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1. Introduction

A traditional global navigation satellite system (GNSS) 
receiver tracks each satellite independently and each channel 
does not permit information sharing among other channels. 
The performance between dynamic and noise suppression is a 
tradeoff for the tracking loop bandwidth [1, 2]. The integrated 
navigation system of GNSSs and inertial navigation systems 
(INSs) was developed to improve the accuracy and robust-
ness of the system [3–6]. The deeply-coupled (also called 
ultra-tight) navigation system is one of these effective inte-
grated systems. Some recent researches on deeply-coupled 
navigation systems include the acquisition and loop control 

algorithms [7, 8], the fusion methods of the GNSS and INS [9, 
10] and other related fields [11, 12].

Generally, deeply-coupled navigation systems can be clas-
sified as having a centralized filtering architecture or a feder-
ated filtering architecture [13–16]. However, the centralized 
filtering architecture suffers from a high computation burden 
and complex relationship between in-phase/quadra-phase 
(I/Q) correlator outputs and INS errors for hardware imple-
mentation [15]. Thus, only the federated filtering architecture 
will be discussed in the following sections of this paper.

In the federated architecture, the I/Q measurements are 
firstly pre-processed by a series of pre-filters and then the 
integrated navigation filter is used to process the output of 
the pre-filters and to restrict the INS errors. The INS naviga-
tion solutions and GNSS ephemerides are used to control 
the numerically controlled oscillators (NCOs) of code and 
carrier [16].

The pre-filter is a key technology of the deeply-coupled 
navigation system, which can be mainly divided into two 
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categories, coherent and non-coherent [17, 18]. The coherent 
algorithm inputs the GNSS accumulated correlator outputs, 
i.e. the Is and Qs, directly to the Kalman filter as measure-
ments. The non-coherent algorithm firstly passes the Is and Qs 
through code and carrier discriminator functions, similar to 
those used in conventional GNSS signal tracking. The coherent 
algorithm bypasses the discriminators, avoiding the introduc-
tion of unmodeled nonlinear in the measurement inputs to the 
Kalman filter, and can reach a less noisy tracking performance 
than the non-coherent algorithm. However, it is unsuited to 
applications that require operation under low signal-to-noise 
environments as both code and carrier-frequency tracking can 
be maintained at a lower carrier power-to-noise density ratio 
(C/N0) than carrier-phase tracking. On the contrary, the non-
coherent algorithm can work well whether there is sufficient 
C/N0 to track carrier phase because the code discriminator 
function is independent of the carrier phase. This enables the 
non-coherent algorithm to maintain tracking in weaker signal 
environments than the coherent algorithm.

In order to improve the accuracy and robustness of the 
system, an adaptive deeply-coupled GNSS/INS navigation 
system with hybrid pre-filters processing is proposed in this 
paper. The existing pre-filter algorithms are analyzed and mod-
ified to overcome their shortcomings firstly. Then, a hybrid-
based pre-filter processing strategy is introduced. An adaptive 
hysteresis controller is designed to implement the hybrid pre-
filters processing strategy. Finally, the simulation and vehicle 
tests are conducted to assess the system’s performance.

2. Hybrid-based adaptive pre-filter processing

2.1. Analysis of the existing pre-filter algorithms

There are three main structures of pre-filter, as summarized 
in [14]. The existing coherent pre-filter algorithm (option #1 
in [14]) follows closely the filter implementation proposed in 
[19, 20]. The correlator outputs shown in (1) and (2) are used 
directly as the measurements of the Kalman filter,

I = A · sin(π · δf · T)
π · δf · T

· D · R(δτ +∆k) · cos(δΦ̄) + nI (1)

Q = A · sin(π · δf · T)
π · δf · T

· D · R(δτ +∆k) · sin(δΦ̄) + nQ (2)

where A represents the accumulated amplitude, T  is the integra-
tion period, D is the navigation data bits of the GNSS, R (·) is 
the autocorrelation function of the ranging code, δτ is the code 
phase bias between the local replica code and the incoming 
signals and δf  is the frequency error (Hz) between the local 
replica frequency and the incoming signals. ∆k is the correlator 
spacing for early, prompt and delay code, where k = −1, 0, 1. 
nI and nQ are the noise of I and Q. δΦ̄ is the average phase error 
over the integration interval, which can be written as

δΦ̄ = δφ0 +
1
2
δf0T +

1
6
δa0T2 (3)

where δφ0 and δf0 indicate the initial phase error and the initial 
carrier frequency error at the start of the integration interval, 
respectively, and δa0 is the carrier phase acceleration error.

The system model for this implementation is written as 
follows:

d
dt




A
δτ

δϕ0

δf0
δa0



=




0 0 0 0 0
0 0 0 β 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



·




A
δτ

δϕ0

δf0
δa0




+




1 0 0 0 0
0 1 α 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



·




wA

wmp

wclock

wdrift

waccel




 

(4)

where β converts units of rad/s into units of chips per second. 
wA is the process noise for the amplitude; wmp is the process 
noise for the code phase error to account for code multipath 
effects; wclock is the process noise for the clock bias; wdrift is 
the process noise for the clock drift; and waccel is the process 
noise for the phase acceleration (which is related to the receiver 
dynamics).

For the first existing non-coherent pre-filter algorithm 
(option #2 in [14]), the system model is the same as option 
#1, whereas the measurements are changed to the output of 
the carrier discriminator function and combination of I and Q, 
which are shown as follows:

Z1 = δφ̄ = arctan (QP/IP ) (5)

Z2 =
√

I2 + Q2 = A · sin(π · δf · T)
π · δf · T

D · R(δτ +∆k). (6)

The relationship between states and measurements in option 
#1 would be nonlinear, and option #2 has the problem of the 
measurement noise correlation originating from the nonlinear 
combination of Is and Qs data. Besides, the signal amplitude 
item in option #1 may suffer the initial value setting problem 
and cause a convergence speed of the filter in some cases like 
a sudden change of the signal amplitude. Conversely, we can 
exclude the signal amplitude A from the system model and 
estimate it separately and quickly using the C/N0 estimator. 
This change can avoid the initial signal ampl itude value set-
ting of the filter, speed up the convergence speed of the filter, 
and also reduce the dimensions of the Kalman filter. The 
signal amplitude item in option #2 is not needed and can also 
be excluded from the state vector.

The system model of the second existing non-coherent pre-
filter algorithm (Option #3 in [14]) is shown as follows:

d
dt




A
δρ0

δρ̇0

δρ̈0

δIon



=




0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0



·




A
δρ0

δρ̇0

δρ̈0

δIon




+




1 0 0
0 0 0
0 0 0
0 1 0
0 0 1



·




wA

waccel

wIon




 

(7)
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where A is the normalized signal amplitude, δρ0 is the pseudor-
ange error, δρ̇0 is the pseudorange error rate, δρ̈0 is the pseudo-
range error accelerator, and δIon  is the ionospheric error.

The accuracy of the pseudorange information and iono-
spheric correction error information (especially in single-
point operation) are usually not accurate enough for carrier 
phase tracking in vector-tracking and deeply-coupled mode. 
Therefore, option #3 is not appropriate for carrier tracking, 
as concluded by [14].

2.2. Modification and improvement of the pre-filter algorithms

2.2.1. Coherent pre-filter algorithm. Firstly, we exclude the 
signal amplitude A from the system model and estimate it 
separately using the C/N0 estimator. The detail of A in (1) and 
(2) can be further described as

A =
√

2 · (c/n0) · T · σIQ (8)

where c/n0 represents the carrier power-to-noise density (unit 
of Hz), T  is the integration interval, and σIQ is the standard 
deviation of noise.

Then, the state vector and the system model of the coherent 
pre-filter algorithm can be modified as

Xcoh = [δτ , δφ0, δf0, δa0]
T (9)

d
dt




δτ

δϕ0

δf0
δa0


 =




0 0 β 0
0 0 1 0
0 0 0 1
0 0 0 0


 ·




δτ

δϕ0

δf0
δa0




+




1 α 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ·




wmp

wclock

wdrift

waccel


 .

 

(10)

It is known that in the coherent pre-filter algorithm, the 
GNSS accumulated correlator outputs Is and Qs directly to 
the Kalman filter as measurements in the coherent algorithm. 
The six-measurement model with measurements in-phase and 
quadra-phase prompt, early and late (IP, QP, IE, QE, IL and QL) 
are used as the pre-filter algorithm, shown as

Zcoh = A · D · h (Xcoh) + nIQ (11)




IE

QE

IP

QP

IL

QL



=




A · sinc (δf · T) · D · R(δτ +∆−1) · cos(δΦ̄)
A · sinc (δf · T) · D · R(δτ +∆−1) · sin(δΦ̄)
A · sinc (δf · T) · D · R(δτ +∆0) · cos(δΦ̄)
A · sinc (δf · T) · D · R(δτ +∆0) · sin(δΦ̄)

A · sinc (δf · T) · D · R(δτ +∆+1) · cos(δΦ̄)
A · sinc (δf · T) · D · R(δτ +∆+1) · sin(δΦ̄)



+




nIE

nQE

nIP

nQP

nIL

nQL




.

 
(12)

Besides, the ideal autocorrelation function R (·) is not dif-
ferentiable and also not realistic when the input RF signal has 
passed through a band-pass filter [21–23]. A more realistic 
autocorrelation function, which is a 6th order polynomial 
approximation of R (·), is used in the local filter as follows:

R (τ) ≈ x6τ
6 + x5τ

5 + x4τ
4 + x3τ

3 + x2τ
2 + x1τ + x0. (13)

As shown in figure  1, the blue curve denotes the actual 
measured curve coming from the GNSS IF signal collector, 
the black curve is the nominal autocorrelation curve and the 
red curve denotes the fitting curve of the 6th order polyno-
mial approximation (prompt branch). The other two curves 
are fitting curves of the 6th order polynomial approximation 
for early and late branches, respectively. It can be seen that 
the fitting curves of the 6th order polynomial approximation 
are more realistic than the nominal autocorrelation curve, 
especially when the code phase error is small. Although the 
approximation needs more computation than the nominal 
autocorrelation function, it can get a better accuracy of the 
autocorrelation function.

To solve the nonlinear problem and get a higher filter 
accuracy, a five-degree cubature Kalman filter (5th-CKF) 
for the coherent pre-filter is proposed. The 5th-CKF uses 
a series of cubature points to propagate the a priori and  
a posteriori statistical characteristics. The core of the CKF 
is a cubature transformation based on the spherical-radial 
rule [24, 25].

The five-degree spherical-radial cubature rule’s points and 
weights can be calculated as follows:




ξ0 = 0 , w0 = 2
n+2

ξ1i =
√

n + 2ei

ξ2i = −
√

n + 2ei

}
, w1 = 4−n

2(n+2)2 (i = 1, 2, . . . , n)

ξ3i =
√

n + 2s+i
ξ4i = −

√
n + 2s+i

ξ5i =
√

n + 2s−i
ξ6i = −

√
n + 2s−i





, w2 = 1
(n+2)2 (i = 1, 2, . . . , n(n−1)

2 )

 (14)
where ei denotes a unit vector in the direction of coordinate 
axis i. s+i  and s−i  are described as

{
s+i =

√
1/2 (ej + el)

s−i =
√

1/2 (ej − el)

(i = 1, 2, . . . , n(n−1)
2 , j < l, j, l = 1, 2, . . . , n).

 (15)

The coherent pre-filter based on 5th-CKF works as follows.

Figure 1. The fitting curve of 6th order polynomial approximation 
for code autocorrelation function.
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2.2.1.1.Time update. The posterior probability density of xk−1 
is known in previous update p (xk−1) = N

(
xk−1|k−1, Pk−1|k−1

)
. 

The Cholesky decomposition of Pk−1|k−1 is calculated as follows:

Pk−1|k−1 = Sk−1|k−1 ST
k−1|k−1. (16)

The cubature points are calculated as




X0,k−1|k−1 = Sk−1|k−1ξ0 + x̂k−1|k−1

Xri,k−1|k−1 = Sk−1|k−1ξri + x̂k−1|k−1,
(r = 1, 2, . . . , 6; i = 1, 2, . . . , n)

. (17)

Then, the sample points are obtained by propagating the 
above cubature points through the system model in (10), as 
follows:




X∗
0,k|k−1

= F
(
X0,k−1|k−1

)

X∗
ri,k|k−1 = F

(
Xri,k−1|k−1

)
,

(r = 1, 2, . . . , 6; i = 1, 2, . . . , n)
 (18)

where F is the system matrix of the coherent pre-filter.
One-step state prediction x̂k|k−1 is then obtained by the 

weighted linear combination of sample points, as follows:

x̂k|k−1 = w0X∗
0,k|k−1 + w1

n∑
i=1

2∑
r=1

X∗
ri,k|k−1

+w2

n(n−1)/2∑
i=1

6∑
r=3

X∗
ri,k|k−1.

 (19)

One-step state prediction error covariance Pk|k−1 is updated 
as follows:

Pk|k−1 = w0X∗
0,k|k−1X∗T

0,k|k−1

+w1

n∑
i=1

2∑
r=1

(
X∗

ri,k|k−1X∗T
ri,k|k−1

)

+w2

n(n−1)/2∑
i=1

6∑
r=3

(
X∗

ri,k|k−1X∗T
ri,k|k−1

)

−x̂k|k−1x̂T
k|k−1

+ Qk−1.

 

(20)

2.2.1.2.Measurement update. The Cholesky decomposition 
of Pk|k−1 is calculated as follows:

Pk|k−1 = Sk|k−1 ST
k|k−1. (21)

The cubature points are calculated as



X0,k|k−1 = Sk|k−1ξ0 + x̂k|k−1

Xri,k|k−1 = Sk|k−1ξri + x̂k|k−1,
(r = 1, 2, . . . , 6; i = 1, 2, . . . , n)

. (22)

Then, the sample points are obtained by propagating the 
above cubature points through the measurement equation  in 
(11), as follows:




Z∗
0,k|k−1

= A · D · h
(
X0,k|k−1

)

Z∗
ri,k|k−1 = A · D · h

(
Xri,k|k−1

)
,

(r = 1, 2, . . . , 6; i = 1, 2, . . . , n)
. (23)

One-step measurement prediction ̂zk|k−1 is then obtained by 
the weighted linear combination of sample points as follows:

ẑk|k−1 = w0Z∗
0,k|k−1 + w1

n∑
i=1

2∑
r=1

Z∗
ri,k|k−1

+w2

n(n−1)/2∑
i=1

6∑
r=3

Z∗
ri,k|k−1.

 

(24)

The auto-correlation covariance matrix Pzz,k|k−1 is obtained 
as

Pzz,k|k−1 = w0Z∗
0,k|k−1Z∗T

0,k|k−1

+w1

n∑
i=1

2∑
r=1

(
Z∗

ri,k|k−1Z∗T
ri,k|k−1

)

+w2

n(n−1)/2∑
i=1

6∑
r=3

(
Z∗

ri,k|k−1Z∗T
ri,k|k−1

)

−ẑk|k−1ẑT
k|k−1

+ Rk.

 

(25)

The cross-correlation covariance matrix Pxz,k|k−1 is calcu-
lated as follows:

Pxz,k|k−1 = w0X∗
0,k|k−1Z∗T

0,k|k−1

+w1

n∑
i=1

2∑
r=1

(
X∗

ri,k|k−1Z∗T
ri,k|k−1

)

+w2

n(n−1)/2∑
i=1

6∑
r=3

(
X∗

ri,k|k−1Z∗T
ri,k|k−1

)
− x̂k|k−1ẑT

k|k−1
.

 

(26)
The Kalman filter gain is calculated as follows:

Wk = Pxz,k|k−1P−1
zz,k|k−1

. (27)

The state estimation x̂k|k is calculated as follows:

x̂k|k = x̂k|k−1 + Wk
(
zk − ẑk|k−1

)
. (28)

The state estimation error covariance Pk|k is calculated as 
follows:

Pk|k = Pk|k−1 − WkPzz,k|k−1WT
k (29)

where x̂k|k and Pk|k are used in the next iteration.

2.2.2. Non-coherent pre-filter algorithm. For the non-coherent  
pre-filter algorithm, we simplify the state vector and the sys-
tem model as

XnonCoh = [δτ , δf , δa]T (30)

d
dt




δτ

δf
δa0


 =




0 0 0
0 0 1
0 0 0


 ·




δτ

δf
δa0




+




1 0 0
0 1 0
0 0 1


 ·




wmp

wdrift

waccel


 .

 

(31)

Meanwhile, the measurements are designed as

ZnonCoh = [δτ , δf ]T (32)

[
δτ

δf

]
=



(1 −∆) ·

√
I2
E+Q2

E−
√

I2
L+Q2

L√
I2
E+Q2

E+
√

I2
L+Q2

L
arctan2(Pcross,Pdot)
2π·[t(n)−t(n−1)]


+

[
nτ

nf

]
 (33)
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where Pcross = IP (n − 1)QP(n)− QP (n − 1) IP(n) and 
Pdot = IP (n − 1) IP(n) + QP (n − 1)QP(n).

The modification can be summarized as follows.
First, the signal amplitude and carrier phase error state are 

excluded from the system model shown in (31). Then, we 
replace the carrier phase discriminator by a carrier frequency 
discriminator to estimate the carrier frequency error and its 
derivatives. The output of the code phase discriminator is used 
to observe the code errors, which can be seen in (33). Besides, 
it can be seen from (31) that the code state and carrier state are 
modeled as independent of each other.

The reason is that the noise characteristics of I and Q almost 
fulfill an additive white Gaussian noise (AWGN) assumption, 
so the measurement noise of the coherent pre-filter algorithm 
would be independent. However, the discriminators’ outputs 
or the nonlinear combinations of Is and Qs data are considered 
as measurement information in the non-coherent pre-filter 
algorithm, so any two kinds of the measurement noise would 
not be independent, which violates the a priori condition of 
the Kalman filter [26]. Thus, we use the carrier frequency dis-
criminator to keep carrier tracking in order to get a robustness 
performance. The carrier phase tracking is mainly maintained 
by traditional carrier phase discriminator in (5), but only the 
carrier frequency tracking would be maintained in a lower  
C/N0 environment. In addition, the independent modelling of 
the code and carrier state would further reduce the influence 
of measurement correlation.

2.3. Hybrid-based adaptive pre-filter strategy

In order to improve the accuracy and robustness of the system, 
this paper proposes a hybrid-based adaptive pre-filter strategy 
according to the level of C/N0. The diagram of the proposed 
system is shown in figure 2.

The adaptive hysteresis controller is designed to imple-
ment an automatic switch between coherent and non-coherent 
modes. First, the C/N0 estimation is calculated by the method 
of narrow-to-wideband power ratio (NWPR) [27]. The prompt 
I and Q samples over the accumulation interval τ  are divided 

into M intervals. These samples are then used to calculate a 
narrowband power, Pnb, over the whole accumulation interval 
and a wideband power, Pwb, over the interval τ/M , then 
summed over τ . These power estimates are described as

Pwb =

M∑
i

(
I2
Pi + Q2

Pi

)
 (34)

Pnb =

(
M∑
i

I2
Pi

)2

+

(
M∑
i

Q2
Pi

)2

 (35)

where IPi =
√

2 (c/n0) τ/Mcosϕ+ ωIPi and QPi =  √
2 (c/n0) τ/Msinϕ+ ωQPi. The ωIPi and ωQPi are normalized 

random noise samples from a zero-mean unit variance normal 
Gaussian distribution.

The narrow-to-wide power ratio, Pnw, is simply the ratio of 
the two power measurements. However, to reduce the noise, 
the measurement is averaged over K iterations. Thus,

µP =
1
K

K∑
k=1

Pnw. (36)

Finally, the measured carrier power-to-noise density (Hz) is 
derived as a function of the power ratio measurement, shown 
as

c/n0 =
M
τ

µP − 1
M − µP

. (37)

Besides, the standard deviation of the can be calculated as 
follows:

σ (c/n0) =
M
τ

M − 1

(M − µP)
2
σ (Pnw)√

K
. (38)

Just as the C/N0 value contains errors, a single threshold 
used to decide whether to switch the system mode or not may 
cause an abnormal frequency switch between the system’s 
modes. To avoid this case, the adaptive hysteresis controller 
is designed based on the thought of a hysteresis-comparator 
circuit, which is shown in figure 3.

Figure 2. Adaptive robust deeply-coupled architecture with hybrid pre-filters processing.
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The controller is initialized in coherent mode and its con-
trol direction is set as down to allow the system to switch 
to non-coherent mode if the C/N0 is lower to K1. The lower  
C/N0 threshold is preset by the user (e.g. 35 dB-Hz) according 
to the coherent mode’s better work range; the mode will 
change to coherent mode when the signal enhances again and 
exceeds the K0 threshold.

The threshold interval is decided based on the standard 
deviation of the C/N0 in (38) adaptively. A simple empirical 
value of the threshold interval can also be set (e.g. 1–3 dB-Hz) 
according to the empirical accuracy of the C/N0.

In the hybrid pre-filter’s processing strategy, the integrated 
filter’s measurements from the coherent pre-filter’s output and 
non-coherent pre-filter’s output are weighted by their noise 
covariance.

3. The design of the integrated navigation filter  
and NCO feedback control

3.1. Integrated navigation filter

The deep fusion of the combined GNSS and INS is accom-
plished by an integrated navigation filter. The states vector 
matrix Xnav of the navigation filter is shown as

Xnav = [δϕ, δλ, δh, δve, δvn, δvu,φx,φy,φz,
εbx, εby, εbz,∇x,∇y,∇z, δtu, δtf ]

T .
 

(39)

The navigation filter estimates the errors of the user’s three 
position, three velocity, three attitude, three gyroscope bias, 
three acceleration bias, clock bias and clock drift, respectively. 
The position error states are shown in a geodetic coordinate 
system. The velocity error states are shown in an east-north-
up (ENU) frame.

The outputs of the hybrid pre-filters are taken as measure-
ments for the integrated filter based on the errors of the replica 
code and carrier signals having relationships with the residual 
errors of the INS. The measurement of the integrated filter can 
be written as

Znav =

[
δρ1, δρ2, · · · , δρn,
δρ̇1, δρ̇2, · · · , δρ̇n

]T

 
(40)

where δρj and δρ̇j represent the pseudorange and pseudorange 
rate residual of jth satellite respectively. The measurement 
states are derived from the following equation:

[
δρ

δρ̇

]
=

[
δτ · c

fcode0

−δf · c
fcarrier0

]
 (41)

where δτ  and δf  are the code phase error and carrier fre-
quency error coming from the pre-filter, respectively. fcarrier0 
and fcode0 denote the normalized carrier frequency and the 
ranging code chipping rate of GNSS signals. c is the speed 
of light.

The observation matrix given below in (42) is linearized at 
each measurement epoch to accommodate the error measure-
ments from each channel:

Hnav =




s1
x s1

y s1
z 01×12 1 0

...
...

...
...

...
...

sn
x sn

y sn
z 01×12 1 0

01×3 t1
x t1

y t1
z 01×10 1

...
...

...
...

...
...

01×3 tn
x tn

y tn
z 01×10 1




 (42)

where




s j
x

s j
y

s j
z




T

=




e j
x

e j
y

e j
z




T

· C1 =




e j
x

e j
y

e j
z




T

·




−(Rn + h)sinϕcosλ −(Rn + h)cosϕsinλ cosϕcosλ
−(Rn + h)sinϕsinλ (Rn + h)cosϕcosλ cosϕsinλ[
Rn(1 − f 2) + h

]
cosϕ 0 sinϕ




 (43)



t j
x

t j
y

t j
z




T

=




e j
x

e j
y

e j
z




T

· C2 =




e j
x

e j
y

e j
z




T

·



−sinλ −sinϕcosλ cosϕcosλ
cosλ −sinϕsinλ cosϕsinλ

0 cosϕ sinϕ


 .

 (44)
(ϕ,λ, h) are latitude, longitude and height over the ellip-

soid, respectively. Rn is the radius of curvature in prime ver-
tical and f is the degree of rotating ellipsoid. C1 and C2 are the 
transform matrixes of different coordinate systems for posi-
tion and velocity, respectively. 

(
e j

x, e j
y, e j

z

)
 are the components 

of the unit vector in the line-of-sight direction from the user 
navigation solutions to the jth GNSS satellite, which can be 
calculated as follows:




e j
x

e j
y

e j
z


 =

X j
s − Xu∥∥X j
s − Xu

∥∥ (45)

where Xu and X j  are the position of the user and jth GNSS 
satellite, respectively.

3.2. NCO feedback control

The information feedback from the integrated navigation 
solution to the GNSS tracking loops forms another impor-
tant part of the deep-coupling strategy. The corrected position 
and velocity states of the INS and the estimated clock states 
are converted into pseudoranges and range rates (Doppler 

Figure 3. The adaptive hysteresis controller.
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frequencies), and subsequently used to update the code and 
carrier NCOs.

The Doppler frequency for the jth tracking channel is pre-
dicted using (46) or can be a filtered version of its measurement:

f̂ j
d =

−
(
(ν̂u − ν j

s) · e j + t̂f − t j
f

)
· fcarrier0

c
 (46)

where ν j
s  and t j

f  are the velocity vector and clock drift of the 
jth satellite. νu and ̂tf  are the user’s velocity vector and clock 
drift. c is the speed of light.

Then, the carrier frequency is generated as

f̂ j
carrier = fIF + f̂ j

d + fnco

= fIF −
((ν̂u−ν j

s )·e
j+̂tf −t j

f )·fcarrier0

c + fnco
 (47)

where fnco is the carrier NCO correction item which is gen-
erated by the estimated carrier phase errors after passing the 
carrier loop filter.

The pseudorange for the jth tracking channel is predicted 
in (48):

ρ̂ j− =
∥∥X−

u − X j−
s

∥∥+ t̂−u

=

√
(x̂−u − x j−

s )
2
+ (ŷ−u − y j−

s )
2
+ (ẑ−u − z j−

s )
2
+ t̂−u

 (48)

where x̂−u , ŷ−u , ẑ−u  and ̂t−u  are the user’s predicted position and 
clock bias. x̂ j−

s , ŷ j−
s , ẑ j−

s  are the jth satellite’s position. The 
code frequency is generated as

f̂ j
code,k+1 = fcode0 ·

[
1 −

ρ̂ j−
k+1 − ρ̂ j−

k

c · τN

]
 (49)

where τN  is the code NCO update period. k denotes the kth 
update of the NCO.

Another way of generating the code frequency is by using 
the carrier-aided code structure, which can be expressed as 
follows:

f̂ j
code = fcode0 ·

(
1 + f̂ j

d · 1
fcarrier0

)
. (50)

4. Results and discussions

4.1. Test description

Two sets of kinematic data were used to compare the perfor-
mance of the adaptive deeply-coupled system with hybrid pre-
filters processing. The first kinematic data were collected using a 
hardware GNSS simulator to assess the performance of the mod-
ified pre-filter algorithms. The second data were collected using 
vehicle tests to compare the performance of the adaptive deeply-
coupled system with hybrid pre-filters processing (Hybrid-DC), 
the single coherent deeply-coupled method (Coherent-DC) and 
the single non-coherent deeply-coupled method (nonCoherent-
DC) under a GNSS-challenged environment.

4.1.1. Simulation test description. The HWA-RNSS 7300 
hardware simulator is a multiple constellation and frequency 

GNSS simulator. The GNSS IF signal collector is a digital 
down converter that can receive GNSS signals through the 
GNSS antenna and then convert the high-frequency GNSS 
signals down to lower frequency signals. The data collection 
process is shown in figure 4.

In this simulation, the GPS L1 CA signals are simulated. 
The parameters of the simulated errors are set by the simu-
lator and the known broadcast ephemeris which is stored in 
the simulator. The simulated errors include ionospheric error 
(using the Klobuchar model), tropospheric error (using the 
Hopfield model), the errors of broadcast orbits, the satellites’ 
clock errors and relativistic effect. All these errors are preset 
by the simulator.

Besides, the true trajectory files from the hardware simu-
lator are used to simulate the IMU information. Table 1 shows 
the detail parameters defined in the simulation test system.

4.1.2. Vehicle test description. The vehicle experiment plat-
form consists of a GNSS IF signal collector, three inertial 
measurement units based on micro-electro-mechanical sys-
tems (MEMS-IMUs, only one used), two GNSS antenna (only 
one used), a splitter, a data logging computer and a reference 
system.

The experiment equipment is carried on a car, shown in 
figure 5(a). Figure 5(b) shows the data collection system. The 
GNSS IF signal collector is the same as above in figure 4. The 
IMU is manufactured by Inertial Labs. The reference system 
is shown in figures 5(c) and (d). Two ProPak6 receivers are 
used as rover receiver (configured as a GNSS/INS version) 
and base station receiver, respectively. The detail parameters 
defined in the vehicle test system are the same as the simula-
tion test, which is shown in table 1.

Figure 4. Data collection process with GNSS hardware simulator.

Table 1. Parameters defined in the system.

Parameter Values

Gyro bias 1 deg h−1

Gyro noise density 0.004 deg/s/
√

Hz
Accelerometer bias 0.005 mg
Accelerometer noise density 0.015 mg/

√
Hz

GNSS sampling frequency 16.369 MHz
GNSS IF frequency 3.996 MHz
Coherent integration time 10 ms
Pre-filter period 100 Hz
Integrated filter period 10 Hz
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The proposed system works in single-point mode, while 
the reference system works in RTK mode and provides the 
precise position and velocity results as references to evaluate 
the performance of the proposed system.

4.2. Test results and discussions

4.2.1. Simulation test. During the test, the parameters of vis-
ible satellites and received signal power were set and shown 
in table 2.

The existing coherent pre-filter (E-Coherent), modified 
coherent pre-filter (M-Coherent), existing non-coherent pre-
filter (E-nonCoherent) and modified non-coherent pre-filter 
(M-nonCoherent) methods are compared firstly for their 
tracking and navigation performance.

The carrier phase lock indicator (PLI) is used as the data 
analysis criterion. The PLI can be expressed as

PLI ≈ cos (2δϕ) . (51)

The PLI is equal to 1 when the phase is perfectly locked 
and it is equal to  −1 when the phase has no lock. We chose 
four satellites – SV2, SV10, SV17 and SV28 – to analyse the 
performance of the different algorithms.

Figure 6 shows the variation in carrier PLI of SV17 and 
SV28 using different pre-filter algorithms. Table 3 shows the 
PLI value statistics.

The Doppler frequency reference value from the hardware 
simulator is used to assess the tracking accuracy of Doppler 
frequency for the different algorithms. Figures  7–10 shows 
the Doppler frequency errors of SV17, SV28, SV2 and SV10 
using different algorithms, respectively. Table  4 shows the 
Doppler frequency error statistics.

As shown in figure 6 and table 3, both of the coherent algo-
rithms reach a better carrier phase lock than the non-coherent 
algorithms for high signal-to-noise signals. Besides, both 
of the M-Coherent and M-nonCoherent algorithms gain an 
improvement compared to the E-Coherent and E-nonCoherent 
algorithms, respectively. The tracking of SV2 and SV10 are 
lost for the coherent algorithms and only the carrier frequency 
for the non-coherent algorithms are shown in figures 9 and 10.

As shown in figures  7–10 and table  4, the Doppler fre-
quency errors of the M-Coherent algorithm are reduced around 
42% of the errors of E-Coherent algorithm for high signal-to-
noise signals. Meanwhile, the errors of M-nonCoherent algo-
rithm are reduced around 41% and 29% of the errors of the 
E-nonCoherent algorithm for high signal-to-noise signals and 
low signal-to-noise signals, respectively. In addition, both the 
coherent algorithms reach a better Doppler frequency tracking 
accuracy than the non-coherent algorithms for high signal-to-
noise signals. However, the non-coherent algorithms can track 
lower C/N0 signals (i.e. SV2 and SV10) which means that 
the non-coherent algorithms have stronger robustness than 
coherent algorithms.

The position and velocity errors using different pre-filter 
algorithms are shown in figures  11 and 12, respectively. 
Tables 5 and 6 show the position and velocity error statistics, 
respectively. It is noted that the start epoch of figures 11 and 12 

Figure 5. (a) Vehicle test car. (b) Data collection system. (c) Rover 
receiver. (d) Base station.

Table 2. Simulation conditions.

Visible satellites
SV# 2, 10, 17, 
20, 23, 28 and 32

Velocity 5 m s−1

Simulation time 45s
C/N0 SV#2, 10 28 dB-Hz

SV# others 45 dB-Hz

Figure 6. (a) The values of PLI for SV17. (b) The values of PLI for 
SV28.

Table 3. PLI value statistics.

Pre-filter method

PLI value (RMS) for different satellites

SV17 SV28 SV2 SV10

E-Coherent 0.9882 0.9882 / /
M-Coherent 0.9895 0.9893 / /
E-nonCoherent 0.9829 0.9825 / /
M-nonCoherent 0.9830 0.9826 / /
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(also for figures 14, 18, 19 and 20) corresponds to the GPS time 
when the system starts to calculate the navigation solution.

The position error results shown in figure 11 and table 5 
indicate that the position errors of the M-Coherent algo-
rithm are reduced around 30%, 26% and 48% of the errors 
of the E-Coherent algorithm in east, north and up direction, 
respectively. The position errors of the M-nonCoherent algo-
rithm are reduced around 10%, 2% and 22% of the errors of 
the E-nonCoherent algorithm in east, north and up direction, 
respectively. It can be seen that both of the coherent algorithms 
reach a better position accuracy than the non-coherent algo-
rithms. Besides, all the coherent and non-coherent algorithms 
have a better position accuracy than the GNSS-only solution.

The velocity error results shown in figure 12 and table 6 
indicate that the velocity errors of the M-Coherent algorithm 
are reduced around 45%, 46% and 39% of the errors of the 
E-Coherent algorithm in east, north and up direction, respec-
tively. The velocity errors of the M-nonCoherent algorithm 
are reduced around 42%, 36% and 37% of the errors of the 
E-nonCoherent algorithm in east, north and up direction, 
respectively. It can see that both the coherent algorithms reach 

Table 4. Doppler frequency error statistics.

Pre-filter method

Doppler frequency error (RMS) for  
different satellites (Hz)

SV17 SV28 SV2 SV10

E-Coherent 0.2957 0.2978 / /
M-Coherent 0.1700 0.1714 / /
E-nonCoherent 0.8224 0.8746 1.4591 1.3523
M-nonCoherent 0.4771 0.4944 0.9996 0.9705

Figure 7. (a) Doppler frequencies of SV17 using different 
algorithms. (b) Doppler frequency errors of SV17 using different 
algorithms.

Figure 8. (a) Doppler frequencies of SV28 using different 
algorithms. (b) Doppler frequency errors of SV28 using different 
algorithms.

Figure 9. (a) Doppler frequencies of SV2 using different 
algorithms. (b) Doppler frequency errors of SV2 using different 
algorithms.

Figure 10. (a) Doppler frequencies of SV10 using different 
algorithms. (b) Doppler frequency errors of SV10 using different 
algorithms.
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a better velocity accuracy than the non-coherent algorithms. 
Besides, all the coherent and non-coherent algorithms have a 
better velocity accuracy than the GNSS-only solution.

The simulation test results indicate that the coherent algo-
rithms can reach a better tracking and position accuracy 
while the non-coherent algorithms have a stronger robustness 
to track lower signal-to-noise signals. The proposed modi-
fied coherent and non-coherent algorithms (i.e. M-Coherent 
and M-nonCoherent) are proven improvements of both 
tracking and position performance compared to the existing 

Figure 11. Position errors with simulator data.

Figure 12. Velocity errors with simulator data.

Table 5. RMS position error statistics.

Method

RMS position errors (m)

E N U

GNSS-only 2.39 1.73 2.79
E-Coherent 1.11 0.76 1.58
M-Coherent 0.78 0.57 0.82
E-nonCoherent 1.69 1.07 2.20
M-nonCoherent 1.52 1.04 1.71
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coherent and non-coherent algorithms (i.e. E-Coherent and 
E-nonCoherent).

4.2.2. Vehicle test. The vehicle test is conducted to compare 
the performance of the adaptive deeply-coupled system with 
hybrid pre-filters processing (Hybrid-DC), the single coherent 
deeply-coupled method (Coherent-DC) and the single non-
coherent deeply-coupled method (nonCoherent-DC) under 
GNSS-challenged environment. The Hybrid-DC, Coherent-
DC and nonCoherent-DC methods consist of the proposed 
modified coherent and non-coherent algorithms.

Figure 13 shows the trajectory of the vehicle test. The car 
passes through the building, seen as a sheltered environment 
as shown in figure 13.

It can be seen in figure 14 that all C/N0 values of the sat-
ellites decrease rapidly when the car passes through the 
building. During the pass time, almost all the satellites are 
blocked. After that, the signals recover gradually.

Figure 15 shows the tracking modes for different satel-
lites using the Hybrid-DC method. The tracking mode of each 
channel switches automatically according to the signal quality 
to search for an optimal performance.

In figure 15, tracking mode 1 denotes the scalar traditional 
mode, 2 denotes the non-coherent mode and 3 denotes the 
coherent mode. It can be seen that the Hybrid-DC method 
works in hybrid mode, i.e. some of its channels work in 
coherent mode while others work in non-coherent mode. Note 
that the scalar traditional mode indicates that the channel 
just starts to track at the beginning or restarts tracking after 
re-acquision.

The tracking information of IP and QP for SV7 and SV27 
are shown in figures 16 and 17. It can be seen that the sig-
nals are blocked at about 26 s for both SV7 and SV27 when 
the car begins passing through the building. The channels 
are maintained mainly by the navigation feedback informa-
tion (state 1). The channels using the Coherent-DC method 
lose lock at about 38 s (state 2) and return to re-acquision 
and re-tracking (state 3) at about 46 s for SV7 and about 40 s 
for SV27. However, the channels using the nonCoherent-
DC and Hybrid-DC methods remain in state 1 until the car 

Table 6. RMS velocity error statistics.

Method

RMS velocity errors (m s−1)

VE VN VU

GNSS-only 0.181 0.125 0.196
E-Coherent 0.026 0.021 0.031
M-Coherent 0.015 0.011 0.019
E-nonCoherent 0.110 0.077 0.117
M-nonCoherent 0.064 0.049 0.073

Figure 13. The trajectory of the vehicle test.

Figure 14. C/N0 values of different satellites.

Figure 15. (a) and (b) The tracking modes for different satellites 
using the Hybrid-DC method.
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passes out of the building and recover tracking quickly (state 
4). These results indicate that both of the nonCoherent-DC 
and Hybrid-DC methods have a stronger robustness for main-
taining and recovering the blocked signal quickly.

Figure 18 shows the number of available satellites for dif-
ferent methods during the operating time. It can be seen that 
the proposed Hybrid-DC method can track the most number of 
satellites all the time. The nonCoherent-DC method also has 
a better tracking performance than the Coherent-DC method 
due to its better robustness.

Figure 16. The tracking information of IP and QP for SV7 using 
different method. (a) Coherent-DC. (b) nonCoherent-DC.  
(c) Hybrid-DC.

Figure 17. The tracking information of IP and QP for SV27 using 
different method. (a) Coherent-DC. (b) nonCoherent-DC.  
(c) Hybrid-DC.

Figure 18. Number of available satellites.

Figure 19. Position errors with vehicle data.

Figure 20. Velocity errors with vehicle data.
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The position and velocity errors using different methods 
are shown in figures 19 and 20, respectively. Tables 7 and 8 
show the position and velocity error statistics, respectively.

The position error results shown in figure 19 and table 7 
indicate that the position errors of the Hybrid-DC method 
are reduced around 15%, 20% and 26% of the errors of the 
Coherent-DC method and around 32%, 34% and 59% of the 
errors of the nonCoherent-DC method in east, north and up 
direction, respectively. Besides, all the coherent, non-coherent 
and hybrid algorithms have a better position accuracy than the 
GNSS-only solution.

The velocity error results shown in figure 20 and table 8 
indicate that the velocity errors of Hybrid-DC method are 
reduced around 10%, 13% and 29% of the errors of the 
Coherent-DC method and around 41%, 40% and 37% of the 
errors of the nonCoherent-DC method in east, north and up 
direction, respectively. Besides, all the coherent, non-coherent 
and hybrid algorithms have a better velocity accuracy than the 
GNSS-only solution.

The vehicle results indicate that the proposed Hybrid-DC 
method reaches an optimal tracking and navigation perfor-
mance by combining the advantages of the coherent and 
non-coherent algorithms. In the test, the robustness of the 
non-coherent mode enables the Hybrid-DC method to track 
more satellites especially in a GNSS-challenged environment. 
Meanwhile, the coherent mode helps the Hybrid-DC method 
to reach a better accuracy.

5. Conclusions and future work

The existing pre-filters of the deeply-coupled structures are 
modified and the improvement of the tracking performance 
are proved by the simulation test. An adaptive deeply-coupled 
GNSS/INS navigation system with hybrid pre-filters pro-
cessing is proposed to combine the advantages of the coherent 
and non-coherent algorithms. The vehicle test results show that 
the proposed system can achieve accuracy and robustness per-
formance preferably under a GNSS-challenged environ ment, 

compared to the single coherent and non-coherent deeply-
coupled method.

Note that only the GPS constellation and L1 CA signal are 
designed and simulated in the presented system, other GNSS 
constellations (such as Beidou, GLONASS and Galileo) can 
be included in the future work to realize joint tracking and 
navigation so as to reach a better performance.
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