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Abstract 

 
Kathiresan In this article, bandwagon eccentric domination polynomial 𝐵𝐸𝐷(𝐺, 𝑥) is introduced. Theorems 

related to the characteristics of coefficients of 𝐵𝐸𝐷(𝑆𝑛, 𝑥) of a star graph is discussed and the coefficients of 

𝐵𝐸𝐷(𝑆𝑛 , 𝑥)  are tabulated. Minimum bandwagon eccentric dominating energy 𝔼𝑏𝑒𝑑(𝐺)  is also defined. 

𝔼𝑏𝑒𝑑(𝐺) of families of graphs are computed and the properties of minimum bandwagon eccentric dominating 

eigenvalues are obtained. Results related to upper and lower bounds for 𝔼𝑏𝑒𝑑(𝐺) of cocktail party, complete, 

crown and star graphs are discussed. 

 

 
Keywords: Elected neighbour; bandwagon distance; bandwagon eccentricity; bandwagon eccentric 

domination; bandwagon eccentric domination polynomial; minimum bandwagon eccentric 

dominating energy. 
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1 Introduction  
 
“The concept of domination in graphs was introduced by Ore and Berge” [1, 2]. There are different types of 

dominations. The two books ‘Towards theory of domination’ and ‘Fundamentals of domination’ by 

T.W.Haynes gives a comprehensive overview of the literature regarding domination in graphs. ’Distance in 

graphs’ by F. Buckley and F. Harary [3] is a textbook where some distances in graphs are discussed. There are 

many types of distances and distance based dominations. Some are metric and some are non-metric distance. J. 

Arocha et al. [4] introduced domination polynomial, Saeid Alikhani et al. [5] contributed majorly to the area. 

T.N. Janakiraman et al. [6] introduced “eccentric domination in graphs”. A.M. Ismayil et al introduced 

“eccentric domination polynomial in graphs”. Ivan Gutman [7] introduced the energy of graphs. Rajesh Kanna 

et al. [8] introduced “minimum dominating energy of graphs”. Tejaskumar R, A Mohamed Ismayil and Ivan 

Gutman [9] introduced “minimum eccentric dominating energy of graphs”.  

 

Bandwagon distance and bandwagon eccentric domination was introduced by Tejaskumar R et al. [10]. In this 

paper, we introduce bandwagon eccentric dominating polynomial and bandwagon eccentric energy. Bandwagon 

eccentric dominating polynomials of star graph is studied. The minimum bandwagon eccentric dominating 

energy of cocktail party, crown and star graphs are found. Upper and lower bounds for the minimum bandwagon 

eccentric dominating energy are established.  

 

2 Preliminaries 
 
Definition 2.1. [1]. Let 𝐷(𝐺, 𝑘)  be the family of dominating sets of a graph 𝐺  with cardinality 𝑘  and let 

𝑑(𝐺, 𝑘)  =  |𝐷(𝐺, 𝑘)| . Then the domination polynomial 𝐷(𝐺, 𝑥)  of 𝐺  is defined as 𝐷(𝐺, 𝑥) =

∑ 𝑑(𝐺, 𝑘)𝑥𝑘
|𝑉(𝐺)|
𝑘=𝛾(𝐺) , where 𝛾(𝐺) is the domination number of 𝐺. 

 

Definition 2.2. [10]. A vertex 𝑢  is said to be an elected neighbour of 𝑣  if 𝑢  is adjacent to 𝑣  and has the 

maximum degree among all vertices adjacent to 𝑣. The walk between any two vertices where all the vertices are 

connected to al least one of its elected neighbour is called bandwagon walk. The shortest bandwagon walk 

between any two vertices 𝑣𝑖 and 𝑣𝑗 is known as bandwagon distance given by 𝐵𝑑(𝑣𝑖 , 𝑣𝑗). 

 

Definition 2.3. [10]. The bandwagon eccentricity 𝐵𝑒(𝑣) of a vertex 𝑣 is the bandwagon distance to a vertex 

farthest from 𝑣. Thus, 𝐵𝑒(𝑒) = 𝑚𝑎𝑥{𝐵𝑑(𝑢, 𝑣) ∶ 𝑣, 𝑢 ∈ 𝑉}. For a vertex 𝑣, each vertex at a distance 𝐵𝑒(𝑣) from 

𝑣 is a bandwagon eccentric vertex. The bandwagon eccentric set of a vertex 𝑣 is defined by 𝐵𝐸(𝑣) = {𝑢 ∈
𝑉(𝐺): 𝑑(𝑢, 𝑣) = 𝐵𝑒(𝑒)}. 
 

Definition 2.4. [10]. The bandwagon radius 𝐵𝑟𝑎𝑑(𝐺) is the minimum bandwagon eccentricity of the vertices. 

The bandwagon diameter 𝐵𝑑𝑖𝑎𝑚(𝐺) is the maximum bandwagon eccentricity. 𝑣 is a bandwagon central vertex 

if 𝐵𝑒(𝑣) = 𝐵𝑟𝑎𝑑(𝐺) . The bandwagon center 𝐵𝐶(𝐺)  is the set of all bandwagon central vertices. 𝑣  is a 

bandwagon peripheral vertex if 𝐵𝑒(𝑣) = 𝐵𝑑𝑖𝑎𝑚(𝐺) . The bandwagon periphery 𝐵𝑃(𝐺)  is the set of all 

bandwagon peripheral vertices. A graph 𝐺 is said to be bandwagon self-centered if and only if 𝐵𝑟𝑎𝑑(𝐺) =
𝐵𝑑𝑖𝑎𝑚(𝐺). 
 

Definition 2.5. [10]. A dominating set 𝐷 ⊆ 𝑉(𝐺) is a bandwagon eccentric dominating set (BED set) if for 

every vertex 𝑣 ∈ 𝑉 − 𝐷, there exists at least one bandwagon eccentric vertex of 𝑣 in 𝐷. A BED set 𝐷 is called a 

minimal BED set if no proper subset of 𝐷 is a BED set. The BED-number 𝛾𝑏𝑒𝑑(𝐺)  of a graph 𝐺 is the minimum 

cardinality among the minimal BED sets of 𝐺. The upper BED-number Γ𝑏𝑒𝑑(𝐺) of a graph 𝐺 is the maximum 

cardinality among the minimal BED sets of 𝐺. 

 

Theorem 2.1. [10] For star graph 𝑆𝑛, where 𝑛 ≥ 3, 𝛾𝑏𝑒𝑑(𝑆𝑛) =  2. 

 

Definition 2.6. [11]. The adjacency matrix 𝐴(𝐺) of the graph 𝐺 is a square matrix of order 𝑛, whose (i,j)-entry 

is equal to 1 if the vertices 𝑣𝑖 and 𝑣𝑗 are adjacent and is equal to zero otherwise. 

 

Definition 2.7. [11]. The characteristic polynomial of the adjacency matrix, that is, 𝑑𝑒𝑡(𝜆 𝐼𝑛  −  𝐴(𝐺)), where 

𝐼𝑛 is the unit matrix of order 𝑛, is said to be the characteristic polynomial of the graph 𝐺. 
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Definition 2.8. [11]. The eigenvalues of a graph 𝐺 are defined as the eigenvalues of its adjacency matrix 𝐴(𝐺). 
Since 𝐴(𝐺) is symmetric, its eigenvalues are all real. Denote them by 𝜆1, 𝜆2, . . . , 𝜆𝑛  and as a whole, they are 

called the spectrum of 𝐺 and denoted by 𝑆𝑝𝑒𝑐(𝐺). 
 

Definition 2.9. [11]. If 𝐺 is a graph on 𝑛 vertices and 𝜆1, 𝜆2, . . . , 𝜆𝑛 are its eigenvalues, then the energy of 𝐺 is 

𝔼(𝐺) = ∑ |𝜆𝑖|
𝑛
𝑖=1 . 

 

3 Bandwagon Eccentric Domination Polynomial of Star 
 
In this section, the bandwagon eccentric domination polynomial (BED-polynomial) is defined and BED-

polynomial of star graphs 𝑆𝑛  ∀ 𝑛 ≥  3 are discussed. The properties of BED-polynomial of star graphs are 

studied [12,13].  

 

Definition 3.1 Let 𝑏𝑒𝑑(𝐺, 𝑘) be the set of all bandwagon eccentric dominating sets of a graph 𝐺 with cardinality 

𝑘  then the bandwagon eccentric dominating polynomial (BED-polynomial) 𝐵𝐸𝐷(𝐺, 𝑥)  of 𝐺  is defined by 

𝐵𝐸𝐷(𝐺, 𝑥)  = ∑ |bed(G, k)|xk𝑛
k=γbed(G)

, where |𝑏𝑒𝑑(𝐺, 𝑘)|  is the number of distinct bandwagon eccentric 

dominating set with cardinality 𝑘 and 𝛾𝑏𝑒𝑑(𝐺) is the BED-number of 𝐺. 

 

Example 3.1 Consider the claw graph given in Figure-1 

 

 
 

Fig. 1. Claw graph 

 
Here {𝑣1, 𝑣2, 𝑣3, 𝑣4}  is the only bandwagon eccentric dominating set with cardinality four. There are four 

bandwagon eccentric dominating sets {𝑣1, 𝑣2, 𝑣3}, {𝑣1, 𝑣2, 𝑣4}, {𝑣1, 𝑣3, 𝑣4},  {𝑣2, 𝑣3, 𝑣4} with cardinality three. 

There are three bandwagon eccentric dominating sets {𝑣1, 𝑣3}, {𝑣2, 𝑣3}, {𝑣3, 𝑣4} with cardinality two. There is no 

bandwagon eccentric dominating set with cardinality one [14]. 

 

Therefore the BED-polynomial is given by 𝐵𝐸𝐷(𝐺, 𝑥) = 𝑥4 + 4𝑥3 + 3𝑥2. 

 

Theorem 3.1 For a star graph 𝑆𝑛, 𝑏𝑒𝑑(𝑆𝑛 , 𝑘) = ∅ if 𝑘 ≥ 𝑛 or 𝑘 ≤ 2. 

 

Proof: The cardinality of the minimum bandwagon eccentric dominating set of a star graph 𝑆𝑛  is given by 

𝛾𝑏𝑒𝑑(𝑆𝑛) = 2. Hence there is no proper subset of 𝑆𝑛 whose cardinality is less than 2. 𝑉(𝑆𝑛) forms the largest 

bandwagon eccentric dominating set and |𝑉(𝑆𝑛)| = 𝑛  therefore there exists no bandwagon eccentric 

dominating set whose cardinality is greater than 𝑛. Hence 𝑏𝑒𝑑(𝑆𝑛 , 𝑘) = ∅ if 𝑘 ≥ 𝑛 or 𝑘 ≤ 2. 

 

Observation 3.1  

 

1. |𝑏𝑒𝑑(𝑆1, 1)| = 0, (from Definition-2.5) 

2. |𝑏𝑒𝑑(𝑆2, 1)| = 2, since {𝑣1} and {𝑣2} both form BED sets. 

3. |𝑏𝑒𝑑(𝑆2, 2)| = 1, since 𝑉(𝑆2) is a BED set. 

 

Theorem 3.2 There exist no bandwagon eccentric dominating set of cardinality one for a star graph 𝑆𝑛  i.e, 

|𝑏𝑒𝑑(𝑆𝑛 , 1)| = 0 for 𝑛 > 2. 
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Proof: Let 𝑆𝑛 be a star graph with vertices {𝑣1, 𝑣2, . . . , 𝑣𝑛} = 𝑉. Let us assume 𝑣1 is the central vertex of star 

graph 𝑆𝑛  then the central vertex dominates all the other vertices in the star graph, 𝛾(𝑆𝑛) = 1 . But the 

bandwagon eccentric vertex of a central vertex is 𝑉 − {𝑣1} and the bandwagon eccentric vertices of the pendant 

vertices are all the vertices in the graph excluding the central vertex and itself. Hence the central vertex alone 

forms the dominating set which is not an bandwagon eccentric dominating set. Therefore the bandwagon 

eccentric dominating set contains atleast two vertices. Hence |𝑏𝑒𝑑(𝑆𝑛 , 1)| = 0, ∀ 𝑛 > 2. 

 

Theorem 3.3 For a star graph 𝑆𝑛, |𝑏𝑒𝑑(𝑆𝑛, 𝑘)| = 
𝑛−1𝐶𝑘−1 + 

𝑛−1𝐶𝑘 for 𝑛 = 3,4 and 𝑘 ≠  1. 

Proof: Let {𝑣1, 𝑣2, 𝑣3} be the vertices of the star graph 𝑆3 , from Theorem-3.2, we know that there exists no 

bandwagon eccentric dominating set of cardinality one. Therefore |𝑏𝑒𝑑(𝑆3, 1)| = 0 and for all vertices of 𝑛 − 1 

cardinality we have 𝑛 combinations. It is obvious to have one bandwagon eccentric dominating set of cardinality 

𝑛. Similar proof follows for 𝑛 =  4. 

 

Theorem 3.4 For a star graph 𝑆𝑛 where 𝑛 > 4, 

 

|𝑏𝑒𝑑(𝑆𝑛 , 𝑘)| = {

|𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)| + 1, 𝑘 = 2

|𝑏𝑒𝑑(𝑆𝑛−1, 𝑘 − 1)| + |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)| − 1, 𝑘 = 𝑛 − 2

|𝑏𝑒𝑑(𝑆𝑛−1, 𝑘 − 1)| + |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Proof: Case(i): If 𝑘 =  2, let {𝑣1, 𝑣2, 𝑣3, 𝑣4, . . . , 𝑣𝑛} be the vertex set of the star graph 𝑆𝑛. Let 𝑣1 be the central 

vertex of star graph and all others are pendant vertices. Then 𝐵𝐸(𝑣1) = {𝑣2, 𝑣3, 𝑣4, . . . , 𝑣𝑛} is a bandwagon 

eccentric set of vertices of 𝑣1 and 𝐵𝑒(𝑣1) = 1. Therefore {𝑣1} is a dominating set but not a bandwagon eccentric 

dominating set. The possible number of bandwagon eccentric dominating sets of cardinality two in 𝑆5  is 

|𝑏𝑒𝑑(𝑆5, 2)|  =  |𝑏𝑒𝑑(𝑆4, 2)| + 1 = 4 . The possible number of bandwagon eccentric dominating sets of 

cardinality two in 𝑆6  is |𝑏𝑒𝑑(𝑆6, 2)| = |𝑏𝑒𝑑(𝑆5, 2) + 1 = 5 . Proceeding like this the possible number of 

bandwagon eccentric dominating set of cardinality two in 𝑆𝑛−1 is |𝑏𝑒𝑑(𝑆𝑛−1, 2)| = |𝑏𝑒𝑑(𝑆𝑛−2, 2) + 1 = 𝑛 − 2 

and the possible number of bandwagon eccentric dominating set of cardinality two in 𝑆𝑛  is |𝑏𝑒𝑑(𝑆𝑛 , 2)| =
|𝑏𝑒𝑑(𝑆𝑛−1, 2)| + 1 = 𝑛 − 1. 

 

Case(ii): If 𝑘 = 𝑛 − 2, for a star 𝑆5, the possible number of bandwagon eccentric dominating set of cardinality 

three in 𝑆5  is |𝑏𝑒𝑑(𝑆5, 3)| = |𝑏𝑒𝑑(𝑆4, 2)| + |𝑏𝑒𝑑(𝑆4, 3) − 1 = 3 + 4 − 1 = 6 . The possible number of 

bandwagon eccentric dominating set of cardinality four in 𝑆6  is |𝑏𝑒𝑑(𝑆6, 4)| = |𝑏𝑒𝑑(𝑆5, 3)| + |𝑏𝑒𝑑(𝑆5, 4) −
1 = 6 + 5 − 1 = 10. Similarly, for a star 𝑆𝑛−1, the possible number of bandwagon eccentric dominating set of 

cardinality 𝑛 − 3  in 𝑆𝑛−1  is |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 3)| = |𝑏𝑒𝑑(𝑆𝑛−2, 𝑛 − 2)| + |𝑏𝑒𝑑(𝑆𝑛−2, 𝑛 − 3)| − 1 . Proceeding 

like this the possible number of bandwagon eccentric dominating set of cardinality 𝑛 − 2 in 𝑆𝑛 is |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 −
2)| = |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 1)| + |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 2)| − 1 . Since 𝑘 = 𝑛 − 2 , we obtain |𝑏𝑒𝑑(𝑆𝑛 , 𝑘)| =
|𝑏𝑒𝑑(𝑆𝑛−1, 𝑘 − 1)| + |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)| − 1. 

 

Case(iii): If 𝑘 = 3,4, . . . , 𝑛 − 3, 𝑛 − 1, 𝑛, here we have (𝑘−2
𝑛−2) bandwagon eccentric dominating sets of cardinality 

𝑘 . Therefore |𝑏𝑒𝑑(𝑆𝑛, 𝑘)| = (𝑘−2
𝑛−2) . |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘 − 1)| = (𝑘−3

𝑛−3) . Similarly |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)| = (𝑘−2
𝑛−3) . Then we 

have (𝑘−2
𝑛−2) = (𝑘−3

𝑛−3)  + (𝑘−2
𝑛−3). Therefore |𝑏𝑒𝑑(𝑆𝑛 , 𝑘)| = |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘 − 1)|  +  |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)|.  

 
Theorem 3.5 For a star graph 𝑛 ≥ 4,  

 

𝐵𝐸𝐷(𝑆𝑛 , 𝑥) = 𝑥 𝐵𝐸𝐷(𝑆𝑛−1, 𝑥) + 𝐵𝐸𝐷(𝑆𝑛−1, 𝑥) − 𝑥
𝑛−2 + 𝑥2. 

 

Proof: We prove the following theorem by taking the summation of bandwagon eccentric dominating sets of 

every possible cardinality [15,16]. 

 

When 𝑘 = 2, |𝑏𝑒𝑑(𝑆𝑛 , 2)| = |𝑏𝑒𝑑(𝑆𝑛−1, 2)| + 1  
⇒ 𝑥2 |𝑏𝑒𝑑(𝑆𝑛, 2)| = 𝑥

2 |𝑏𝑒𝑑(𝑆𝑛−1, 2)| + 𝑥
2. 

By the Theorem-3.4 we have |𝑏𝑒𝑑(𝑆𝑛, 𝑘)| = |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘 − 1)| + |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)|. 
When 𝑘 = 3, |𝑏𝑒𝑑(𝑆𝑛 , 3)| = |𝑏𝑒𝑑(𝑆𝑛−1, 2)| + |𝑏𝑒𝑑(𝑆𝑛−1, 3)| 
⇒ 𝑥3 |𝑏𝑒𝑑(𝑆𝑛 , 3)| = 𝑥

3 |𝑏𝑒𝑑(𝑆𝑛−1, 2)|  +  𝑥
3 |𝑏𝑒𝑑(𝑆𝑛−1, 3)| 

When 𝑘 = 𝑛 − 2, by Theorem-3.4, 

|𝑏𝑒𝑑(𝑆𝑛 , 𝑛)| = |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘 − 1)|  +  |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)| − 1. 
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⇒ |𝑏𝑒𝑑(𝑆𝑛, 𝑛 − 2)| = |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 3)|  +  |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 2)| − 1. 

⇒ 𝑥𝑛−2 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 2)| = 𝑥
𝑛−2 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 3)|  + 𝑥

𝑛−2 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 2)|  −  𝑥
𝑛−2. 

When 𝑘 = 𝑛 − 1, |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 1)|  =  |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 2)|  + |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 1)|. 
⇒ 𝑥𝑛−1 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 1)|  =  𝑥

𝑛−1 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 2)|  +  𝑥
𝑛−1 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 1)|. 

When 𝑘 = 𝑛, |𝑏𝑒𝑑(𝑆𝑛 , 𝑛)  =  |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 1)|  +  |𝑏𝑒𝑑(𝑆𝑛 , 𝑛)|. 
⇒ 𝑥𝑛 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛)|  =  𝑥

𝑛 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 1)|  +  𝑥
𝑛 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛)|. 

𝑥2 |𝑏𝑒𝑑(𝑆𝑛, 2)| + 𝑥
3 |𝑏𝑒𝑑(𝑆𝑛 , 3)| +· · · +𝑥

𝑛−2 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 2)| + 𝑥
𝑛−1 |𝑏𝑒𝑑(𝑆𝑛, 𝑛 − 1)| +

𝑥𝑛 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛)| = 𝑥
2 |𝑏𝑒𝑑(𝑆𝑛−1, 2)| + 𝑥

2 + 𝑥3 |𝑏𝑒𝑑(𝑆𝑛−1, 2)| + 𝑥
3 |𝑏𝑒𝑑(𝑆𝑛−1, 3)| +

𝑥4 |𝑏𝑒𝑑(𝑆𝑛−1, 3)| + 𝑥
4 |𝑏𝑒𝑑(𝑆𝑛−1, 4)| +· · ·  + 𝑥

𝑛−2 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 3)|  + 𝑥
𝑛−2 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 −

2)|  − 𝑥𝑛−2  +  𝑥𝑛−1 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 2)|  + 𝑥
𝑛−1 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 1)|  +  𝑥

𝑛 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 1)|  +
 𝑥𝑛 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛)| → 1 

By rearranging the terms of equation(1), 

𝑥2 |𝑏𝑒𝑑(𝑆𝑛, 2)| + 𝑥
3 |𝑏𝑒𝑑(𝑆𝑛 , 3)| +· · · +𝑥

𝑛−2 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 2)| + 𝑥
𝑛−1 |𝑏𝑒𝑑(𝑆𝑛, 𝑛 − 1)| +

𝑥𝑛 |𝑏𝑒𝑑(𝑆𝑛 , 𝑛)| = 𝑥[𝑥
2 |𝑏𝑒𝑑(𝑆𝑛−1, 2)|  + 𝑥

3 |𝑏𝑒𝑑(𝑆𝑛−1, 3)|  + · · ·  + 𝑥
𝑛−2 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 2)|  +

 𝑥𝑛−1 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 1)|  + 𝑥
𝑛 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛)|]  + [𝑥

2 |𝑏𝑒𝑑(𝑆𝑛−1, 2)|  + 𝑥
3 |𝑏𝑒𝑑(𝑆𝑛−1, 3)|  + · · ·

 + 𝑥𝑛−2 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 2)|  +  𝑥
𝑛−1 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 1)|  + 𝑥

𝑛 |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛)|]  + 𝑥
2  −  𝑥𝑛−2. 

Since, |𝑏𝑒𝑑(𝑆𝑛−1, 1)|  =  |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛)|  =  0, 

we get ∑ |𝑏𝑒𝑑(𝑆𝑛 , 𝑘)|𝑥
𝑘𝑛

𝑘=2 =  𝑥 ∑ |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)|𝑥
𝑘𝑛

𝑘=2 + ∑ |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)|𝑥
𝑘𝑛

𝑘=2 − 𝑥𝑛−2 + 𝑥2. 

⇒ 𝐵𝐸𝐷(𝑆𝑛 , 𝑥)  =  𝑥 𝐵𝐸𝐷(𝑆𝑛−1, 𝑥)  +  𝐵𝐸𝐷(𝑆𝑛−1, 𝑥)  −  𝑥
𝑛−2  +  𝑥2. 

 

Using the Theorem-3.2, Theorem-3.3 and Theorem-3.4 we get 𝐵𝐸𝐷(𝑆𝑛 , 𝑥) for 3 ≤ 𝑛 ≤ 12 as shown in the 

table below. 

 

Table 1. Construction of coefficients of bandwagon eccentric domination polynomial of 𝑺𝒏 

 

n \ k 1 2 3 4 5 6 7 8 9 10 11 12 

1 -            

2 2 1           

3 0 3 1          

4 0 3 4 1         

5 0 4 6 5 1        

6 0 5 10 10 6 1       

7 0 6 15 20 15 7 1      

8 0 7 21 35 35 21 8 1     

9 0 8 28 56 70 56 28 9 1    

10 0 9 36 84 126 126 84 36 10 1   

11 0 10 45 120 210 252 210 120 45 11 1  

12 0 11 55 165 330 462 462 330 165 55 12 1 

 

Theorem 3.6 The following properties for the coefficients of 𝐵𝐸𝐷(𝑆𝑛 , 𝑥) hold. 

 

1. |𝑏𝑒𝑑(𝑆𝑛 , 𝑛)| = 1, ∀ 𝑛 ≥ 2. 

2. |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 1)| = 𝑛, ∀ 𝑛 ≥ 2. 

3. |𝑏𝑒𝑑(𝑆𝑛 , 1)| = 0, ∀ 𝑛 > 2. 

4. |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 3)| =
(𝑛−1)(𝑛−2)(𝑛−3)

6
, ∀ 𝑛 ≥ 5. 

5. |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 4)| =
(𝑛−1)(𝑛−2)(𝑛−3)(𝑛−4)

24
, ∀ 𝑛 ≥ 6. 

6. ∑ |𝑏𝑒𝑑(𝑆𝑛 , 𝑘)|
𝑛
𝑘=2 = 2[∑ |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)|

𝑛−1
𝑘=2 ], ∀ 𝑛 ≥ 4. 

7. Total number of bandwagon eccentric dominating sets in 𝑆𝑛 is 2𝑛−1 ∀ 𝑛 ≥ 3. 

 

Proof:  

 

1. The whole vertex set of a graph 𝐺 is an bandwagon eccentric dominating set. Therefore |𝑏𝑒𝑑(𝑆𝑛 , 𝑛)| =
1, ∀ 𝑛 ≥ 2.  

2. Every set of cardinality 𝑛 − 1 has a singleton set in its complement. The bandwagon eccentric vertex of 

the singleton vertex lies in the set of cardinality 𝑛 − 1. Therefore it must be an bandwagon eccentric 
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dominating set and there are 𝑛 combinations of bandwagon eccentric dominating sets with cardinality 

𝑘 = |𝑛 − 1|. Therefore |𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 1)| = 𝑛, ∀ 𝑛 ≥ 2. 

 

3. The proof follows from the Theorem 3.2. 

 

4. By induction on 𝑛. The result is true for 𝑛 = 5. Since |𝑏𝑒𝑑(𝑆5, 2)| = 4. Assume the result is true for all 

natural numbers less than 𝑛. Now we prove it for 𝑛. By the Theorem 3.4, 

 

 |𝑏𝑒𝑑(𝑆𝑛, 𝑛 − 3)| = |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 4)| + |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 3)| 

|𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 3)| =
(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

6
+
(𝑛 − 2)(𝑛 − 3)

2
 

|𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 3)| = (𝑛 − 2)(𝑛 − 3)(𝑛 − 4) +
3(𝑛 − 2)(𝑛 − 3)

6
 

|𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 3)| =
(𝑛 − 2)(𝑛 − 3)[𝑛 − 4 + 3]

6
 

|𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 3)| =
(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

6
 

 
The result is true for all 𝑛. 
 

5. By induction on 𝑛. The result is true for 𝑛 = 6, since |𝑏𝑒𝑑(𝑆6, 2)| = 5. Assume that the result is true 

for all natural numbers less than 𝑛. Now we prove it for 𝑛. By the Theorem 3.4 

 

|𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 4)| = |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 5)| + |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 4)| 

|𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 4)| =
(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)(𝑛 − 5)

24
+
(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

6
 

|𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 4)| =
(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)[(𝑛 − 5) − 4]

24
 

|𝑏𝑒𝑑(𝑆𝑛 , 𝑛 − 4)| =
(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

24
 

 
The result is true for all 𝑛. 
 

6. From Theorem 3.4, we have 

7.  

|𝑏𝑒𝑑(𝑆𝑛 , 𝑛)| = |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛 − 1)| + |𝑏𝑒𝑑(𝑆𝑛−1, 𝑛)| 

∑|𝑏𝑒𝑑(𝑆𝑛 , 𝑘)| =∑ |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘 − 1)| +∑ |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)|
𝑛−1

𝑘=2

𝑛

𝑘=2

𝑛

𝑘=2

 

∑|𝑏𝑒𝑑(𝑆𝑛 , 𝑘)| =∑ |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)| +∑ |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)|
𝑛−1

𝑘=2

𝑛−1

𝑘=2

𝑛

𝑘=2

 

∑|𝑏𝑒𝑑(𝑆𝑛 , 𝑘)| = 2 (∑ |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)|
𝑛−1

𝑘=2
)

𝑛

𝑘=2

 

 
8. By induction on 𝑛. When 𝑛 = 3, |𝑏𝑒𝑑(𝑆3, 𝑘)| = 2

3−1 = 22 = 4. Therefore this is true for 𝑛 = 3. Let 

us assume, this result is true for all natural numbers less than 𝑛 . Similarly, when 𝑛 = 𝑛 −
1, |𝑏𝑒𝑑(𝑆𝑛−1, 𝑘)| = 2

𝑛−1−1 = 2𝑛−2. Proceeding like this for 𝑛, we get |𝑏𝑒𝑑(𝑆𝑛 , 𝑘)| = 2
𝑛−1. Therefore 

total number of bandwagon eccentric dominating sets in 𝑆𝑛 is 2𝑛−1 ∀ 𝑛 ≥ 3. 

 

Theorem 3.7 The bandwagon eccentric dominating polynomial of a star graph is given by 𝐵𝐸𝐷(𝑆𝑛 , 𝑥) =
𝑥(1 + 𝑥)𝑛−1 + 𝑥𝑛−1 − 𝑥, ∀ 𝑛 ≥  3. 

 

Proof: The theorem is a direct consequence of Theorem 3.2, Theorem 3.3, Theorem 3.4 and Theorem 3.5. 

 

Example 3.2 Let 𝑆𝑛 be the star graph then 𝐵𝐸𝐷(𝑆𝑛 , 𝑥) = 𝑥(𝑥 +  1)
𝑛−1  +  𝑥𝑛−1  −  𝑥.  
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For 𝑛 =  7, 

 

𝐵𝐸𝐷(𝑆7, 𝑥)  =  𝑥(𝑥 +  1)
7−1  +  𝑥7−1 –  𝑥 

𝐵𝐸𝐷(𝑆7, 𝑥)  =  𝑥(𝑥 +  1)
6  +  𝑥6  −  𝑥 

𝐵𝐸𝐷(𝑆7, 𝑥)  =  𝑥(𝑥
6  +  6𝑥5  +  15𝑥4  +  20𝑥3  +  15𝑥2  +  6𝑥 +  1)  +  𝑥6  −  𝑥 

𝐵𝐸𝐷(𝑆7, 𝑥)  =  𝑥
7  +  6𝑥6  +  15𝑥5  +  20𝑥4  +  15𝑥3  +  6𝑥2  +  𝑥 +  𝑥6  −  𝑥 

𝐵𝐸𝐷(𝑆7, 𝑥)  =  𝑥
7  +  7𝑥6  +  15𝑥5  +  20𝑥4  +  15𝑥3  +  6𝑥2 

 

Refer the coefficients of 𝐵𝐸𝐷(𝑆7, 𝑥) in the Table 1. 

 

4 Minimum Bandwagon Eccentric Dominating Energy  
 
Definition 4.1: For 𝐺 = (𝑉, 𝐸)  be a simple graph where 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛}  where 𝑛 ∈  ℕ  is the set of 

vertices and 𝐸 is the set of edges. Let 𝐷 be a minimum bandwagon eccentric dominating set of 𝐺  then the 

minimum BED matrix of 𝐺 is a 𝑛 × 𝑛 matrix defined by 𝔸𝑏𝑒𝑑(𝐺) = (𝑒𝑖𝑗), where 

 

(𝑒𝑖𝑗) = {
1,  𝑖𝑓 𝑣𝑗 ∈ 𝐵𝐸(𝑣𝑖𝑗) 𝑜𝑟 𝑣𝑖 ∈ 𝐵𝐸(𝑣𝑗),

1,   𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑣𝑖 ∈ 𝐷,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Definition 4.2: The characteristic polynomial of the minimum BED matrix 𝔸𝑏𝑒𝑑(𝐺) is defined by 𝒢𝑛(𝐺, 𝛽) =
det ( 𝔸𝑏𝑒𝑑(𝐺) − 𝛽𝐼), where 𝐼 is the identity matrix. 
 

Definition 4.3: The eigenvalues of 𝔸𝑏𝑒𝑑(𝐺)  are called minimum BED eigenvalues of 𝐺 . Since 𝔸𝑏𝑒𝑑(𝐺)  is 

symmetric, the eigenvalues of 𝔸𝑏𝑒𝑑(𝐺) are real. We label the eigenvalues in non-increasing order 𝛽1 ≥ 𝛽2 ≥
⋯ ≥ 𝛽𝑛. 
 

Definition 4.4: The minimum BED energy of 𝐺 is defined by 𝔼𝑏𝑒𝑑(𝐺) = ∑ |𝛽𝑖|
𝑛
𝑖=1 . 

 

Remark 4.1: The trace of 𝔸𝑏𝑒𝑑(𝐺)= Bandwagon eccentric domination number.  
 

Example 4.1: Consider the kite graph given in Fig. 2. 
 

 
 

Fig. 2. Kite graph 
 

Table 2. From the Fig. 2, we tabulate bandwagon eccentricity 𝑩𝒆(𝒗) and bandwagon eccentric vertex 

𝑩𝑬(𝒗) of 𝒗 ∈ 𝑽. 
 

  Vertex 𝒗 ∈ 𝑽(𝑮) Bandwagon eccentricity 𝑩𝒆(𝒗) Bandwagon eccentric vertex 𝑩𝑬(𝒗) 
           𝒗𝟏 2 {𝒗𝟐, 𝒗𝟒} 

           𝒗𝟐 3 {𝒗𝟒} 

           𝒗𝟑 3 {𝒗𝟒} 

          𝒗𝟒 3 {𝒗𝟐, 𝒗𝟑} 

          𝒗𝟓 2 {𝒗𝟐, 𝒗𝟒} 

 
𝐵𝑟𝑎𝑑(𝐺) = 2, 𝐵𝑑𝑖𝑎𝑚(𝐺) = 3, 𝐵𝐶(𝐺) = {𝑣1, 𝑣5} 𝑎𝑛𝑑 𝐵𝑃(𝐺) = {𝑣2, 𝑣3, 𝑣4}. 
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The minimum bandwagon eccentric dominating sets of kite graph are 𝐷1 = {𝑣1, 𝑣4} , 𝐷2 = {𝑣2, 𝑣3} , 𝐷3 =
{𝑣2, 𝑣4} and 𝐷5 = {𝑣4, 𝑣5}. 
 

1. 𝐷1 = {𝑣1, 𝑣4}, 
 

𝔸𝑏𝑒𝑑(𝐺) =

(

 
 

1 1 0 1 0
1
0
1

0
0
1

0
0
1

1
1
1

1
0
1

0 1 0 1 0)

 
 

 

 

The characteristic polynomial 𝒢𝑛(𝐺, 𝛽) = −𝛽
5 + 2𝛽4 + 5𝛽3 − 2𝛽2 − 3𝛽 + 1. 

 

Minimum bandwagon eccentric dominating eigenvalues are 𝛽1 ≈ 3.2661, 𝛽2 ≈ 0.7162, 𝛽3 ≈ 0.3266, 𝛽4 ≈
−1, 𝛽5 ≈ −1.3089. 

 

Minimum bandwagon eccentric dominating energy 𝔼𝑏𝑒𝑑(𝐺) ≈ 6.6178. 

 

 

2. 𝐷2 = {𝑣2, 𝑣3}, 
 

𝔸𝑏𝑒𝑑(𝐺) =

(

 
 

0 1 0 1 0
1
0
1

1
0
1

0
1
1

1
1
0

1
0
1

0 1 0 1 0)

 
 

 

 

The characteristic polynomial 𝒢𝑛(𝐺, 𝛽) = −𝛽
5 + 2𝛽4 + 5𝛽3 − 4𝛽2 − 4𝛽. 

 

Minimum bandwagon eccentric dominating eigenvalues are 𝛽1 ≈ 3.0664, 𝛽2 ≈ 1.2222, 𝛽3 ≈ 0, 𝛽4 ≈
−0.6522, 𝛽5 ≈ −1.6364. 

 

Minimum bandwagon eccentric dominating energy 𝔼𝑏𝑒𝑑(𝐺) ≈ 6.5772. 

 

3. 𝐷3 = {𝑣2, 𝑣4}, 
 

𝔸𝑏𝑒𝑑(𝐺) =

(

 
 

0 1 0 1 0
1
0
1

1
0
1

0
0
1

1
1
1

1
0
1

0 1 0 1 0)

 
 

 

 

The characteristic polynomial 𝒢𝑛(𝐺, 𝛽) = −𝛽
5 + 2𝛽4 + 5𝛽3 − 𝛽2 − 2𝛽. 

 

Minimum bandwagon eccentric dominating eigenvalues are 𝛽1 ≈ 3.3502, 𝛽2 ≈ 0.6735, 𝛽3 ≈ 0, 𝛽4 ≈
−0.641, 𝛽5 ≈ −1.3827. 

 

Minimum bandwagon eccentric dominating energy 𝔼𝑏𝑒𝑑(𝐺) ≈ 6.0474. 

 

 

4. 𝐷4 = {𝑣4, 𝑣5}, 

𝔸𝑏𝑒𝑑(𝐺) =

(

 
 

0 1 0 1 0
1
0
1

0
0
1

0
0
1

1
1
1

1
0
1

0 1 0 1 1)
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The characteristic polynomial 𝒢𝑛(𝐺, 𝛽) = −𝛽
5 + 2𝛽4 + 5𝛽3 − 2𝛽2 − 3𝛽 + 1. 

 

Minimum bandwagon eccentric dominating eigenvalues are 𝛽1 ≈ 3.2661, 𝛽2 ≈ 0.7162, 𝛽3 ≈ 0.3266, 𝛽4 ≈
−1, 𝛽5 ≈ −1.3089. 

 

Minimum bandwagon eccentric dominating energy 𝔼𝑏𝑒𝑑(𝐺) ≈ 6.6178. 

 

Observation 4.1: The minimum bandwagon eccentric dominating energy 𝔼𝑏𝑒𝑑(𝐺) of kite graph given in Fig. 2 

varies for different minimum bandwagon eccentric dominating sets. 

 

For the set 𝐷1, 𝐷4, 𝔼𝑏𝑒𝑑(𝐺) ≈  6.6178, 

For the set 𝐷2, 𝔼𝑏𝑒𝑑(𝐺) ≈  6.5772, 

For the set 𝐷3, 𝔼𝑏𝑒𝑑(𝐺) ≈  6.0474. 

 

Remark 4.2: The value of minimum bandwagon eccentric dominating energy 𝔼𝑏𝑒𝑑(𝐺)  depends on the 

bandwagon eccentric dominating set. 

 

Theorem 4.1: The minimum bandwagon eccentric dominating energy of the cocktail party graph 𝐾2×𝑛  is 

𝔼𝑏𝑒𝑑(𝐾2×𝑛) = [|
1+√5

2
| + |

1−√5

2
|] 𝑛 . 

 

Proof: Let 𝐾2×𝑛 be a cocktail party graph with vertex set 𝑉 = ⋃ {𝑢𝑖 , 𝑣𝑖}
𝑛
𝑖=1 . Let 𝐷 be the minimum bandwagon 

eccentric dominating set and |𝐷|  = 𝑛 . Then 𝐷 =  {𝑢1, 𝑢2, . . . 𝑢𝑛}  or {𝑣1, 𝑣2, . . . 𝑣𝑛} . Then the minimum 

bandwagon eccentric dominating matrix is 

 

𝔸𝑏𝑒𝑑(𝐾2×𝑛) =

(

 
 
 
 
 
 

1 0 0
0 1 0
0 0 1

0 … 0
0 … 0
0 … 1

0 1 0
0 0 1
0 0 0

0 0 0
⋮ ⋮ ⋮
0 0 1

1 … 0
⋮ ⋮ ⋮
0 … 0

1 0 0
⋮ ⋮ ⋮
0 0 0

0 0 0
1 0 0
0 1 0

1 … 0
0 … 0
0 … 0

0 0 0
0 0 0
0 0 0)

 
 
 
 
 
 

𝑛×𝑛

 

 

Characteristic polynomial is 𝒢𝑛(𝐾2×𝑛, 𝛽) = det (𝔸𝑏𝑒𝑑(𝐾2×𝑛) − 𝛽𝐼). 
 

=

|

|

|

1 − 𝛽 0 0
0 1 − 𝛽 0
0 0 1 − 𝛽

0 … 0
0 … 0
0 … 1

0 1 0
0 0 1
0 0 0

0 0 0
⋮ ⋮ ⋮
0 0 1

1 − 𝛽 … 0
⋮ ⋮ ⋮
0 … −𝛽

1 0 0
⋮ ⋮ ⋮
0 0  0

0 0 0
1 0 0
0 1 0

1 … 0
0 … 0
0 … 0

−𝛽 0 0
0 −𝛽 0
0 0 −𝛽

|

|

|

 

 

Resulting in 𝒢𝑛(𝐾2×𝑛, 𝛽) = (𝛽
2 − 𝛽 − 1)𝑛 

 

The minimum bandwagon eccentric dominating eigenvalues are 

 

𝛽 =  
1+√5

2
 (𝑛  𝑡𝑖𝑚𝑒𝑠), 

𝛽 =  
1−√5

2
 (𝑛  𝑡𝑖𝑚𝑒𝑠). 

 

The minimum bandwagon eccentric dominating energy of 𝐾2×𝑛 is given by  
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𝔼𝑏𝑒𝑑(𝐾2×𝑛) = [|
1+√5

2
| + |

1−√5

2
|] 𝑛 . 

 

Theorem 4.2: For the complete graph 𝐾𝑛 where 𝑛 > 2 the minimum bandwagon eccentric dominating energy is 

𝔼𝑏𝑒𝑑(𝐾𝑛) = (𝑛 − 2) + |
(𝑛−1)+√𝑛2−2𝑛+5

2
| + |

(𝑛−1)−√𝑛2−2𝑛+5

2
|. 

 

Proof: Let 𝐾𝑛 be the complete graph with vertex set 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛}. The minimum bandwagon eccentric 

dominating set is 𝐷 = {𝑣1} then 

 

𝔸𝑏𝑒𝑑(𝐾𝑛) =

(

 
 
 
 

1 1 1
1 0 1
1 1 0

⋯
1 1 1
1 1 1
1 1 1

⋮ ⋱ ⋮
1 1 1
1 1 1
1 1 1

⋯
0 1 1
1 0 1
1 1 0)

 
 
 
 

𝑛×𝑛

 

 

Characteristic polynomial is 𝒢𝑛(𝐾𝑛, 𝛽) = det (𝔸𝑏𝑒𝑑(𝐾𝑛) − 𝛽𝐼). 
 

=

|

|

1 − 𝛽 1 1
1 −𝛽 1
1 1 −𝛽

⋯
1 1 1
1 1 1
1 1 1

⋮ ⋱ ⋮
1 1 1
1 1 1
1 1 1

⋯

−𝛽 1 1
1 −𝛽 1
1 1 −𝛽

|

|

 

 

From which it follows 𝒢𝑛(𝐾𝑛 , 𝛽) = (𝛽 + 1)
𝑛−2[𝛽2 − (𝑛 − 1)𝛽 − 1]. 

 

The minimum bandwagon eccentric dominating eigenvalues are 

 

𝛽 = −1 ((𝑛 − 2)  𝑡𝑖𝑚𝑒𝑠), 

𝛽 =
(𝑛−1)+√𝑛2−2𝑛+5

2
, 

𝛽 =
(𝑛−1)−√𝑛2−2𝑛+5

2
. 

 

The minimum bandwagon eccentric dominating energy of the complete graph 𝐾𝑛 is given by 

  

𝔼𝑏𝑒𝑑(𝐾𝑛) = |(−1)|(𝑛 − 2) + |
(𝑛−1)+√𝑛2−2𝑛+5

2
| + |

(𝑛−1)−√𝑛2−2𝑛+5

2
|. 

 

𝔼𝑏𝑒𝑑(𝐾𝑛) = (𝑛 − 2) + |
(𝑛−1)+√𝑛2−2𝑛+5

2
| + |

(𝑛−1)−√𝑛2−2𝑛+5

2
|. 

 

Theorem 4.3: The minimum bandwagon eccentric dominating energy of the crown graph 𝐻𝑛 is 𝔼𝑏𝑒𝑑(𝐻𝑛) =

[|
1+√5

2
| + |

1−√5

2
|]
𝑛

2
 . 

 

Proof: Let 𝐻𝑛 be a crown graph with vertex set 𝑉 = ⋃ {𝑢𝑖 , 𝑣𝑖}
𝑛/2
𝑖=1 . Let 𝐷 be the minimum bandwagon eccentric 

dominating set and |𝐷|  = 𝑛/2. Then 𝐷 =  {𝑢1, 𝑢2, . . . 𝑢𝑛/2} or {𝑣1, 𝑣2, . . . 𝑣𝑛/2}. Then the minimum bandwagon 

eccentric dominating matrix is 
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𝔸𝑏𝑒𝑑(𝐻𝑛) =

(

 
 
 
 

1 0 0
0 1 0
0 0 1

⋯
1 0 0
0 1 0
0 0 1

⋮ ⋱ ⋮
1 0 0
0 1 0
0 0 1

⋯
0 0 0
0 0 0
0 0 0)

 
 
 
 

𝑛×𝑛

 

 

Characteristic polynomial is 𝒢𝑛(𝐻𝑛 , 𝛽) = det (𝔸𝑏𝑒𝑑(𝐻𝑛) − 𝛽𝐼). 
 

=

|

|

1 − 𝛽 0 0
0 1 − 𝛽 0
0 0 1 − 𝛽

⋯
1 0 0
0 1 0
0 0 1

⋮ ⋱ ⋮
1 0 0
0 1 0
0 0 1

⋯

−𝛽 0 0
0 −𝛽 0
0 0 −𝛽

|

|

 

 

From which we calculate 𝒢𝑛(𝐻𝑛 , 𝛽) = (𝛽
2 − 𝛽 − 1)𝑛/2 

 

The minimum bandwagon eccentric dominating eigenvalues are 

 

𝛽 =  
1+√5

2
 (𝑛/2  𝑡𝑖𝑚𝑒𝑠), 

𝛽 =  
1−√5

2
 (𝑛/2  𝑡𝑖𝑚𝑒𝑠). 

 

The minimum bandwagon eccentric dominating energy of crown graph 𝐻𝑛 is given by 

  

𝔼𝑏𝑒𝑑(𝐻𝑛) = [|
1+√5

2
| + |

1−√5

2
|]
𝑛

2
 . 

 

Theorem 4.4: For a star graph 𝑆𝑛 where 𝑛 ≥ 3 and wheel graph 𝑊𝑛, 𝑛 ≥ 5, the minimum bandwagon eccentric 

dominating energy is  

 

𝔼𝑏𝑒𝑑(𝑆𝑛) = |(−1)|(𝑛 − 3) + |
(𝑛−1)+√(𝑛−1)2+8

2
| + |

(𝑛−1)−√(𝑛−1)2+8

2
|. 

 

Proof: Let 𝐺  be the star or wheel graph with the vertex set 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛}. The minimum bandwagon 

eccentric dominating set is 𝐷 = {𝑣1, 𝑣2} then 

 

𝔸𝑏𝑒𝑑(𝐺) =

(

 
 
 
 

1 1 1
1 1 1
1 1 0

⋯
1 1 1
1 1 1
1 1 1

⋮ ⋱ ⋮
1 1 1
1 1 1
1 1 1

⋯
0 1 1
1 0 1
1 1 0)

 
 
 
 

𝑛×𝑛

 

 

Characteristic polynomial is 𝒢𝑛(𝐺, 𝛽) = det (𝔸𝑏𝑒𝑑(𝐺) − 𝛽𝐼). 

=

|

|

1 − 𝛽 1 1
1 1 − 𝛽 1
1 1 −𝛽

⋯
1 1 1
1 1 1
1 1 1

⋮ ⋱ ⋮
1 1 1
1 1 1
1 1 1

⋯

−𝛽 1 1
1 −𝛽 1
1 1 −𝛽

|

|
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From which it follows 𝒢𝑛(𝐺, 𝛽) = (−1)
𝑛(𝛽)(𝛽 + 1)𝑛−3(𝛽2 − (𝑛 − 1)𝛽 − 2). 

 

The minimum bandwagon eccentric dominating eigenvalues are 
 

𝛽 = 0 (1 𝑡𝑖𝑚𝑒), 
𝛽 = −1 ((𝑛 − 3)  𝑡𝑖𝑚𝑒𝑠), 

𝛽 =
(𝑛−1)+√(𝑛−1)2+8

2
, 

𝛽 =
(𝑛−1)−√(𝑛−1)2+8

2
. 

 

and thus the minimum bandwagon eccentric dominating energy of 𝐺 is given by 

 

𝔼𝑏𝑒𝑑(𝑆𝑛) = |(−1)|(𝑛 − 3) + |
(𝑛−1)+√(𝑛−1)2+8

2
| + |

(𝑛−1)−√(𝑛−1)2+8

2
|. 

 

5 Properties of Minimum Bandwagon Eccentric Dominating Eigenvalues 
 

In this section, the properties of eigenvalues of 𝔸𝑏𝑒𝑑(𝐺) for crown, complete, star and coctail party graphs are 

discussed. Bounds for minimum bandwagon eccentric dominating energy of some standard graphs are obtained. 

 

Theorem 5.1: Let 𝐷 be a minimum bandwagon eccentric dominating set and 𝛽1, 𝛽2, . . . , 𝛽𝑛 are the eigenvalues 

of minimum bandwagon eccentric dominating matrix 𝔸𝑏𝑒𝑑(𝐺), if 𝐺 is 

 

1. Any graph then ∑ 𝛽𝑖 = |𝐷|
𝑛
𝑖=1 , 

2. A star, crown and complete graph then ∑ 𝛽𝑖
2 = |𝐷| + 𝑛(𝑛 − 1)𝑛

𝑖=1 , 

3. A cocktail party graph ∑ 𝛽𝑖
2 = |𝐷| + 𝑛𝑛

𝑖=1 , 

 

Proof:  

 

1. The trace of 𝔸𝑏𝑒𝑑(𝐺) is the sum of eigenvalues of 𝔸𝑏𝑒𝑑(𝐺). 
∑ 𝛽𝑖 = ∑ 𝑒𝑖𝑖 = |𝐷|

𝑛
𝑖=1

𝑛
𝑖=1 . 

 

2. For a star, crown and complete graph 𝐺 sum  of the squares of eigenvalues of 𝔸𝑏𝑒𝑑(𝐺) is trace of 

[𝔸𝑏𝑒𝑑(𝐺)]
2 

 

∑𝛽𝑖
2

𝑛

𝑖=1

=∑∑𝑒𝑖𝑗𝑒𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

=∑(𝑒𝑖𝑖)
2

𝑛

𝑖=1

+∑𝑒𝑖𝑗𝑒𝑖𝑗
𝑖≠𝑗

=∑(𝑒𝑖𝑖)
2

𝑛

𝑖=1

+ 2∑(𝑒𝑖𝑗)
2

𝑖<𝑗

 

∑𝛽𝑖
2

𝑛

𝑖=1

= |𝐷| + 𝑛(𝑛 − 1)      

Since for a star, crown and complete graph 2 ∑ (𝑒𝑖𝑗)
2

𝑖<𝑗 = 𝑛(𝑛 − 1). 

 

3. For a cocktail party graph 𝐺 sum of square of eigenvalues of 𝔸𝑏𝑒𝑑(𝐺) is trace of [𝔸𝑏𝑒𝑑(𝐺)]
2. 

 

∑𝛽𝑖
2

𝑛

𝑖=1

=∑∑𝑒𝑖𝑗𝑒𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

=∑(𝑒𝑖𝑖)
2

𝑛

𝑖=1

+∑𝑒𝑖𝑗𝑒𝑖𝑗
𝑖≠𝑗

=∑(𝑒𝑖𝑖)
2

𝑛

𝑖=1

+ 2∑(𝑒𝑖𝑗)
2

𝑖<𝑗

 

∑𝛽𝑖
2

𝑛

𝑖=1

= |𝐷| + 𝑛   

 

Since for a cocktail party graph 𝐺, 2 ∑ (𝑒𝑖𝑗)
2

𝑖<𝑗 = 𝑛. 

 

Theorem 5.2: For a star graph 𝑆𝑛 ∀ 𝑛 > 3, crown 𝐻𝑛 ∀ 𝑛 ≥ 6 and complete graph 𝐾𝑛, if 𝐷 be the minimum 

bandwagon eccentric dominating set and 𝑊 = | det 𝔸𝑏𝑒𝑑(𝐺) | then 
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√|𝐷| + 𝑛(𝑛 − 1) + 𝑛(𝑛 − 1)𝑊
2
𝑛 ≤ 𝔼𝑏𝑒𝑑(𝐺) ≤ √𝑛(𝑛(𝑛 − 1) + |𝐷|) 

 

Proof: By Cauchy schwarz inequality (∑ 𝑔𝑖ℎ𝑖
𝑛
𝑖=1 )2 ≤ (∑ 𝑔𝑖

2𝑛
𝑖=1 )(∑ ℎ𝑖

2𝑛
𝑖=1 ). If 𝑔𝑖 = 1 and ℎ𝑖 = ℘𝑖 then 

 

(∑|𝛽𝑖|

𝑛

𝑖=1

)

2

≤ (∑1

𝑛

𝑖=1

)(∑𝛽𝑖
2

𝑛

𝑖=1

) 

 

(𝔼𝑏𝑒𝑑(𝐺))
2 ≤ 𝑛(|𝐷| + 𝑛(𝑛 − 1)) 

⇒ 𝔼𝑏𝑒𝑑(𝐺) ≤ √𝑛(|𝐷| + 𝑛(𝑛 − 1)) 
 

Since the arithmetic mean is not smaller than geometric mean we have 

 

1

𝑛(𝑛 − 1)
∑|𝛽𝑖| |𝛽𝑗|

𝑖≠𝑗

≥ [∏|𝛽𝑖| |𝛽𝑗|

𝑖≠𝑗

]

1
𝑛(𝑛−1)

= [∏|𝛽𝑖|
2(𝑛−1)

𝑛

𝑖=1

]

1
𝑛(𝑛−1)

= [∏|𝛽𝑖|

𝑛

𝑖=1

]

2
𝑛

= [∏𝛽𝑖

𝑛

𝑖=1

]

2
𝑛

 

1

𝑛(𝑛 − 1)
∑|𝛽𝑖| |𝛽𝑗|

𝑖≠𝑗

= |det 𝔸𝑏𝑒𝑑(𝐺)|
2
𝑛 = 𝑊

2
𝑛 

∑|𝛽𝑖| |𝛽𝑗|

𝑖≠𝑗

≥ 𝑛(𝑛 − 1)𝑊
2
𝑛 

 

Now consider 

 

(𝔼𝑏𝑒𝑑(𝐺))
2 = (∑|𝛽𝑖|

𝑛

𝑖=1

)

2

= (∑𝛽𝑖

𝑛

𝑖=1

)

2

+∑|𝛽𝑖| |𝛽𝑗|

𝑖≠𝑗

 

(𝔼𝑏𝑒𝑑(𝐺))
2 = (|𝐷| + 𝑛(𝑛 − 1)) + 𝑛(𝑛 − 1)𝑊

2
𝑛 

𝔼𝑏𝑒𝑑(𝐺) ≥
√(|𝐷| + 𝑛(𝑛 − 1)) + 𝑛(𝑛 − 1)𝑊

2
𝑛 

 

Theorem 5.3: For a cocktail graph 𝐺, if 𝐷 be the minimum bandwagon eccentric dominating set and 𝑊 =
|det 𝔸𝑏𝑒𝑑(𝐺) | then 

 

√|𝐷| + 𝑛 + 𝑛(𝑛 − 1)𝑊
2
𝑛 ≤ 𝔼𝑏𝑒𝑑(𝐺) ≤ √𝑛(𝑛 + |𝐷|) 

 

Proof: The proof follows on the similar lines to Theorem 5.2. 

 

Theorem 5.4: If 𝛽1(𝐺) is the largest minimum bandwagon eccentric dominating eigenvalue of 𝔸𝑏𝑒𝑑(𝐺) then for 

a star, crown and complete graph 𝐺, 

 

𝛽1(𝐺) ≥
|𝐷| + 𝑛(𝑛 − 1)

𝑛
 , 

 

for a cocktail party graph 𝐺, 

 

𝛽1(𝐺) ≥
|𝐷| + 𝑛

𝑛
 . 

 

Proof: Let 𝑌 be a non-zero vector, then by applying Rayleigh-Ritz theorem [4], 
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𝛽1(𝔸𝑏𝑒𝑑(𝐺)) =𝑌≠0
𝑚𝑎𝑥

𝑌𝑇  𝔸𝑏𝑒𝑑(𝐺)  𝑌

𝑌𝑇  𝑌
 

𝛽1(𝔸𝑏𝑒𝑑(𝐺)) ≥
𝑈𝑇  𝔸𝑏𝑒𝑑(𝐺)  𝑈

𝑈𝑇 𝑈
=
|𝐷| + 𝑛(𝑛 − 1)

𝑛
 

 

where 𝑈 is the unit matrix. 

Analogously, 

 

𝛽1(𝔸𝑏𝑒𝑑(𝐺)) ≥
𝑈𝑇  𝔸𝑏𝑒𝑑(𝐺)  𝑈

𝑈𝑇 𝑈
=
|𝐷| + 𝑛

𝑛
 . 

 

6 Conclusion 
 
In this paper bandwagon eccentric domination polynomial 𝐵𝐸𝐷(𝐺, 𝑥)  is studied. Theorems related to the 

characteristics of coefficients of 𝐵𝐸𝐷(𝑆𝑛 , 𝑥) of a star graph is discussed. 𝐵𝐸𝐷(𝑆𝑛, 𝑥) is found. The coefficients 

of 𝐵𝐸𝐷(𝑆𝑛, 𝑥) are tabulated. Minimum bandwagon eccentric dominating energy 𝔼𝑏𝑒𝑑(𝐺) is defined. 𝔼𝑏𝑒𝑑(𝐺) of 

families of graphs are computed. Properties of minimum bandwagon eccentric dominating eigenvalues are 

obtained. Results related to upper and lower bounds for 𝔼𝑏𝑒𝑑(𝐺) of cocktail party, complete, crown and star 

graphs are discussed.  
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