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ABSTRACT 
 

Oxovanadium(IV) complexes of the type [VO(L)(bpy)] (V-1 to V-5) have been synthesized and 
characterized by FTIR and UV-Vis spectra, molar conductance, melting points, and magnetic 
susceptibilities measurements, where L= N-salicylidene-β-alanine (sal-ala), N-salicylidene-glycine 
(sal-gly), N-salicylidene-DL-β-phenylalanine (sal-pheala), N-salicylidene-leucine (sal-leu), and N-
salicylidene-DL-methionine (sal-met), and bpy is 2,2´-bipyridine. The infrared spectral data reveals 
that the tridentate nature of the amino acid-based Schiff base ligand and the coordination of the 
ligand through azomethine nitrogen, phenolic oxygen and carboxylate oxygen with vanadyl (VO2+) 
ion. All of these complexes were determined to be non-electrolyte in nature, according to 
conductivity measurements. The magnetic moment measurements have been attributed that these 
complexes are paramagnetic and have d1 configuration of vanadium (IV) ion. In Virto antimicrobial 
activity of the synthesized complexes was evaluated against two gram-positive (Bacillus subtilis and 
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Staphylococcus aureus) and two gram-negative (Escherichia coli, Proteus vulgaris) bacterial 
strains. 

 

 
 

GRAPHICAL ABSTRACT 
 

 
Keywords: α-Amino Acid; oxovanadium (IV) complexes; Schiff base; polypyridyl ligands. 
 

1. INTRODUCTION 
 
Vanadium coordination chemistry is a                       
new area of interest since it was found                     
to be an important trace element for some 
organisms [1,2] and a cofactor in some 
haloperoxidases [3] and nitrogenases [4]. 

Several studies have been conducted on 
vanadium complexes with oxidation                        
states (IV) and (V), and several of these 
compounds have been found to be powerful anti-
tumors [5], anti-leukemics [6], and insulin-         
mimics [7,8]. 

 
“Transition metal complexes are now being 
studied for their potential applications as DNA-
dependent electron transfer, DNA structural 
probes and site-specific nucleic acid cleavage in 
the development of novel therapeutic and 
diagnostic agents” [9]. DNA cleavage activity of 
transition metal complexes has been the subject 
of investigation [10-12], with the focus on the mid 
to late transition elements and comparatively little 
attention paid to the earlier members of the 
series. Among the latter, vanadium, with its three 
biologically accessible oxidation states (III, IV, 
and V) has begun to be recognized as having 

important biological role [3,13−15]. The 
bleomycin-vanadyl (IV) complex [16] and 
[VO(phen)(H2O)]2+, [17] both have been reported 
to induce DNA cleavage activity in the presence 
of H2O2. “The diperoxovanadium (V) complexes 

with 2,2-bipyridine and 1,10-phenanthroline as 
ancillary ligands have been shown to cleave 
DNA on photoirradiation” [18−20]. 

 

The investigation of oxovanadium (IV) 
bioinorganic chemistry is motivated by its 
discernible antibacterial [21-23], anti-leukemia 
[24], anticancer [25], spermicidal [26], and 
insulin-mimetic attributes [27,28]. The activity of 
vanadyl (IV) complexes with triazole ligands is 
substantial when tested against one or more 
bacterial or fungal strains [29]. 
 

Oxovanadium Schiff base complexes have been 
recognized for their distinctive bioactive 
characteristics, notably displaying effectiveness 
in insulin mimetic functions [30], enzyme 
inhibition [31], and anti-amoebic activities [32]. 
These complexes may also have 
pharmacological [33] and catalytic applications 
[34], as they exhibit anti-inflammatory [35], 
antibacterial [36], and anticancer properties [37]. 
 

Our interest in developing novel oxovanadium 
(IV) complexes that potentially exhibit 
antimicrobial properties and possess unique 
physiochemical characteristics motivated the 
current research. 
 

2. EXPERIMENTAL METHODS 
 

All chemicals and solvents were reagent grade 
and were used as received without further 
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purification. The amino acid-based Schiff base 
tridentate ligands were synthesized according to 

published literature. The polypyridyl ligands 2,2-
bipyridine are commercially available. These 
complexes were synthesized by the template 
method. 
 

Infrared spectra were recorded on a FTIR-8400, 
SHIMADZU, Japan using a KBr disc, at the 
Central Science Lab of Rajshahi University, UV-
visible spectra of complexes were recorded on a 
SHIMADZU DOUBLE BEAM spectrophotometer 
(model UV-1200) at the Department of 
Chemistry, Rajshahi University. The melting 
points or decomposition temperature of all the 
prepared metal complexes were observed with 
an electrothermal melting point apparatus. It was, 
however, not possible to measure the melting 
points beyond 300oC. The conductance 
measurements were made at room temperature 
using a WPACM35 conductivity meter and a dip-
cell with a platinized electrode. The SHERWOOD 
SCIENTIFIC magnetic susceptibility balance was 
used to probe the magnetic nature of the 
complexes. 
 

2.1 Synthesis and Characterization of 
Oxovanadium (IV) Complexes of α-

Amino Acid Schiff Bases and 2,2-
Bipyridine Ligands  

 

2.1.1 Preparation of [VO(sal-ala)(bpy)], (V-1) 
 

The process used for producing oxovanadium 
(IV) complexes involved mixing α-amino acids, β-
alanine (ala) (0.267 g, 3mmol), and NaOH (0.100 
g, 2.25 mmol) in 10 mL methanol with a 
methanolic solution of salicylaldehyde (sal) (0.3 
mL, 3 mmol) in a round-bottom flask. Following 
an hour of refluxing, a methanolic solution of                        
vanadyl sulphate (0.489 g, 3 mmol) was                  
added to the mixing mixture. After refluxing               
the mixture for an hour, a light blue                   
precipitate formed. A solution of 2,2'-bipyridine 
(bpy) (0.469 g, 3 mmol) in 10 mL methanol                
was added to the mixture [38]. After refluxing             
the mixture for an additional hour, a dark                
brown precipitate formed. Subsequently, the 
precipitate underwent filtration through a Buchner 
funnel, methanol washing, and subsequent 
drying in a vacuum desiccator over anhydrous 
CaCl2. 

 

Yield: 0.740 g (59%), ɅM = 10.0 ohm−1 cm2 mol−1 

in DMF at 31°C. IR (KBr phase, cm–1): 3471br, 

1619vs, 1544m (C=N), 1316m, 959s (V=O), 
614m, 456m (br, broad; vs, very strong; s, 
strong; m, medium; w, weak). UV-Vis (DMSO), 

/nm (/M–1 cm–1): 268−301 (3436−3462), 364 
(2572), 377sh (2312) (sh, shoulder). µeff =1.57 
B.M. at 303 K. 

 
Complexes V-2 to V-5 were prepared by the 
procedure as described for complex V-1 using 
DL-β-phenylalanine (phyala) (0.495 g, 3 mmol), 
leucine (leu) (0.393 g, 3 mmol), glycine (gly) 
(0.225 g, 3 mmol) and DL-methionine (met) 
(0.447 g, 3 mmol) respectively instead of β-
alanine (ala). 

 
2.2 Preparation of [VO(sal-pheala)(bpy)], 

(V-2) 
 
Yield: 0.851 g (57%), ɅM = 19.3 ohm−1                       

cm2 mol−1 in DMF at 31°C. IR (KBr                   
phase, cm–1): 3435br, 1621vs, 1540s (C=N), 
1310m, 942s (V=O), 614m, 445m. UV-Vis 

(DMSO), /nm (/M–1cm–1): 267−302 
(3675−3524), 364 (2181), 376sh (2161). µeff 

=1.60 B.M. at 303 K. 
 

2.3 Preparation of [VO(sal-leu)(bpy), (V-3) 
 

Yield: 0.870 g (63%), ɅM = 16.1 ohm−1 cm2 mol−1 

in DMF at 31°C. IR (KBr phase, cm–1): 3453w, 
1620w, 1530w, 1310w, 961s (V=O), 618m, 

460w. UV-Vis (DMSO), /nm (/M–1 cm–1): 268–
301 (3662−3325), 364 (2027), 374sh (2008). µeff 

=1.55 B.M. at 303 K.  
 

2.4 Preparation of [VO(sal-gly)(bpy)], (V-4) 
 

Yield: 0.693 g (57%), ɅM = 16.1 ohm−1 cm2 mol−1 

in DMF at 31°C. IR (KBr phase, cm–1): 3414br, 
1654s, 1535s (C=N), 1312m, 963s (V=O), 803s, 

617s, 463m. UV-Vis (DMSO), /nm (/M–1 cm–

1):270−303 (3462−3311), 364 (2459), 375sh 
(2364). µeff =1.54 B.M. at 303K. 
 

2.5 Preparation of [VO(sal-met)(bpy)],           
(V-5) 

 

Yield: 0.862 g (60%), ɅM = 7.9 ohm−1 cm2 mol−1 in 
DMF at 31°C. IR (KBr phase, cm–1): 3412br, 
1618s, 1535s (C=N), 1312m, 959vs (V=O), 

616m, 451m. UV-Vis (DMSO), /nm (/M–1 cm–1): 
269−307 (3263−3325), 363 (3175), 388sh 
(2709). µeff =1.80 B.M. at 303 K. 
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Scheme 1. One pot synthesis of Oxovanadium (IV) Complexes 
 

3. RESULTS AND DISCUSSION 
 
The complexes were prepared in a high yield 
according to the template method. All the 
complexes of oxovanadium (IV) are soluble in 
DMF and DMSO but insoluble in common 
organic solvents such as methanol, ethanol, 
benzene, chloroform. The molar conductance of 
the complexes, as indicated in Table 1, varies 
between 7.9 and 19.3 ohm-1 cm2 mol-1 when 
measured in DMF at a concentration of 10−3 M. 
The readings are lower than someone would 
expect for an electrolyte. As predicted, molar 
conductance measurements show that the 
complexes are non-electrolytes in nature [39,40]. 
“Magnetic moments of oxovanadium (IV) 
complexes were measured at room temperature 
and the values are given in Table 1. The 
magnetic moments of complexes were in the 

range 1.54−1.80 B.M., which correspond to a 
single electron of the d1 system of oxovanadium 

(IV) center and paramagnetic in nature” [39,40]. 
Melting point gives an approximate idea about 
the nature of the complexes and can suggest 
whether it is covalent or ionic. The melting point 
of the complexes prepared for this study is given 
in Table 1. 
 

3.1 IR Spectral Studies 
 
“The IR spectral data of oxovanadium (IV) 

complexes show a broad band in the 3413−3472 

cm−1 region which is possibly due to the hydrated 
water molecule in the complexes” [41]. “The 

complexes exhibit (C=O) bands at 1619−1654 

cm−1 and (C−O) bands at 1310−1316 cm−1 
which are significantly lower than the values for 
respective bands of uncoordinated amino acids. 

Further, the appearance of (V−O) modes at 

around 618 cm−1 confirms the coordination of 
carboxylate ion to the central metal ion” [42]. “The 

(O−H) band usually appeared at 3600 cm–1 for 

Complexes R 

V-1 
 

V-2 

 

V-3 

 
V-4 -H 

V-5 -CH2-CH2-S-CH3 
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the phenolic –OH is absent in the present 
complexes which supports the coordination of 
phenolic oxygen to vanadyl ion. The bands 

appeared at around 1540 cm−1 may be assigned 

to (C=N) stretching frequency suggesting the 
coordination of the azomethine nitrogen and 
heterocyclic nitrogen to the VO2+ moiety. The 
coordination of nitrogen of azomethine and 
heterocyclic nitrogen is further evident by the 

appearance of (V−N) modes at 446−463 cm−1 
region” [43]. “The present oxovanadium(IV) 

complexes exhibit the (V=O) stretching 

frequency in the 942−964 cm−1 region 
characteristic of metal-oxygen multiple bond, 
thus ruling out the possibility of polymeric nature 
of the complexes since the polymeric 
oxovanadium(IV) complexes exhibit one or more 

broad absorption bands below 900 cm−1 due to 

bridging vanadyl group, −V−O−V−” [44]. “The 
present complexes exhibit medium intense band 

in the region ~960 cm−1 indicating the monomeric 
nature of the complexes” [45]. 

The IR spectra of oxovanadium (IV) complexes 
(V-1 to V-5) are shown in the Figs. 1–5.  
 

3.2 UV-Visible Spectral Studies 
 
The absorption spectra of the complexes were 
recorded in DMSO in the wavelength of 200–800 
nm range. Important UV-Visible spectra of 
complexes (V-1 to V-5) are tabulated in Table 3.  
 
“Complexes (V-1 to V-5) exhibit a shoulder at 
~375 nm due to ligand-to-metal charge-transfer 

(LMCT, PhO− →V) transition, and the remaining 
bands appearing in the UV region are assignable 
to the intra ligand transitions” [46]. “All complexes 
display bands at 267–307 nm which are 

assignable to the π→π* transition” [47]. The 
absence of low-intensity bands for the d-d 
transition at around 500 nm [48] in the current 
complexes could be the result of not optimizing 
sample concentration during UV data collection. 
UV-Visible spectra of complexes (V-1 to V-5) are 
given in the Figs. 6 –10.  

 
Table 1. Physical Properties of the prepared oxovanadium (IV) complexes 

 

C
o

m
p

le
x
 

S
y
m

b
o

l Complex Color Melting 
point/De 

ºC 

Solubility Molar 
conductance 

ohm−1 cm2 

mol−1 

μ eff 

in 
B.M 

DMF DMSO 

V-1 [VO(sal-ala)(bpy)] Dark 
brown 

214−217(De) +ve +ve 10.0 1.57 

V-2 [VO(sal-pheala)(bpy)] Orange 182−186(De) +ve +ve 19.3 1.60 

V-3 [VO(sal-leu)(bpy)] Ash 225−228(De) +ve +ve 16.1 1.55 

V-4 [VO(sal-gly)(bpy)] Blackish 
red 

252−255(De) +ve +ve 16.1 1.54 

V-5 [VO(sal-met) (bpy)] Brown 212−215(De) +ve +ve 7.9 1.80 

 
Table 2. Important IR frequencies of complexes (V-1 to V-5) 

 

C
o

m
p

le
x
 

s
y
m

b
o

l 

Complex 
(OH) 

cm−1 

(C=O) 

cm−1 

(C−O) 

cm−1 

(C=N) 

cm−1 

(V−N) 

cm−1 

(V−O) 

cm−1 

(V=O) 

cm−1 

V-1 [VO(sal-ala)(bpy)] 3472 1619 1316 1544 457 614 959 

V-2 [VO(sal-pheala)(bpy)] 3435 1621 1310 1540 446 619 942 

V-3 [VO(sal-leu)(bpy)] 3453 1621 1310 1530 460 618 961 

V-4 [VO(sal-gly)(bpy)] 3414 1654 1312 1536 463 618 964 

V-5 [VO(sal-met)(bpy)] 3413 1643 1312 1536 452 616 960 
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Fig. 1. IR spectrum of [VO(sal-ala)(bpy)] complex, V-1 

 

 
 

Fig. 2. IR spectrum of [VO(sal-pheala)(bpy)] complex, V-2 
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Fig. 3. IR spectrum of [VO(sal-leu)(bpy)] complex, V-3 
 

 
 

Fig. 4. IR spectrum of [VO(sal-gly)(bpy)] complex, V-4 
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Fig. 5. IR spectrum of [VO(sal-met)(bpy)] complex, V-5 
 

Table 3. Important UV-Visible spectra of complexes (V-1 to V−5) 
 

C
o

m
p

le
x
 

s
y
m

b
o

l Complex , nm (, M–1 cm–1) 

V-1 [VO(sal-ala)(bpy)] 268−301 (3436−3462) 364 (2572) 377sh (2312) 
V-2 [VO(sal-pheala)(bpy)] 267−302 (3676−3524) 364 (2181) 376sh (2161) 
V-3 [VO(sal-leu)(bpy)] 268−301 (3662−3325) 364 (2027) 374sh (2008) 
V-4 [VO(sal-gly)(bpy)] 270−303 (3462−3311) 364 (2459) 375sh (2364) 
V-5 [VO(sal-met)(bpy)] 269−307 (3263−3325) 363 (3175) 388sh (2709) 

 

 
 

Fig. 6. UV-Visible spectrum of [VO(sal-ala)(bpy)] complex, V-1 

0

0.5

1

1.5

2

2.5

3

3.5

4

250 300 350 400 450 500 550

A
b

s

Wavelength (nm)



 
 
 
 

Hasan et al.; Asian J. Chem. Sci., vol. 14, no. 2, pp. 7-20, 2024; Article no.AJOCS.113318 
 
 

 
15 

 

 
 

Fig. 7. UV-Visible spectrum of [VO(sal-pheala)(bpy)] complex, V-2 
 

 
 

Fig. 8. UV-Visible spectrum of [VO(sal-leu)(bpy)] complex, V-3 
 

 
 

Fig. 9. UV-Visible spectrum of [VO(sal-gly)(bpy)] complex, V-4 
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Fig. 10. UV-Visible spectrum of [VO(sal-met)(bpy)] complex, V-5 
 
On the basis of the above physical and spectroscopic data, the structure of the complexes may be 
proposed as distorted octahedral geometry with VO3N3 coordination environment. The proposed 
structure of the oxovanadium (IV) complexes is given below.  
 

  
 

Oxovanadium (IV) complexes (V-1 to V-5) 
 

3.3 Antimicrobial Screening Result 
 
The antibacterial activities of the five 
oxovanadium (IV) complexes were screened at 
the concentration of 10 µg/disc against four 
pathogenic bacteria viz. Escherichia coli, Proteus 
vulgaris, Bacillus subtilis and Staphylococcus 
aureus. The results obtained were compared 
with the inhibition of the standard antibiotic, 
streptomycin (10 µg/disc). The results are shown 
in the Table 4. The complexes (V-1 to V-5)                
were found to be active against all the test 
bacteria, with the complexes V-2 and V-3 being 

even more potent than the standard against all 
the bacteria except for Escherichia coli.                    
The activity of the complexes V-2 against 
Escherichia coli and the activity of the complex 
V-5 against all pathogens are comparable with 
the standard.  
 
The antimicrobial activity of the complexes may 
be described on the basis of their effective 
interaction with the microbes which cause 
discrete and distinct types of injuries to microbial 
cells as a result of oxidative stress, protein 
dysfunction or membrane damage. 
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Table 4. Antibacterial activities of the oxovanadium (IV) complexes and streptomycin 
 

Bacterial strains 

Zone of inhibition, diameter in mm 

V-1 
10 

µg/disc 

V-2 
10 

µg/disc 

V-3 
10 

µg/disc 

V-4 
10 

µg/disc 

V-5 
10 

µg/disc 

Streptomycin 
10 µg/disc 

G
ra

m
 

p
o

s
it

iv
e

 

Bacillus subtilis 10 24 25 5 19 19 

Staphylococcus 
aureus 

13 26 33 9 15 19 

G
ra

m
 

n
e
g

a
ti

v
e

 

Escherichia coli 8 12 16 6 12 19 

Proteus vulgaris 12 23 27 6 18 19 

 

 
 

Fig. 11. Graphical representation of antibacterial activity of oxovanadium (IV) complexes 
 

4. CONCLUSION 
 

The synthesis and characterization of VO2+ 
complexes of α-amino acid Schiff bases and 
2,2´-bipyridine with O,N,O-donor properties have 
been conducted. The analytical data indicates 
that the complexes exhibit non-electrolytic 
behavior and possess paramagnetic properties. 
The magnetic moment values of the complexes 
correspond with the d1 electronic configuration of 
the VIVO2+ moiety. The IR spectrum data 
demonstrates the binding of tridentate amino 
acid Schiff base ligands to the vanadyl (VO2+) 
ion. Based on physical and spectroscopic 
evidence, the structure of the complexes can be 
described as having a distorted octahedral 

geometry with a coordination environment of 
VO3N3. Additional investigation is necessary to 
consider the V-3 complex as a significant and 
effective drug in the realm of medicinal 
chemistry. 
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