervised classification methods were introduced in the middle of the last
decade, and based on the report; it has become more interesting lately.

The comparison of technology types according to Table 4 demonstrates a high
possibility for researchers to work on the combination area. The report also
demonstrates that non-speech has a greater chance of being of primary interest
among all three classification categories. Nonetheless, supervised classification
researchers are interested in working with a combination of speech and non-
speech events as the second choice after speech recognition. Nonetheless, unsu-
pervised classification is not growing at a rate similar to that of speech. In this
classification type, non-speech has a greater chance than other technology types. In
semi-supervised, the second most interesting area is the non-speech method and
researchers are more interested in speech classification, similar to supervised
classification.

Unsupervised learning algorithms

Unsupervised learning algorithms comprise an important learning paradigm and
have drawn significant attention within the research community as shown by the
increasing number of publications in this field. Table 4 lists the most important
research works dealing with audio event detection and classification problems
related to unsupervised approaches. Developed unsupervised methods for AED
are commonly classified into four categories of classifiers. Cluster-based algo-
rithms include a hierarchical or partitioning clustering method (k-means); the
neural network-based AEDS comprises the SOMmethod for unsupervised learn-
ing; and finally, the HMM and GMM algorithms are described.

Table 5 illustrates the essential research works using unsupervised learning
algorithms to present some solutions to appraise the performance of audio event
detection systems with classification techniques. Scheme, Hudgins, and Parker
(2007), achieved 91% accuracy with the HMM technique to classify 18 formative
phonemes at low noise level (17.5 dB) but when the noise level approached 0 dB
the classification accuracy decreased to roughly 38%. Another classification
technique (SAP-based GMM) touched accuracy of 95.37% by applying NTT
dataset and 14th order MFCC and (SNR = 5 dB), 95.77% (SNR = 10 dB), and
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Table 5. Evaluation of unsupervised learning algorithms.
Ref Method Accuracy rate Type of input

(Choi and Chang
2012)

To detect speech absence and
update the GMM likelihood
the speech absence
probability (Khunarsal,
Lursinsap et al.) is employed.

Accuracy of classification:
95.37%

Speech/Non-Speech

(Navarathna et al.
2013)

Mixture of single audio and
four visual streams in a five-
stream SHMM

Accuracy of recognition:
56%

Speech

(Scheme, Hudgins,
and Parker 2007)

HMM is used to classify words
at the phoneme level.

Accuracy of Classification
over 91% in low noise

Speech

(Cheng, Sun, and Ji
2010)

MFCC and GMM are used
across four passerine species.

Accuracy: 89.1–92.5% Non-speech

(Milone et al. 2012) HMM is used to classify
acoustic signals

Accuracy of recognition:
85%

Non-speech

(P. Dhanalakshmi et
al. 2011b)

Auto-associative neural
network model (AANN)
combined with a GMM-based
classifier

Accuracy of classification:
93%

Non-speech

(Dhanalakshmi,
Palanivel et al.
2011a)

Mixture of the auto-associative
neural network model (AANN)
with GMM

Accuracy of classification:
93.0%

Speech/Non-speech

(Yang et al. 2013) Spectral clustering and
k-means to cluster audio
events

Accuracy of detection: %
88.63

Speech/Non-speech

(Park 2009) FCM-DK relies on the fuzzy
c-means algorithm that uses a
kernel method for data
transformation.

Accuracy of classification:
89.12%,

Non-Speech

(Chung-Hsien and
Chia-Hsin 2006)

A minimum description length
(MDL)-based GMM statistically
designates the audio features.

False alarm rate: 0.14
Accuracy of classification:
88%

Speech

(Chuan 2013) Discrete wavelet transform is
used to extract audio features
at different scales and time
from audio recordings.

Accuracy of classification:
87.32%

Speech/Non-speech

(Niessen, Van
Kasteren, and
Merentitis 2013)

A hierarchical HMM for sound
event detection

F-measure recognition:
45.5%

Speech/Non-speech

(Itoh, Takiguchi, and
Ariki 2013)

HMM is used. Precision: 66.67%, Recall:
100%

Non-Speech

(Wang and Zhang
2012)

HMM mixture to create a
framework for ice hockey
videos.

Accuracy of HMM 73.01%,
Gaussian mixture HMM
59.15%

Non-speech

(Ya-Ti et al. 2009) A fusion method mixed with
hierarchical HMM is employed
to cover large differences
existing in healthcare audio
events.

Accuracy of cassification:
70%

Non-speech

(Schroeder et al.
2011)

Technical method employed
in the context of ambient
assisted living (AAL).

TPR over 79%, FPR smaller
than 4%

Non-speech

(Tsunoo et al. 2011) K-means algorithm based on
one-pass programming.

Accuracy on GTZAN and
ballroom dataset 72.4% and
52.5% respectively

Non-speech

(Lefèvre and
Vincent 2011)

The proposed method
depends on classical HMM,
cepstral or spectral analysis
and amplitude.

For whistle, crowd and
speaker, recall achieved is
95%, 75%, and 95% and
precision is 86%, 86%, and
90%

Non-speech
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95.75% (SNR = 15 dB) to demonstrate noise classification technique are accep-
table in speech enhancement (Choi and Chang 2012). Niessen, Van Kasteren,
and Merentitis (2013) also show that meta-classifiers are particularly efficient in
combining the stability of several classifiers and also are beneficial on a simple
voting scheme. According to the investigated manuscripts, the average accuracy
of the unsupervised technique can reach 82.68%, although there are better
results in precision or recall evaluation.

The average of each classification is highlighted in a table within Figure 7 in
percentage, Choi and Chang (2012), Scheme, Hudgins, and Parker (2007),
Dhanalakshmi et al. (2011b), Dhanalakshmi, Palanivel et al. (2011a)
Dhanalakshmi, Palanivel et al. (2011b) reached over 90% accuracy in unsupervised
learning algorithms.

Supervised learning algorithms

Supervised learning algorithms are characterized as instance-based, neural net-
works, rule-based, ensemble, Bayesian networks, linear discriminant analysis and
support vector machine classifiers. Various supervised learning approaches stu-
died in the context of audio event detection are reviewed under the main category
of feature classification. The aim of this literature review is to present supervised
learning approaches based on signal classification quality in AED. Audio event
classification systems analyze the input audio signal and produces labels that
explain the output signal. The most recent experimental research works related
to AED employ supervised machine learning algorithms. For more information
please see Table 6.

Table 6 summarizes the latest methods for tackling audio event detection and
classification issues based on supervised learning methods. Statistical compar-
isons of the accuracy of classifiers trained on specific datasets and false alarm and
error rate appraisals are common approaches for comparing supervised learning
algorithms (Figure 8). Applying supervised learning algorithms to each classifier

Figure 7. Comparison of unsupervised learning algorithms in terms of accuracy rate.
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Figure 8. Comparison of supervised learning algorithms in terms of accuracy rate.

Table 6. Evaluation of supervised learning algorithms.
Ref Method Accuracy Rate Type of input

(Ganapathy, Rajan,
and Hermansky
2011)

Speech activity detection (Lin, Li et al.)
techniques with an MLP.

Equal error rate: 9% Speech/Non-speech

(Huang et al. 2009) K-NN and SVM are employed with
three different features to detect frog
type

Accuracy: 89.67% Non-speech

(Xu, Zhang, and
Liang 2013)

Wavelet Packet Transform method and
Fuzzy SVM

Accuracy of
identification: 99%,

Non-speech

(Khunarsal,
Lursinsap, and
Raicharoen 2013)

Spectrogram pattern matching along
with neural network and KNN
classifiers

Accuracy: 90.57%. Speech/Non-speech

(Ravan and Beheshti
2011)

The power spectrum density (PSD) of
each speech signal frame is
estimated using KNN classification

Accuracy: 90% Speech

(Liu and Zhang
2012)

New anomaly removal and learning
algorithm under the KNN framework

Accuracy: 99.3%
when k = 3

Noisy data

(Lie, Hong-Jiang,
and Hao 2002)

KNN and linear spectral pairs-vector
quantization (LSP-VQ) to discriminate
speech from non-speech

Accuracy: over 96%. Speech/Non-speech

(Balochian,
Seidabad, and
Rad 2013)

Optimized MLP classifiers to execute
some features based on the wavelet
transform

Accuracy: 96.49% Speech/Non-speech

(Kotti et al. 2007) The cross-correlation function and
magnitude of the corresponding cross-
power spectral density are fed as input
to the neural network for recognition.

Accuracy: 88.1% Speech

(Shen, Shepherd,
and Ngu 2006)

Combination of multiple musical
characteristics with a hybrid
architecture based on principal
component analysis (PCA) and MLP

Accuracy: 91.9% Non-speech

(Turnbull and Elkan
2005)

Achieved with RBF networks by using a
combination of unsupervised and
supervised initialization methods

Accuracy: 71.5% Non-speech

(McConaghy et al.
2003)

RBF algorithms are employed to
classify real-life audio radar signals

Accuracy: 86.4%. Non-speech

(Ruiz Reyes et al.
2010)

Genetic fuzzy system Accuracy of
classification: 97%

Speech/Non-speech

(Continued )
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Table 6. (Continued).

Ref Method Accuracy Rate Type of input

(Temko, Macho, and
Nadeu 2008)

Fusion of different information sources
with fuzzy integral (FI), fuzzy measure
(FM), and SVM

Accuracy 83.9% and
precision 81.2%

Speech/Non-speech

(Dafna, Tarasiuk,
and Zigel. 2013)

AdaBoost-based algorithms for
detection of snore/non-snore

Accuracy of
detection: 98.2%

Speech/Non-speech

(Li, Wang, and Sung
2008)

AdaBoostSVM used for sequence of
trained RBFSVM classifiers

Accuracy: 85% Non-speech

(Bin, Haizhou, and
Rong 2007)

Ensemble of binary classifiers. Equal error rate:
1.38% and 3.20%

Speech

(Meyer and
Schramm 2006)

AdaBoost.M2 is used for HMM-based
speech recognition

Equal error rate:
0.8%

Speech

(Giannakopoulos,
Pikrakis, and
Theodoridis 2007)

BN in combination with One Versus All
classification architecture.

Accuracy: 73.2%,
False alarm rate:
11%.

Speech/Non-speech

(Prodanov and
Drygajlo 2005)

Bayesian network framework Accuracy: 77.9% Speech

(Daoudi, Fohr, and
Antoine 2003)

A speech model is built in the time–
frequency domain using the formalism
of dynamic BNs

Accuracy: 87.89% Speech

(Zweig 2003) BNs are used to model a wide variety
of phenomena that occur in speech
recognition.

Error rate 3.1 Speech

(Gergen, Nagathil,
and Martin 2014)

Analyze the influence of reverberation
and competing acoustical sources on
the classification of audio signals
captured by ad hoc distributed
microphones

Accuracy: 90% Speech

(Lee et al. 2006) UMFCCs and LDA Accuracy: 96.8%
and 98.1%

Non-speech

(Andreassen,
Surlykke, and
Hallam 2014)

SVM is used based on a combination
of temporal and spectral analyses to
classify events

Accuracy 96% for
dry nights and 70%
when raining

Non-speech

(Muhammad and
Melhem 2014)

MPEG-7 features are used for indexing,
including both video and audio

Accuracy: 99.994% Non-speech

(Costa et al. 2012) The audio signal is converted to a
spectrogram and features are
extracted from time-frequency

Accuracy: 82.33% Non-speech

(Shuiping,
Zhenming, and
Shiqiang 2011)

MFFC, ZCR, etc., features are extracted
and an audio classification based on
SVM was designed

Accuracy: 90%.
Non-speech

(Temko and Nadeu
2009)

SVM-based two-step system
outperforms the baseline system for an
artificially-generated database

Accuracy: 90.30% Speech/Non-speech

(Dhanalakshmi,
Palanivel, and
Ramalingam
2009)

Support vector machines are applied
with neural networks (RBFNN)

Accuracy of
classification: 92%

Speech/Non-speech

(Truong, Lin, and
Chen 2007)

Wavelets and SVMs are employed to
segment specific speakers

Accuracy of 94.12%
and 85.93% for
4-speaker and
8-speaker

Speech

(Temko and Nadeu
2006)

Several classifiers based on SVM using
confusion matrix-based clustering
schemes to deal with multi-class
problems

Accuracy 88.29%,
average error
reduction 31.5%

Non-speech

(Acır, Özdamar et al.
2006)

An SVM classifier is employed with
discrete cosine transform (DCT)
coefficients and discrete wavelet
transform (DWT)

Sensitivity 95.3%,
specificity 84.6%
and accuracy 93.8%.

Non-speech
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results in different accuracy, but in almost all circumstances supervised learning
techniques provide high accuracy, precision and recall, and detection rate,
reasonable false alarm rates and lower error rates in different groups. The
performance synthesis connotes that SVM and ANN are the most valuable
supervised classifiers based on investigated manuscripts, but KNN demonstrates
better accuracy followed by SVM.

Supervised learning algorithms Xu, Zhang, and Liang (2013), Khunarsal,
Lursinsap, and Raicharoen (2013), Ruiz Reyes et al. (2010), Shen, Shepherd,
and Ngu (2006), Dafna, Tarasiuk, and Zigel. (2013), Acır, Özdamar et al. (2006),
Lee et al. (2006) Andreassen, Surlykke, and Hallam (2014), Lee et al. (2006),
Muhammad and Melhem (2014), Dafna, Tarasiuk, and Zigel. (2013), Liu and
Zhang (2012), Lie, Hong-Jiang, and Hao (2002), and Balochian, Seidabad, and
Rad (2013) touched the highest accuracy over 90% with employing different
dataset include public or private. Certainly with different dataset the accuracy of
supervised learning algorithms will change therefore comparing different algo-
rithms with different assumption are not accurate.

Semi-supervised learning algorithm

In accordance with the progress made on launching supervised and unsu-
pervised learning algorithms, several semi-supervised learning algorithms
have been applied to address scenarios in which the data set is augmented
with side information pertaining to the classification of part of the data.
Table 7 illustrates the percentage of all research articles implementing semi-
supervised learning algorithms.

Table 7. Evaluation of semi-supervised learning algorithms.

Ref Method
Accuracy
Rate Type of input

(Moreno and
Agarwal 2003)

EM-based algorithms for semi-supervised
learning with a Gaussian mixture model

Error
reduction:
5.04%

Speech

(Cui, Jing, and
Jen-Tzung 2012)

Cross-view transfer learning for LVCSR through a
committee machine

Accuracy:
82.95%

Speech

(Yangqiu and
Changshui 2008)

EM algorithm to adaptively learn the fusion
scores

Accuracy:
75%

Non-speech

(Rongyan et al.
2010)

TSVM algorithm for automatic AE annotation Accuracy:
89.6%

Speech/Non-speech

(Guz et al. 2010) Self-training and co-training classification using
lexical and prosodic information

Accuracy:
74.2%

Speech

(Li, Zhang, and Ma
2012)

The CBSL algorithm first selects the sentence
level training corpus and then introduces the
confirmation criterion to select the word level
corpus

Accuracy:
98.83%

Speech

(Yanan et al. 2012) A semi-supervised gait recognition algorithm
based on self-training

Accuracy:
92.4%

Non-speech
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In Table 7, Li, Zhang, andMa (2012), managed to attain 98.83% classification
accuracy using the semi-supervised incremental learning of a large vocabulary
continuous speech recognition (LVCSR) system named confirmation-based
self-learning (CBSL). Other researchers have proven there is a possibility of
over 85% accuracy using the established Gait dataset (Yanan et al. 2012) or
TSVM algorithm for automatic AE annotation (Rongyan et al. 2010). But in
certain circumstances, even though changing the dataset will not improve the
accuracy results and a stable average will be around 60% (Tianzhu et al. 2012).
Figure 9 demonstrates the percentage of all research articles that implement
semi-supervised learning algorithms.

Comparative discussion of accuracy rate and false alarm rate evaluation

Theoretically, supervised, unsupervised and semi-supervised learning algo-
rithms only differ in terms of the causal structure of the model. In supervised
learning, a qualified person or trained system can properly label the dataset of
instances to be used for training. On the other hand, unsupervised learning does
not involve labeled data and attempts to find similar patterns in the data to
determine the output. Finally, semi-supervised learning is actually a supervised
method that avoids labeling a large number of instances. The main objective of
AED systems is tomaximize classification accuracy andminimize error and false
alarm rates. Consequently, the performance of audio event detection schemes
for audio signal classification was measured by computing some evaluation
metrics, such as classification rates, false alarm rates and error rates for all
proposed methods. Table 5, 6, and 7 provide full information on classification
and false alarm rates while Figure 9 compares the average accuracy rates of the
most popular classification and detection methods.

Figure 9. Comparison of semi-supervised learning algorithms in terms of accuracy rate.
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Figure 10 summarizes the results of different technologies for unsupervised,
supervised and semi-supervised classification algorithms, regardless of dataset and
environment. The best results are produced by supervised learning algorithms,
with an average of 90.13%. The second best results are from semi-supervised
methods with 82.99% average followed by 81.07% average for unsupervised
methods. GMM is more accurate among unsupervised methods, although Itoh,
Takiguchi, and Ariki (2013), demonstrated it is possible to achieve better results in
recall with the HMM method. Among supervised methods, the KNN, Adaboost,
LDA, SVM and rule-based have shown high output levels; nevertheless, SVM is
more interesting for researchers. On the other hand, Xu, Zhang, and Liang (2013),
achieved around 99% accuracy demonstrated that the rule-based method is also
somewhat capable of achieving one of the best results among supervised methods.

Conclusion and future work

A detailed taxonomy of audio event detection and classification systems was
presented in this review. The scope of this review was to analyze researchers’
attempts to explore potential solutions that augment AED. The attempts are
expected to maximize audio signal classification accuracy. This review essentially
focused onmachine learning and classificationmethods for audio event detection.
Throughout this work, published articles related to AED were reviewed, assessed,
and grouped into three different trends: unsupervised, supervised, and semi-
supervised learning algorithms. A discussion was expanded based on critical
comparisons of audio detection methods and algorithms according to accuracy
and false alarms by using different datasets. In brief, the classificationmanagement
techniques can be improved by reducing the false alarm rates, increasing the
detection rates and enhancing AED classification accuracy.

There are also recent contributions in deep learning algorithms applied to
AED. Some recent representative and significant such results are in publications:

Figure 10. Comparison of supervised, unsupervised and semi-supervised learning algorithms in
terms of accuracy rate.
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Cakir et al. (2015), Parascandolo, Heikki et al. (2016), Gencoglu, Virtanen, and
Huttunen (2014), Kumar and Raj (2016), Espi et al. (2015), McLoughlin et al.
(2015), Schlüter (2016). In future work, we plan to write a review on deep
learning algorithms applied classification of methods in AED.

Abbreviation

Adaptive Boosting AdaBoost
Adaptive resonance theory ART
Artificial neural networks ANNs
Audio event detection AED
Bayesian Networks BNs
Belief-based k-nearest neighbor BK-NN
Confirmation-based self-learning CBSL
Directed acyclic graph DAG
Discrete cosine transform DCT
Discrete Fourier Transform DFT
False Negative Rate FNR
False Positive Rate FPR
Fast Fourier Transform FFT
Fast Graph-based Semi-supervised
multiple instance learning

FGSSMIL

Fuzzy rule-base classifier FRBC
Gaussian Mixture Models GMM
Gaussian mixture models GMMs
Hidden Markov Models HMM
Hierarchical clustering HC
Hierarchical HMMs HHMM
Intelligent surveillance systems ISS
Joint probability distribution JPD
K-nearest neighbor algorithm K-NN
Large vocabulary continuous speech recognition LVCSR
Latent Factor Analysis LFA
Line spectral frequency LSF
Linear Discriminant Analysis LDA
Linear Prediction Coefficients LPC
Linear predictive cepstral coefficient LPCC
Mel-frequency cepstral coefficients MFCCs
Modulation MFCC Mod-MFCC
Multi-layer Perceptron MLP
Mutual k-NN Classifier Mk-NNC
Null space-based LDA NLDA
Perceptual linear prediction PLP
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Radial Basis Function RBF
Random forest RF
Self-organizing map SOM
Spectral sub-band centroids SSCs
Support vector machines SVMs
traditional surveillance systems TSS
Transductive support vector machines TSVMs
True Negative Rate TNR
True Positive Rate TPR
Zero-crossing rate ZCR
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