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ABSTRACT

Wikipedia has become the de facto source for information on
the web, and it has experienced exponential growth since its
inception. Text Classification with Wikipedia has seen limited
research in the past with the goal of studying and evaluating
different classification techniques. To this end, we compare
and illustrate the effectiveness of two standard classifiers in
the text classification literature, Naive Bayes (Multinomial) and
Support Vector Machines (SVM), on the full English Wikipedia
corpus for six different categories. For each category, we build
training sets using subject matter experts and Wikipedia por-
tals and then evaluate Precision/Recall values using a random
sampling approach. Our results show that SVM (linear kernel)
performs exceptionally across all categories, and the accuracy
of Naive Bayes is inferior in some categories, whereas its gen-
eralizing capability is on par with SVM.

Introduction

Classification is a machine learning technique for assigning labels to unseen
data based on models built using an algorithm and labeled data. It consists of
a training phase and a testing phase. Classification is also considered as a
supervised learning technique because of the presence of a training phase. It
can be performed on any type of data — text, images, videos, web data,
numbers, etc. Text classification deals with text data and more specifically
classifying a corpus of documents. In this context, Wikipedia offers an
excellent case study for evaluating classifiers over a large and varied dataset.

We first discuss the prior work on leveraging Wikipedia directly and indir-
ectly for classification. Then, we describe two prominent text classification
algorithms - Naive Bayes and Support Vector Machines (SVMs). Finally, we
describe the implementation and the results obtained using both these classifiers,
using two metrics indicative of the accuracy and completeness of the documents
retrieved. In our paper, we use the terms articles and documents interchangeably.
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Related work

In most previous works, Wikipedia has been used to supplement and add
context to the text classification of different datasets, rather than Wikipedia
being the direct target of the classification problem. Wang et al. (2009)
discuss the process of building a thesaurus from Wikipedia to be leveraged
in the text classification of documents. Wang and Domeniconi (2008) built
semantic kernel representation from Wikipedia thesauruses for improving
text classification accuracy and compared it with the Bag of Words (BoW)
representation. Wikipedia has also been used as a knowledge base to tag,
extract entities, and classify social media information (tweets) (Gattani et al.
2013). These papers have addressed general text classification problems with
Wikipedia as a valuable tool for additional context. However, there hasn’t
been significant research in treating Wikipedia itself as the target for classi-
fication. This paper aims to make significant progress in that regard. Mehdi
et al. (2017) published a summary of how the Wikipedia corpus has been
leveraged directly/indirectly for various purposes in research, including text
classification, which is of interest to us. Murugeshan, Lakshmi, and
Mukherjee (2009) put forward a novel approach of combining classifiers
exploiting Wikipedia’s structure and using different similarity metrics.
Although this approach produces exceptional accuracy, the generalization
capability seems to be relatively low overall, as indicated by the F-score
values. We show that an individual classifier like SVM can achieve high
Recall scores without significant hit in Precision.

Wikipedia is a massive dataset, and the classification of large datasets is a
major challenge. Parallel processing leveraging supercomputers has been
used to construct custom Decision tree classifiers for the fast processing of
classification of large datasets (Joshi, Karypis, and Kumar 1998). An efficient
forest-based algorithm has been built for the fast classification of large
datasets (Fabio et al. 2010). In our work, we limit our focus to the accuracy
and completeness of the classification process rather than general
performance.

Naive Bayes

Naive Bayes is a probabilistic learning algorithm, and its simplicity is rooted
in the assumption that the features of the underlying data are independent of
each other. Despite its simplicity and this assumption failing in many cases, it
produces surprisingly accurate results. In the text classification context, this
would mean that all the words in a document are independent of each other.
For a given training set, a vocabulary is built from the words in the corpus
and probabilities are computed for each word belonging to a particular class.
Using these computed probabilities, test documents are classified by applying
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the Bayes rule and determining the class having a higher probability, which
turns out to be the decision class. How the probabilities are computed and
the Bayes rule is applied depend on the underlying event model used. Two
widely known event models are used for Naive Bayes — the Bernoulli
(Binomial) model and the Multinomial model.

Bernoulli model

In the Bernoulli model, the vocabulary is built from the training corpus and
each document (test or training) is modeled in the context of a word’s
existence in the document. We can define it in mathematical terms as
follows. Consider a vocabulary V with n words created from a training set.
A test document D with words wy, ws, ..., w, can be represented as a vector
of zeros and ones, where w; is 1 if the word is part of the vocabulary and 0 if
not. In the training phase, for each word w in the vocabulary, we compute
the conditional probability given a class. Once these conditional class prob-
abilities are computed, in the test phase, we compute the product of all such
probabilities for each word in the test document.

Because the number of words in a document could be substantial, the
products of so many probabilities could lead to floating point underflow. To
avoid this, probabilities are stored on a logarithmic scale. The Bernoulli
model works well for small vocabulary sizes, but when the vocabulary size
exceeds 1000 words, it fails to take enough information into account (fre-
quencies) to make accurate predictions (McCallum et al. 1998). Because
Wikipedia documents are typically large and our vocabulary for each of the
categories exceeds the optimal limit for the Bernoulli model (McCallum et al.
1998), we did not proceed with it and instead opted for the more appropriate
Multinomial model.

Multinomial model

The Multinomial model encodes more information than just the existence or
absence of any particular word. In the context of Wikipedia classification,
this attribute becomes very useful. For example, consider the “Astronomy”
category. An article belonging to this category is likely to have keywords like
“Galaxy,” “Star,” “Space,” etc. Therefore, the vocabulary built from the
training set will have higher frequencies (or weights) for such domain-
specific keywords and result in higher probabilities for these keywords.
This also increases the likelihood of correctly classifying an “Astronomy”
article. In contrast, the Bernoulli model assigns equal weights (1) to words
that exist, even if they occur multiple times. We now proceed to define the
Multinomial model in mathematical terms as follows with some of the terms

» o«
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carried forward from the Bernoulli model (Manning, Raghavan, and Schiitze
2008).

V = vocabulary, extracted by tokenizing the documents in the training
corpus

C; = i class from a set of classes C

P(w;|C) = probability of the i™ word occurring for a given class C

|V| = number of words in vocabulary V
f(w,c) = frequency/count of word w in documents belonging to class ¢
f(w;,C)+1
(i) = LU (M

LI+ V]

To avoid cases of zero probabilities, we include the “1” term, which is
referred to as Laplacian Smoothing. To compensate for this, the vocabulary
size is included in the denominator.

P(c|D) = probability of class ¢ given a document D

W = extracted tokens from document D

P(c) = prior probability of class ¢

P(c|D) = [] P(wlc) + P(c )
weWw
log(P(c|D)) Zlog (w|c)) + log(P(c)) (3)
wew
Cdecision = arg max .cc(log(P(c|D)) (4)

As seen in Egs. (1)-(4), we determine the posterior probabilities for a test
document and choose the class with the maximum probability (also called
the Maximum Posterior Estimate).

Naive Bayes is a linear classifier in that the decision boundary separat-
ing the classes (in a binary classification problem) is linear. Although
efficient and simple to implement, the independence assumption can
produce false positives (FPs). For example, articles related to science
fiction could be classified as “Astronomy” as words are considered inde-
pendently and the semantic relationship (phrases or sentences) is ignored.
However, as we observe in the results, this assumption works surprisingly
well for a few categories at least, especially whose domain-specific key-
words are overall unique to Wikipedia with insignificant overlap with
other categories.

We also implemented some optimizations to Naive Bayes - removing
words with counts below a certain threshold and filtering unrelated keywords
manually. However, these adjustments did not offer much improvement in
accuracy and in some cases made it worse.
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SVMs

SVMs take a fundamentally different and sophisticated approach to classify-
ing documents. It treats classification as primarily an optimization problem.
To be more specific, we consider documents represented in a higher-dimen-
sional space. The optimization problem basically involves finding the max-
imal “hyperplane,” i.e. a plane in higher dimensional space separating the
documents of different classes, and the degree of separation between the
classes is to be maximized subject to minimizing the error. The type of
hyperplane depends on the “kernel” used to compute weights for the training
examples. Kernels can be linear, radial (RBF), or polynomial. Text categor-
ization problems are generally linearly separable, and as a result we only
consider SVMs with linear kernels in this study. SVM is defined formally as
in Egs.(5)-(7):

X1,%2, . ...X, = training documents of m-dimensions
C, and C, = classes of a binary classifier
. +1,x; € C;
yl_{—l,xi€C2 (5)

The hyperplane equation is then given by
y=wx+b (6)

Here, w is the vector normal to the hyperplane and b is the bias term added
so that optimal hyperplane can be found, as a hyperplane passing through the
origin need not necessarily be the one with the maximum margin.

The margin is given by |—3V‘ . This needs to be maximized, which in turn
means |w| needs to be minimized. The problem can then be framed as a

quadratic optimization problem subject to a constraint, as defined below.

1
minE |w|*subject to y;.(w.x + b) > 1 (7)

w,b

The constraint is that the actual training label and the predicted label must
have the same sign, i.e. the same class. The above Quadratic Program (QP)
can be solved using any standard solver, by converting it to the Lagrangian
form and then finding the multipliers/weights.

This is also called the hard margin classifier and works well in the case of
perfect linearly separable classes. As a result, it does not offer flexibility for
any violations. With Wikipedia being so large, it can be assumed that our
training set is not completely representative of all possible articles for a
category. Hence, having some violations of the maximal hyperplane is accep-
table, and to this end, we use the soft margin classifier. The soft margin
introduces a regularization parameter C, which controls the degree of
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misclassification allowed, and the optimization problem is modified to
accommodate a “slack term” (Cortes and Vapnik 1995).

1
mbini |w|*subject to yi.(w.x; + b) > 1 — ¢ (8)

Here, the ¢;s are called slack terms. In the Lagrangian form, the multipliers
become bounded by C rather than being unbounded in the hard margin
classifier. In our evaluation, we discuss the effects of varying C on the recall/
generalization capability of the model.

Document representation

The massive size of Wikipedia in its raw representation has been well
documented (Denoyer et al. 2006). We consider only the English version of
Wikipedia for the scope of this problem. The Wikipedia raw data is stored in
a custom XML format called MediaWiki. An article and its metadata are
encoded within page tags. Within a page, we can infer the article’s title, raw
text, ID, and the history of revisions. The sequence of pages is ordered by
article ID. We only consider the title and raw text for classifying the articles.
To be able to build a classification model, we need to be able to translate the
text content to a mathematical representation, which can be used in either
computing the probabilities for Naive Bayes or computing the Lagrange
multipliers in case of SVM.

The raw article text is annotated with several Wikipedia-specific tags
relating to images, URLs, and tables contained within the article. As such,
this mostly serves as noise, and extracting plain text free of noise is not
straightforward. In our experiments, we perform naive preprocessing.
Figure 1 illustrates the steps involved. Non-alphanumeric characters are
removed and then tokenization is performed with whitespace as delimiter.
Apart from basic English stop words, we also have common Wikipedia words
(part of annotated tags) included in this list as they are not domain-specific.
To deal with different forms of a word (verb, adverb, plurals, etc.) and with
the goal of consolidating such different instances, we perform stemming,
which extracts the word root and stores it as part of the vector. Alternatively,
lemmatization can also be carried out if semantic meaning has to be pre-
served. Porter stemmer is one of the standard stemming algorithms that we
leverage here.

Wikipedia Page Tokenization, removal of stop words Stemming of Document vector

A 4

Extraction (XML parser) & non-alphabetic characters tokens representation

Figure 1. Steps involved in feature extraction from Wikipedia documents.



APPLIED ARTIFICIAL INTELLIGENCE ’ 739

After stemming, we use different representations for Naive Bayes and
SVM, allowing for the best possible results in terms of accuracy and com-
pleteness. For Naive Bayes, we employ the BoW model as discussed in
previous sections and store the word along with its count across the training
documents in a dictionary. For SVM, term frequency-inverse document
frequency (tf-idf) representation works better than raw counts (McCallum
1998). The tf-idf scoring is defined in several ways (log normalized/
smoothed/probabilistic), for a word is defined as in Eqgs.(9)-(11):

w; = i word in document d

D = corpus or set of all training documents

tf(w;,d) = term-frequency of word w; in document d

idf (w;, D) = inverse document-frequency of a word w; in corpus D

n(w;,d) = number of occurrences of word w; in document d

N(w;, D) = number of documents in corpus D in which the word w;
occurs

tfidf (wi, d, D) = tf (wi, d) * idf (w;, D) 9)
where tf (w;, d) = ”(Téi 9) (10)
and idf (w;, D) = m (11)

Documents are thus represented in m-dimensional space (m is the number of
words in vocabulary) as a vector of tf-idf scores and used in the SVM
learning process to determine the optimal hyperplane.

Results

We now discuss the evaluation of the above-mentioned models for six
different categories — Astronomy, Dance, Economics, Religion, Psychology,
and Computer Science. These subjects were chosen because they are signifi-
cantly diverse in their vocabulary and as a result useful to project any
conclusions regarding the behavior of the classifiers to the Wikipedia as a
whole. The training data was chosen for some subjects using subject matter
experts, and in their absence, Wikipedia Portals.

Wikipedia has portal sections for many subjects/areas, which have links
and lists of articles that might be pertaining to that subject. Classification for
each category is treated as an independent binary classification problem (one
versus others) rather than a multi-label classification problem, for the sake of
simplicity. Thus, the classification problem for Astronomy would have two
labels “Astronomy” and “Not Astronomy.” We also collect articles reflective
of the latter label from Wikipedia for the training set, and this also applies to
other categories. The training set sizes for all the categories are around
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300-350 articles. In case of SVM, we have more articles as part of the training
set (compared to Naive Bayes) as it has been demonstrated that SVM per-
forms better with more features (Joachims 1998).

Wikipedia data is available as XML in compressed bz2 formats® provided
by the Wikimedia foundation on their website. It can be accessed as a single
large file or a series of partitions numbered up to 27. The latter becomes
useful in evaluation for sampling. Our evaluation covers only linear SVM and
Multinomial Naive Bayes.

Precision and Recall

Precision and Recall are two important metrics that can be used to evaluate a
binary classifier. Precision indicates the degree to which the documents that
were retrieved were relevant. Recall, on the other hand, indicates the degree
to which relevant documents were retrieved from all the documents in the
corpus. We use both metrics for all the binary classification problems defined
for the categories for comparison.

Evaluating Precision and Recall for a binary classifier generally involves
sampling unseen data and feeding them to the classifier. Some of the
common sampling strategies are holdout, k-fold cross-validation, Leave-p-
out cross-validation, etc. We use a different but straightforward sampling
method more suited to the vast and varying nature of the Wikipedia data.

(1) For evaluating Precision, we take numerous samples of fixed size
(e.g. 100) per a fixed number of retrieved documents (e.g. 2000)
provided by the classifier (over the whole Wikipedia dataset). These
documents were then manually checked to determine the true posi-
tives (TPs) and FPs. This strategy is repeated for all categories and
both classifiers.

(2) Recall, on the other hand, is much more challenging to evaluate as it
requires sampling over a much larger set (a substantial fraction of the
whole Wikipedia). Accordingly, we adopt a different sampling
approach involving only the partitions of the Wikipedia. From each
of the partitions (27), we randomly sample 10 sets of samples, with
each sample consisting of 200 articles. After the classification of the
sampled articles, Recall is computed over each sample and the values
are averaged to obtain the representative value.

Precision and Recall are calculated based on the following equations:
TP

Precision = —— 12
recision TP T FP (12)

where TP = true positives



APPLIED ARTIFICIAL INTELLIGENCE ’ 741

and FP = false positives

TP
Recall = —— 13
T TP EN (13)

where FN= false negatives.

All our experiments were performed on a machine with Intel Core i7
processor (2.8 GHz) and Ubuntu OS. We implemented Naive Bayes algorithm
in Java, along with a SAX parser for parsing the Wikipedia XML. For
preprocessing the data, we have stop word removal with typical English
stop words and some common Wikipedia-specific terms, which also serve
as noise. Some of these terms are HTML/XML tags for accommodating
tables, lists, and URLs within the article. Stemming is also leveraged for
extraction of root from a word using the Porter Stemmer algorithm.
Articles are classified on-the-fly during the parsing process. Naive Bayes
took nearly 4 hours for classification on the full corpus, whereas SVM took
around 17 hours for completion.

We leveraged the SVM implementation provided by scikit-learn in
Python (Fabian et al 2011). We used the LibSVM implementation
although other solvers like SMO (Platt 1999) are available. For tf-idf
representation, sub-linear tf scaling provided better accuracy. The prepro-
cessing steps are repeated here as well. For document representation, the
tf-idf representation is preferred over raw counts as the former offers
significantly higher accuracy during classification. C is set to 10 for all the
categories. Further discussion on setting this parameter follows in the next
section.

Figure 2 shows the comparison of Precision Values for Naive Bayes and
SVM across the six categories. It can be observed that SVM outperforms
Naive Bayes for all the categories with varying degrees of superiority. We
make the following inferences from the trends.

1.2
1
0.8
0.6
0.4
0.2 m Naive Bayes
0 mSVM
A & S S\ e &
& & ¢ ¢
& & '\\"30 O\OQO & o@\
\50 10)6 Q‘Z \\é\ Q o(\
2 \;@\ QL <
&K
(_,O

Figure 2. Precision values compared across categories for SYM & Naive Bayes.
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Figure 3. Recall values compared across categories for SYM & NB.

(1) SVM performs consistently well with high precision across all cate-
gories and also outperforming Naive Bayes. The latter has mixed
results and varies significantly depending on the category. It performs
significantly worse for Religion and Psychology in particular. We
found that this is due to the overlap in the vocabulary of these two
categories with various other categories, leading to misclassifications.
For example, many words in articles belonging to Religion category
are found in articles related to politics, terrorism, and philosophy,
among others. The independence assumption of Naive Bayes is
exposed as a limitation here. This problem doesn’t apply as much in
highly domain-specific categories like Astronomy, which has little
overlap across other subjects.

(2) Because SVM also finds the optimal hyperplane (with maximal margin),
the results are consistent across categories, illustrating that SVM doesn’t
make assumptions about the underlying data as Naive Bayes does.

Figure 3 shows the comparison of Recall values between Naive Bayes and
SVM for all the categories. Again, SVM performs better than Naive Bayes in
most cases, although the gap is much closer than the Precision comparison.
We also infer that Naive Bayes has very good generalization capabilities
across categories and the independence assumption is helpful in that regard.

Choosing C for SVM

Linear SVM has a regularization parameter C that determines whether the model
will possess a hard margin (wide) or soft margin (narrow with more room for
mis-predictions). Our goal initially was to extract as many articles as possible for
any particular category even if the accuracy was compromised (up to an extent).
We experimented with values of C(#0) and determined Recall values. C was
chosen to obtain high Recall. Essentially, the hard margin classifier was ignored.
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Figure 4. Recall increases with C up to 1 and then remains constant.

Figure 4 shows a plot indicating how Recall varies as C is changed for
Astronomy. For C = 0.1, we have a value of 0.75. It increases up to 0.905 for
C =1 and after that it remains constant. Hence, any value >1 is preferable for
C with Recall maximization being our goal so as to achieve completeness for
that particular category with respect to Wikipedia. We observed a similar

trend for other categories.

Conclusions

We have compared and evaluated Precision and Recall for two standard text
classifiers on the full Wikipedia corpus with mostly desirable results regard-
ing accuracy and extensibility (to different categories). However, several
challenges and shortcomings must still be addressed. A better MediaWiki
XML parser would produce a better document representation, giving even
more accurate results without any modification to existing classifiers. Deep
learning techniques like neural networks have become highly popular, and
this application can be extended to them as well as other classification
techniques. Another way to improve classification accuracy is taking into
context the non-textual content of an article, i.e. images and other media, as

part of the classification process.
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