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ABSTRACT 
 

Introduction: The field of hepatology is rapidly evolving, with new treatments being investigated 
using gene therapy. Gene therapy involves using a patient's genetic code and altering it to create a 
desired phenotype/genotype.  
Methods: Within this emerging domain, there is a multitude of delivery mediums used to alter 
genes. It is essential to understand the mechanisms of genetic therapies and the risks and benefits 
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associated with them. This review aims to break down the mechanisms of action of gene therapies, 
describe current research conducted, and discuss future implications for the field of hepatology. 
Discussion and Conclusion: Different methods of gene therapy include gene editing, gene 
silencing, gene transfer, and mRNA therapy. These genetic modulations are achieved through 
several modalities. Examples include zinc finger nucleases (ZFNs), transcription activator-like 
effector nucleases (TALENs), cluster-regulated interspaced short palindromic repeats with 
associated cast 9 proteins (CRISPR/Cas9), SiRNA particles, antisense oligonucleotides (ASO), and 
synthetically engineered mRNA. Initially, the method for gene therapy included injecting genetic 
code, usually in a vector, to create phenotypic production in gene-deficient states. Recently, gene 
therapy has included more precise editing of the genome with technologies such as CRISPR-Cas9 
and silencing of pathogenic genes. 
 

 

Keywords: Gene therapies; vectors; CRISPR-Cas9; TALENs; ZFNs; ASOs; mRNA therapy; liver 
disease. 

 

1. INTRODUCTION 
 
The field of hepatology has drastically changed 
over the last two decades with rapid growth in 
treatment options for chronic liver diseases such 
as hepatitis C, and new pathogenic processes 
being identified including the genetic basis for 
several diseases. The field continues to push the 
envelope of treatments with gene therapy which 
is the concept of using a patient's genetic code 
and altering it to create a desired 
phenotype/genotype. Starting with vectors: there 
are viral vectors as well as nonviral vectors to 
help deliver genetic code into cells. There are 
methods of delivering naked genetic material 
using hemodynamic injections. Delivery vesicles 
can also be modified to target liver-specific cells 
[7,11]. Gene editing, gene silencing, gene 
transfer, and mRNA therapy are different 
methods of achieving the desired 
phenotype/genotype.  
 

2. METHODS 
 
This research has focused mostly on gene 
editing with the use of zinc finger nucleases 
(ZFNs), transcription activator like effector 
nucleases (TALENs), and cluster regulated 
interspaced short palindromic repeats with 
associated cast 9 proteins (CRISPR/Cas9). 
ZFNs are nucleases that use multiple base pairs 
to bind to specific parts of DNA and cause 
double-strand breaks, where these breaks occur, 
DNA can be introduced [13]. mRNA therapy is a 
treatment that has gained a lot of traction 
recently as a gene-modifying therapy. mRNA 
therapy in a simplified manner, is synthetically 
engineered mRNA which is injected into cells to 
allow for the replication of specific proteins. The 
goals of these therapies in hepatology are broad, 
ranging from treatment for hepatitis B virus 

(HBV), and rare genetic liver diseases, to 
providing a cure for hepatocellular carcinoma 
(HCC). This paper aims to simplify complex but 
pertinent gene therapies that are currently being 
studied and provide an overview of current trials. 
A fundamental understanding of these future 
therapies is important for clinicians and 
researchers involved in taking care of liver 
diseases. 
 

3. DISCUSSION 
 

3.1 Delivery Vectors 
 
3.1.1 Viral delivery vectors 
 
Adenoviral vector: Adenoviruses are non-
enveloped double-stranded DNA vectors that 
have been used in the field of oncology [1]. Their 
maximum packaging capacity is anywhere from 
36-37 kb [1,8]. The advantage of using 
adenovirus vectors is their efficient transduction 
into liver cells [1]. The disadvantages to 
adenoviral vectors include the possible elicitation 
of a strong immune response, the presence of 
serotype-dependent pre-existing immunity, and 
the development of acute inflammatory 
responses [1,8]. The utility of adenoviral vectors 
has been discussed in several studies examining 
the safety and efficacy of such a medium. One 
study displayed successful lacZ gene (gene that 
creates β-galactosidase which cleaves lactose, a 
disaccharide, into glucose and galactose) 
transfer via adenoviral vectors to normal and 
cirrhotic livers in a mouse model [2-5]. 
Histochemical evaluation revealed marked 
transgene expression even in fulminant hepatitis 
mouse livers without significant differences in 
cellular or humoral immune response among 
normal, cirrhotic, and hepatitis mouse livers [14]. 
A similar study portrayed the therapeutic 
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potential of adenoviral vectors, specifically in the 
role against hepatocellular carcinoma [9,10]. In-
vivo and In-vitro suppression of hepatocellular 
carcinoma was achieved through delivery of 
adenoviral vector Ad-ECRG2 [15]. Esophageal 
cancer-related gene 2 is critical in 
carcinogenesis. Ad-ECRG2 successfully 
suppressed the invasion and adhesion of cancer 
cells while altering the expression of multiple key 
cancer-related molecules [15]. 
 

Adeno-associated virus derived vector: 
Adeno-associated viruses (AAV) are non-
enveloped single-stranded DNA vectors that can 
act as a delivery system for genetic material into 
cells [1]. Utilization of this type of viral vector in 
theory would require serotype testing prior to 
initiation of treatment to determine efficacy. 
There has been a proof-of-concept study 
completed using AAV’s with the induction of 
hepatitis B virus (HBV).  The study implemented 
AAV8 to carry HBV genotype D into mouse cells 
to stimulate a chronic infection.  A similar study 
was completed in rhesus monkeys, a species 
that is not naturally capable of being infected with 
HBV, where the monkeys were given the HBV 
specific receptor hNTCP carried in AAV8.  These 
Rhesus monkeys were then infected with HBV 
and showed viral replication up to 24 weeks after 
inoculation [6]. AAV vectors are currently being 
utilized in several clinical trials and are well 
tolerated. This vector has been utilized in Phase I 
studies targeting Hemophilia B, [16-26] 
Hemophilia A, [27-32] Ornithine 
Transcarbamylase (OTC) deficiency, [33-36] 
Phenylketonuria, [37,38] Acute Intermittent 
Porphyria (AIP),[39] Methylmalonic Acidemia, 
[40] Familial Hypercholesterolemia, [41] Fabry 
Disease, [42-44] Mucopolysaccharide Syndrome 
(MPS) I, MPS II, MPS IV, [21,45-47] Wilsons 
Disease, [48] and Crigler Najjar [49,50]. Phase II 
studies are ongoing targeting several of these 
pathological conditions.  
  

Lipid Nanoparticles: Lipid nanoparticles are 
manufactured similarly to cell membranes to 
allow for passage through the membrane. They 
are composed of amphiphilic lipids creating a 
micelle with genetic material trapped on the 
inside with a hydrophilic layer, and outside 
coated hydrophobic layer. The bio-similarity to 
cell membranes gives the lipid nanoparticle low 
toxicity, low immunogenicity, and structural 
flexibility [8]. Other advantages that lipid 
nanoparticles provide are their ability to be mass 
produced and their inherent biodegradability [8]. 
The disadvantage of using lipid nanoparticles is 
their lack of specificity for cells. This problem has 

been combated by binding N-
acetylgalactosamine (GalNAc) clusters to the 
lipid nanoparticles to help target cells more 
specifically [8]. Another method to help specificity 
of lipid nanoparticles is the use of polyethelyne 
glycol (PEG). This was shown in a medication 
approved by the FDA in 2018 for TTR-type 
familial amyloid polyneuropathy. The lipid 
nanoparticle used a PEG siRNA system that 
targeted transthyretin [11]. The lipid nanoparticle 
is taken up via endocytosis by the low-density 
lipoprotein receptor on cell membranes. Lipid 
nanoparticle therapies are being utilized in 
clinical trials utilizing mRNA therapy and the 
CRISPR/Cas9 gene editing technique. 
 

Gene Editing: Gene editing is the process of 
targeting specific sections of DNA and altering or 
replacing those sequences for the desired 
product. There are two main classes of editing: 
nuclease-guided and nuclease-free editing [12]. 
The three main nucleases used in editing are 
zinc finger nucleases (ZFNs), transcription 
activator-like effector nucleases (TALENs), and 
clustered regularly interspaced short palindromic 
repeats with associated Cas9 protein 
(CRISPR/Cas9) [1,8]. These techniques are 
combined with either non-homologous end-
joining, or homology-directed repair. These repair 
mechanisms allow for insertion or deletion of 
desired genetic code. The most common target 
is the albumin locus in the liver, given its high 
transcriptional capabilities [12]. Non-homologous 
end-joining allows for insertion or deletion of 
variable lengths, which tends to cause frameshift 
mutations and can lead to gene knockout [56,55]. 
RNA-guided nuclease editing tends to have 
higher efficiency of integration [57]. Nuclease-
facilitated editing also has the potential for off-
target effects secondary to Cas9. Due to this 
problem, nuclease-free editing was developed 
based on homology-directed repair but it is less 
efficient [58]. 
 

Zinc-Finger Nucleases: Zinc-finger nucleases 
(ZFNs) are nucleases that use multiple base 
pairs to bind to specific parts of DNA and cause 
double-strand breaks [13]. ZFNs are made up of 
30 amino acids bound to a molecule of zinc 
[13,59]. There are five amino acids that do not 
fold around the zinc molecule, which act as a link 
between the zinc-fingers [60]. The amino acids 
bind to 3-4 complementary nucleotides of dsDNA 
that they have specificity towards [59]. The ZFN 
will bind to one strand of DNA using multiple 
base pairs, with a cleavage domain (FokI 
nuclease) at the end, while another ZFN group of 
amino acids will attach to the other strand of 
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dsDNA, creating a double-strand break (Fig. 1). 
The locations of the breaks can then be targeted 
with newly introduced genetic code. There have 
been two phase II trials using ZFNs directed at 
the albumin locus of hepatocytes targeting 
Alpha-L-Iduronidase and Iduronate 2 sulfatase in 
MPSI and MPSII, respectively [51-53]. Both of 
these trials have been rolled to long-term follow-
up studies [61,62]. Previous trials also have used 
adeno-associated viral vectors modified with ZFN 
to target Factor IX at the albumin locus in 
Hemophilia B [17,21]. 

 
Transcription Activator-Like Effector 
Nucleases: Transcription activator-like effector 
nucleases (TALENs) are similar to ZFNs by the 
fact that they use a FokI nuclease domain to 
create the double-strand breaks (Fig. 2). TALE 
proteins occur naturally in the bacteria 
xanthomonads, and have been shown to attach 
FokI domain to alter the genes of plants [63]. 
This domain attached to the FokI domain is the 
transcription activator-like effector repeat 
domain. This set of protein codes is flanked by a 
C-terminal domain and an N-terminal domain, 
which allows for the replacement of genetic code 
with complementary pairing to attach at the C-
terminus and N-terminus. These terminus amino 
acids allow for more cost-effective and efficient 
production over ZFNs. This also allows TALENs 
to be specific on where the double-strand break 
will occur. Similar to ZFNs, two TALENs are 
needed to cause the double-strand DNA 
break.[56] This gene therapy has been shown to 
be effective in mouse liver models of chronic 
HBV, where markers of viral replication were 
inhibited after the introduction of TALENs 
targeting the four HBV-specific sites within the 
viral genome [64]. 

 
CRISPR/Cas9: The CRISPR/Cas9 system is the 
immunologic system of prokaryotes. The 
CRISPR sequence is a strand of DNA that 
encodes protein production for the Cas9 system. 
The Cas9 system is a set of proteins that break 
down bacteriophage DNA upstream from the 
CRISPR sequence. The CRISPR sequence has 
a region of protospacer adjacent motifs (PAMs) 
on both sides (Fig. 3) [65]. The PAM region has 
an allosteric effect that helps the Cas9 region 
break down DNA [65]. All together the bacteria 
will detect foreign DNA, and break it down using 
Cas9 proteins. These broken DNA pieces attach 
to the PAM region and are sent to incorporate 
into the CRISPR sequence. The CRISPR 
sequence will then replicate and send RNA to the 
Cas9 region to create protein complexes specific 

for that broken DNA (Fig. 4). This allows the 
PAM to bind specific DNA and the Cas 9 proteins 
to efficiently break down that specific foreign 
DNA quickly. This is currently the favored genetic 
therapy technique [8]. There has been recent 
research using CRISPR/Cas9 via AAVs with anti-
HBV DNA. There have been new discoveries 
using AAVs to avoid second-strand synthesis, 
which decreases transgene expression. This is 
done by mutating the terminal resolution site (trs) 
site on the AAVs, allowing for hairpin loops to 
form reducing its packaging size, and are called 
self-complementary AAVs (scAAVs) [66]. With 
this smaller packaging size the scAAVs studies 
were able to use a Staph Aureus Cas9 with 
multiple cccDNA targets through RNAi targeting 
HBV and Argonaut2 in mice with chronic HBV 
[67]. These studies showed a significant decline 
in HBV replication in both cultures and mice [68]. 
There is an active phase I clinical trial using lipid 
nanoparticles as a vector for the CRISPR/CAS9 
gene editing technology targeting the 
transthyretin protein, present predominantly in 
the liver, which is misfolded and accumulates in 
this condition [69]. 
 

Gene Silencing: Gene silencing identifies an 
unwanted DNA sequence and effectively stops 
cells from replicating this sequence, which can 
be done by targeting mRNA using small 
interfering RNA (siRNA) or antisense 
oligonucleotides (ASO). siRNA and ASOs are 
similar in concept; they both use Watson-Crick 
base pairing to attach to host mRNA and 
suppress replication [72]. 
 

Small Interfering RNA: siRNA is a double-
stranded RNA that causes “RNA interference,” 
which is double-stranded RNA binding 
complementary mRNA and silencing the gene 
[70-72]. This process is done by cleavage of the 
double-stranded RNA by RNase III-like enzyme. 
The more stable siRNA binds to the mRNA and 
activates a protein called RNA-induced silencing 
complex (RISC). This RISC causes the mRNA to 
be cleaved and effectively silenced [73]. The use 
of siRNA with a naked delivery system was 
discussed in a previous section, but siRNA can 
be delivered using any traditional method 
weighing the pros and cons, i.e. nonviral vectors, 
viral vectors, or naked. Using the nonviral 
mechanisms has its main limitation of having to 
re-administer doses after a period time, it is not a 
sustained response [1]. Specifically for the 
delivery of siRNA to hepatocytes, recent 
development of a polymer-siRNA conjugate 
called Dynamic PolyConjugates (DPC) has 
shown promise. 
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The study demonstrated effective knockout of 
apolipoprotein B and proliferator-activated 
receptor alpha [74]. GalNAc and siRNA have 
been a focus of research with FDA-approved 
drugs Givosiran for acute hepatic porphyria, 
[75,76] and Lumasiran for the treatment of 
primary hyperoxaluria type 1. [77] There are 
currently ongoing studies looking at GalNAc-
modified siRNA for HBV, NASH, GSD1a, and 
hereditary hemochromatosis [8,78-81]. There is 
currently a siRNA-LNP that has completed a 
phase III trial for familial hypercholesterolemia 
targeting PCSK9 and apoB [54,82,83]. This 
vector method is also being explored for chronic 
hepatitis B with a recently completed Phase II 
clinical trial [84]. There is also a completed phase 
II trial involving the development of a siRNA 
targeting polo-like kinase 1 (PLK 1), which is 
overexpressed in hepatocellular carcinoma. The 
specific targets for this therapy are oncogene 
MYC and polo-like kinase-1 [85].  
 
Antisense Oligonucleotides: There are multiple 
types of ASOs that are all single-stranded 
antisense molecules. The original ASOs 
consisted of a phosphodiester backbone and 
were called unmodified ASOs. Recent 
investigations have been using different types of 
modifications to ASOs with different benefits. The 
list of modified ASOs include: phosphorothioates 
(PS), phosphorodiamidate morpholinos (PMO), 
peptic nucleic acids (PNA), locked nucleic acids 
(LNA), 2’-O-methyls, 2’-O-methoxyethyls, 2’ 
fluoros, 5’ methylcytosines, and G-clamps [86]. 
PS have a modification to the phosphate group, 
allowing for enzymatic stability. PMOs and PNAs 
have sugar phosphate modifications, PMOs have 
the benefit of improved solubility and binding 
affinity; PNAs have increased enzymatic stability, 
better binding affinity, and do not activate the 
immune system. LNAs, 2’-O-methyls, 2’-O-
methoxyethyls, and 2’fluoros have sugar 
modification. LNAs have stability and high 
binding affinity. 2’-O-methyls and 2’-O-
methoxyethyls have high binding affinity, stability, 
and decreased immune reactions [87]. 2’fluoros 
have high binding affinity. 5’methylcytosine and 
G-clamp use nucleobase modification. Both 
5’methylcytosine and G-clamp have high binding 
affinity, and 5’methylcytosine has no immune 
reaction [87]. There is another genetic treatment 
in progress for NASH using GalNAc-modified 
ASOs [88]. This treatment seeks to target 
serine/threonine protein kinase or fat-specific 
protein 27. ASO therapy has already been 
approved for the treatment of homozygous 
familial hyperlipidemia with the drug Mipomersen 

[88]. Other trials utilizing antisense 
oligonucleotides have been studied in 
transthyretin TTR amyloidosis. There is an 
ongoing phase III clinical trial of a ligand-
conjugated antisense oligonucleotide against the 
TTR protein [89]. 
 

mRNA Therapy: The rationale for mRNA 
therapy centers on synthetically engineered 
mRNA injected into cells to allow for replication 
of specific proteins. Though oversimplified, this 
allows an understanding of the concept for a 
more in-depth discussion of the process and 
future implications. mRNA therapy creates a 
transient effect in protein production. This has a 
benefit of allowing for dose control but requires 
the need for repeat dosing for a sustained effect 
[1]. The synthetic mRNA structurally is a 5’ cap, 
5’ to 3’ untranslated regions, kozak sequences, 
and poly-A tails [12]. This structure is designed to 
resemble a naturally occurring mature mRNA 
found within the cytoplasm. It was discovered 
that certain RNA nucleoside modifications led to 
better control of duration, kinetic profile and 
decreased immunogenicity [90]. This was a 
major breakthrough in the development of this 
method. The modified mRNA is negatively 
charged and is unable to freely cross the cell 
membrane into cells. This has led to the use of 
multiple methods to impregnate cells with 
synthetic mRNA, similar to other genetic editing 
mechanisms. Eukaryotic cells have the ability to 
actively transport these negatively charged 
particles across the cell membrane with the use 
of endocytosis [12]. 
 

Genetic therapies seem to be on the forefront of 
the hepatology world. Hundreds of animal 
studies and clinical trials are currently underway 
for a variety of liver diseases. Most of these trials 
are in the starting phase one and phase two, but 
there are also gene therapies that are currently 
FDA-approved and being used in clinical 
practice. Adenoviral vector gene transfer is well 
described in previous clinical trials and in the 
literature. AAV therapy has promising results in 
treatment for Hemophilia A. The liver is the site 
of production for clotting factors (liver 
parenchymal cells produce coagulation factors 
involving generation of fibrin clot, except factor 
VIII which was synthesized by hepatic and 
extrahepatic endothelial cells) and can serve as 
a site for AAV therapy [92,93]. A multiyear follow-
up study was conducted after a single 
administration of AAV5 genetic transfer normal 
VIII factor which resulted in a sustained, clinically 
relevant benefit in 15 participants [94]. In seven 
participants, bleeding events decreased from a 
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mean of 16.3 events per year to 0.7 events per 
year at the end of year 3, a 96% reduction [94]. 
In six participants bleeding events decreased 
from a mean of 12.2 events per year to 1.2 
events per year at the end of year 2, a 92% 
decrease [94]. A phase III trial was conducted 
with valoctocogene roxaparvovec, a B-domain-
deleted factor VIII coding sequence with AAV 
genetic transfer [29,95]. In this study 134 men 
were included and the mean annualized treated 
bleeding rate decreased by 84.5% (p=<0.001) 
from baseline [95]. During the time of the study 
there were no serious adverse events related to 
the treatment [95]. AAV therapy has also shown 
to be effective in the treatment of Hemophilia B. 
A phase III trial was conducted which 
administered one infusion of AAV5 vector 
containing a Padua factor IX variant [16]. It was 
found that annualized bleeding rate decreased 
from 4.19 to 1.51 during months 7 through 18 
after treatment (p=<0.001). It was concluded that 
etranacogene dezaparvovec gene therapy was 
superior to standard prophylactic factor                
IX, and showed a favorable safety profile                   
[96]. Another phase I clinical trial                      
targeting porphobilinogen deaminase 
haploinsufficiency, an enzyme deficient in AIP 
showed promising results for AAV gene therapy. 
In this clinical trial two patients had a positive 
clinical outcome that resulted in the cessation of 
hematin treatment [97]. AAV genetic transfer 
therapy is promising for pathologies in which a 
genetic derangement results in decreased 
activity of an essential enzyme. However, the 

division of cells over time causes vector dilution 
and repeat vector therapy that may be ineffective 
due to the immune response of the patient [98-
101]. 
 

Specifically, for A1AT deficiency, there are 
promising SiRNA trials currently in phase two. 
Fazirsiran, an siRNA, has shown promising 
results in an active phase II clinical trial where 
results showed a significant reduction in the 
alpha 1 antitrypsin Z mutant protein [102]. 
 

Current hepatitis B trials seem to be focused on 
mostly the use of siRNA targeting HBV RNA, 
with multiple trials in phase 1. These studies 
work to decrease the expression of hepatitis B 
surface antigen messenger mRNA in liver 
hepatocytes. One study used DCR-HBVS which 
is a synthetic RNAi which is conjuges to  GalNAc 
ligands [81]. Another study utilized AB-729, a 
siRNA inhibitor of HBV, in  combination with 
vebicorvir, a novel core inhibitor [103]. 
 

There are currently two NASH trials using ASO.  
One trial in phase I, using ASOs to target the 
PNPLA3 gene. This mouse trial has shown to 
reduce liver steatosis, inflammation, and fibrosis 
by lowering the mRNA expression of PNPLA3 
[104]. Another trial in phase II is using ASOs 
targeting diacylglycerol acetyltransferase 2 
(DGAT2), an enzyme that catalyzes the final 
reaction in the synthesis of triglycerides. This 
antisense nucleotide works to reduce the 
production of DGAT2 and therefore decrease 
triglyceride synthesis in the liver [105,106]. 

 

 
 

Fig. 1. The Action of Zinc-Finger Nucleases 
The Zinc-Finger Nuclease (ZFN) binds to one strand of DNA using multiple base pairs, with the FokI nuclease 

used as a cleavage domain. Dimerization occurs when another ZFN attaches to the complementary DNA strand, 
creating a double stranded break
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The field of genetic therapies continues to grow 
rapidly in all fields as it does in the sphere of 
hepatology. The continued success of genetic 
therapies in other fields of medicine will fuel the 
growth in hepatology. There is no definitive 
endpoint to genetic therapy research. There are 
limitations to the field of genetic therapies not 

only on the technical/research and development 
side, but also in funds of knowledge of providers 
prescribing these medications, and public distrust 
in genetic therapies. A meta-analysis reported 
patients were more comfortable with gene 
therapies if patients discussed risks and benefits 
with their patients [107]. 

 

 
 

Fig. 2. Transcription activator-like effector nucleases (TALENs) 
Transcription activator-like effector nucleases (TALENs) are a set of protein codes flanked by a C-terminal 

domain and an N-terminal domain and attached to a FokI domain. One TALEN attaches to a strand of DNA and 
the FokI nuclease is used as a cleavage domain. Another TALEN attaches the complementary DNA strand, 

dimerization occurs and creates a double stranded break. 

 

 
 
Fig. 3. cluster regulated interspaced short palindromic repeats with associated cast 9 proteins 

(CRISPR/cas9) 
CRISPR sequences are associated protospacer adjacent motif (PAM) regions used to help break down DNA, 
with associated Cas9 adjacent.The CRISPR sequence is used to create protein complexes to identify specific 
DNA sequences. After the complimentary region of DNA is identified, the Cas9 protein creates a double-strand 

break. After the DNA break occurs, the strand is repaired through non-homologous end joining (NHEJ) or innate 
homology repair (HR)
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Fig. 4. Double Stranded short interfering RNA (siRNA) 
Double stranded RNA enters the cell and an Rnase III-like enzyme cleaves the double stranded RNA into the single strand siRNA. siRNA then binds to mRNA an RNA-induced 

silencing complex is recruited once binding is accomplished. A double-stranded DNA break is created, resulting in silencing of the mRNA 
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Table 1. List of genetic therapy clinical trials for liver diseases 
 

Disease Study # Vector Modification type Molecule Target Clinical phase Route Ref 

A1AT liver disease NCT03946449 cholesterol -
conjugated siRNA 

siRNA Inhibits AAT mRNA AAT mRNA II (active) subcutaneous  [107,108] 

 
NCT02363946 siRNA Dynamic 

polyconjugate 
Silence AAT gene 
expression 

AAT gene  I (terminated) IV infusion [108] 

 
NCT04764448 GalNAc-siRNA siRNA siRNA targeting SERPINA1   II (recruiting) subcutaneous [109]  
NCT02503683         I (Terminated)    [110]  
NCT04174118 GalNAc-siRNA siRNA     (I) active subcutaneous [111] 

Acute hepatic 
porphyria 

NCT03338816 GalNAc-siRNA 
conjugate 

siRNA siRNA against ALAS1 ALAS1 III (completed) IV infusion [75] 

Acute intermittent 
porphyria  

NCT02082860 AAV5 Gene transfer Liver specific-promoter for 
Porphobilinogen deaminase 
expression 

Porphobilinogen 
deaminase 

I (completed 
2014) 

IV infusion [39] 

Acute intermittent 
porphyria  

NCT02452372 GalNAc-siRNA 
conjugate 

siRNA Inhibitor of hepatic 
aminolevulinic acid synthase 
1 (ALAS1) 

Delta-aALAS1 I (completed) Subcutaneous [76] 

Chronic HBV NCT02826018 GalNAc-siRNA 
conjugate 

siRNA   HBV mRNAs I (terminated)   [112] 

 
NCT03772249 GalNAc-siRNA 

conjugate 
siRNA     I (Complete) subcutaneous [81] 

 
NCT03672188 GalNAc-siRNA 

conjugate 
siRNA   HBV transcripts     [84] 

 
NCT02981602   ASO   HBV messenger 

RNAs 
II (Completed) subcutaneous [80] 

 
NCT03365947 GalNAc-siRNA 

conjugate 
siRNA   HBV mRNAs I/II (completed) subcutaneous [113] 

Crigler Najjar NCT03466463 AAV Gene transfer UDP 
glucuronosyltransferase 1 
(UGT1A1) transgene 

UGT1A1 N/a (recruiting) IV infusion [49] 

 
NCT03223194 AAV8 Gene transfer UGT1A1 gene UGT1A1 I (terminate due 

to sponsor 
decision) 

IV infusion [50] 

Fabry NCT04040049 AAV Gene transfer alpha galactosidase gene alpha 
galactosidase 

I/II (recruiting) IV infusion [43] 

 
NCT04046224 AAV 2/6 Gene transfer cDNA of Alpha 

galactosidase 
Alpha 
galactosidase 

I/II (recruiting) IV infusion [42] 

 
NCT04519749 AAV Gene transfer Codon-optimized full length 

human GLA transgene 
driven by CAG promoter 

Alpha 
galactosidase 

I/II (recruiting) IV infusion [44] 

Familial 
hypercholesterolemia 

NCT00004809 Autologous 
hepatocytes 

Gene transfer Low-density lipoprotein 
(LDL) receptor gene 

LDL receptor I (completed) Inferior 
mesenteric 
vein infusion 

[114] 
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Disease Study # Vector Modification type Molecule Target Clinical phase Route Ref 

  NCT02314442 GalNAc-siRNA 
conjugate 

siRNA PCSK9 inhibitor PCSK9 I (completed) Subcutaneous [115] 

NCT03851705 GalNAc-siRNA 
conjugate 

siRNA PCSK9 inhibitor PCSK9 III (completed) Subcutaneous [82] 

NCT02651675 AAV8 Gene transfer Human low-density 
lipoprotein receptor gene 

Low Density 
Lipoprotein 
Receptor 

I/II (completed) IV infusion [41] 

NCT02709850     Was discontinued due to 
phase 2b results 

      [116] 

Glycogen Storage 
Disease Type 1a 
(GSD1a) 

NCT05095727   mRNA mRNA encoding Glucose 6-
phosphatase 

Glucose 6-
phosphatase 

I (recruiting) IV infusion [117] 

Hemophilia A 
  

NCT02576795 AAV5 Gene transfer B domain deleted Factor VIII Factor VIII I/II (ongoing) 
  

IV infusion [27] 

NCT03370913 AAV Gene transfer B-domain-deleted factor VIII Factor VIII III (active) IV infusion [29] 
NCT03003533 AAV Gene transfer B domain deleted Factor VIII Factor VIII I/II (recruiting) IV infusion [28] 
NCT03061201 AAV 2/6 Gene transfer cDNA containing B domain 

deleted Factor VIII 
Factor VIII II (ongoing) IV infusion [31] 

NCT03588299 AAV Gene transfer B domain deleted Factor VIII Factor VIII I/II (ongoing) IV infusion [32] 
NCT03370172 AAV8 Gene transfer B domain deleted Factor VIII Factor VIII I/II (ongoing) IV infusion  [30] 

Hemophilia A and B 
  

NCT03549871 GalNAc-siRNA siRNA siRNA targeting 
antithrombin 

Antithrombin III (completed) subcutaneous [118] 

NCT03754790 GalNAc-siRNA siRNA   antithrombin III (active) subcutaneous [119] 
NCT03417245 GalNAc-siRNA siRNA   antithrombin III (active) subcutaneous [120] 
NCT03417102 GalNAc-siRNA siRNA   antithrombin III (active) subcutaneous [121] 

Hemophilia B 
  

NCT00076557 AAV Gene transfer Human Factor IX Factor IX I/II was 
terminated with 
no results 

Hepatic artery 
injection 

[25] 

NCT03569891 AAV5 Gene transfer Padua variant of a codon 
optimized factor IX gene 

Factor IX III (active) IV infusion [16] 

NCT00979238 AAV Gene transfer codon-optimized factor IX 
transgene 

Factor IX I (ongoing) IV infusion [19] 

NCT02396342 AAV5 Gene transfer Codon optimized human 
factor IX gene 

Factor IX I/II 
Completed 
  

IV infusion [26] 

NCT01687608 AAV8 Gene transfer Factor IX gene Factor IX I/II ongoing IV infusion [23] 
NCT03489291 AAV5 Gene transfer Padua variant of a codon 

optimized factor IX gene 
Factor IX IIb IV infusion [18] 

NCT03369444 
NCT03641703 

AAV Gene transfer Transgene cassette 
including liver-specific 
promoter (FRE1) and a 
partially codon-optimized 
gene encoding factor IX with 

Factor IX I/II (terminated) 
  
Long term 
observational 
study currently 

IV infusion [20,22] 
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Disease Study # Vector Modification type Molecule Target Clinical phase Route Ref 

a gain of function active 
NCT02618915 AAVRH10 Gene transfer Factor IX Factor IX I/II terminated 

due to sponsor 
decision 

IV infusion [24] 

NCT02695160 
NCT04628871 

AAV6 Zinc Finger 
mediated 

Factor IX Factor IX at 
albumin locus 

I (terminated) 
  

IV infusion [17,21] 

Hepatocellular 
Carcinoma 
  

NCT02191878 Stable nucleic acid 
lipid particle 

siRNA Decreased expression of 
polo-like kinase 1 (PLK 1) 
expression 

PLK1 I/II (completed) IV infusion [122] 

NCT03780049 AAV5   Oncolytic activity   III (recruiting) IV infusion [123] 
Hereditary 
Transthyretin 
amyloidosis with 
polyneuropathy 

NCT04601051 Lipid nanoparticles 
(LNPs) 

CRISPR/CAS9 Decreased production of 
both wild-type and mutant 
transthyretin (TTR) protein 

TTR in 
hepatocytes 

I (recruiting) IV infusion [69] 

Methylmalonic 
acidemia 
  

NCT03810690   mRNA     Study withdrawn 
before dosing 

  [124] 

NCT04581785 AAV LK03 capsid Methylmalonyl-CoA mutase 
gene at albumin locus 

  I/II (recruiting) IV infusion [40] 

NCT04899310 
  
NCT05295433 

Lipid nanoparticle mRNA Methylmalonyl-coenzyme A 
(CoA) mutase (MUT) gene 

MUT I/II (recruiting) IV infusion [125,126] 

MPS I NCT02702115 
  
NCT04628871 

AAV8 Zinc finger 
nuclease 

Alpha-L-Iduronidase 
transgene 

Alpha-L-
iduronidase gene 
at the albumin 
locus  

I/II (subjects 
rolled over to 
long-term follow 
up study) 

IV infusion [21,45] 

MPS II NCT03041324 
  
NCT04628871 

AAV Zinc finger 
nuclease 

Iduronate 2 – sulfatase gene Iduronate 2 – 
sulfatase gene at 
the albumin locus 

I/II(subjects 
rolled over to 
long-term follow 
up study) 

IV infusion [21,46] 

MPS IV NCT03173521 AAV8 Gene transfer Liver specific thyroxine 
binding globulin promoter 
  
  

Arylsulfatase B 
gene 

I/II (active) IV Infusion [47] 

NASH 
  

NCT04932512 Ligand conjugated ASO   Diacylglycerol 
acyltransferase 2 

II (recruiting) Subcutaneous  [104] 

NCT04483947 Ligand conjugated ASO Patatin-like phospholipase 
domain containing protein 3 

mRNA expression 
of PNPLA3 

I (recruiting) subcutaneous  [103] 

OTC deficiency 
  

NCT03767270 Lipid based 
nanoparticles 

mRNA Ornithine transcarbamylase 
gene 

OTC I/II withdrawn 
(program 
discontinued) 

 
[127] 

NCT00004498 AAV Gene transfer Ornithine transcarbamylase 
gene 

Ornithine 
transcarbamylase 

I (terminated) Hepatic Artery [35] 

NCT00004386 AAV Gene transfer Ornithine transcarbamylase Ornithine I (terminated) Intrahepatic [34] 
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Disease Study # Vector Modification type Molecule Target Clinical phase Route Ref 

gene transcarbamylase infusion 
NCT02991144 AAV8 Gene transfer Ornithine 

Transcarbamylase 
gene 

Ornithine 
transcarbamylase 

I/II (completed) IV infusion [36] 

NCT05345171 AAV8 Gene transfer Ornithine 
Transcarbamylase 
gene 

Ornithine 
transcarbamylase 

III (recruiting) IV infusion [33] 

Phenylketonuria 
  

NCT03952156 AAVHSC15 Gene transfer Functional copy of 
phenylalanine hydroxylase 
gene 

Phenylalanine 
hydroxylase 

I/II (recruiting) IV infusion  [38] 

NCT04480567 AAV5 Gene transfer Phenylalanine hydroxylase 
gene 

Phenylalanine 
hydroxylase 

I/II (active) IV infusion  [37] 

Primary 
hyperoxaluria 
  

NCT05001269 GalNAc-siRNA 
conjugate 

siRNA siRNA against hepatic LDH Hepatic lactate 
dehydrogenase 
(LDH) 

II (recruiting) subcutaneous [128] 

NCT03681184 GalNAc-siRNA siRNA Decreased hepatic oxalate 
production 

Glycolate oxidase III (active) 
approved for 
sale 

Subcutaneous 
injection 

[77] 

Propionic acidemia NCT04159103   mRNA     I/II (recruiting) IV infusion [129] 
Transthyretin TTR 
amyloidosis 
  

NCT03728634 GalNAc-ASO 
conjugate 

Antisense 
oligonucleotide 

ASO against TTR mRNA TTR mRNA I/II (completed) IV infusion [130] 

NCT05071300 Ligand-conjugated 
antisense 

Antisense 
oligonucleotide 

ASO against TTR TTR protein III (recruiting) Subcutaneou [89] 

NCT03759379 GalNAc-siRNA 
conjugate 

siRNA siRNA against transthyretin 
protein 

Transthyretin 
protein 

III (active) subcutaneous [131] 

NCT04153149     May not be relevant as this 
is cardiac amyloidosis 

      [132] 

Wilson’s disease NCT04884815 AAV9 Gene transfer ATP7B Gene Copper 
transporting 
ATPase 2 

I/II (recruiting) IV infusion [48] 

 
  



 
 
 
 

Leff et al.; J. Adv. Med. Med. Res., vol. 36, no. 5, pp. 38-58, 2024; Article no.JAMMR.114744 
 
 

 
50 

 

Table 2. List of animal studies using genetic therapy for liver diseases 
 

Disease Target Organ Vector Modification type Molecule Target Route Ref 

AATD Mouse liver AAV CRISPR/Cas9 Guide RNA hSERPINA1 Hydrodynamic tail vein 
injection 

[133] 

HBV Mouse liver TALEN expressing 
plasmid 

TALEN HBV target DNA and pairs 
of left and right TALEN 
expressing plasmids 

Sites within the S/pol, C/pol, 
and pol ORFs of HBV 
genome 

Hydrodynamic injection [64] 

Hemophilia A and B 
  

Mouse liver AAV8 ZFN Human F9 Gene Intron 1 of Human F9 Gene IV infusion [134] 
Mouse liver AAV8 ZFN   Albumin locus IV infusion [135] 
Mouse liver AAV8 ZFN   Human IDS at the albumin 

locus 
  [136] 

Hemophilia B   AAV9 CRISPR/Cas9 Guide RNA Murine Factor IX gene Hydrodynamic tail vein 
injection 

[137] 

HTI 
  

Mouse liver pX330 plasmid CRISPR/Cas9 pX330 plasmids 
expressing Cas9 and a 
single guide RNA 

Fumarylacetoacetate 
hydrolase (fah) locus 

Hydrodynamic tail vein 
injection 

[138] 

Mouse liver Lipid nanoparticle and 
AAV 

CRISPR/Cas9 U6-sgRNA, homology 
directed repair template 

Exon  8 of 
Fumarylacetoacetate 
hydrolase (fah) 

IV injection [139] 

Mouse liver pX330  CRISPR/Cas9 Guide RNA sequences Introns adjacent to exons 3 
and 4 of 
hydroxyphenylpyruvate 
dioxigenase gene 

Hydrodynamic tail vein 
injection 

[140] 

Mouse liver Plasmid DNA CRISPR/Cas9 Adenine base ditor and a 
single guided RNA 

Exon  8 of 
Fumarylacetoacetate 
hydrolase (fah) 

Hydrodynamic tail vein 
injection 

[141] 

MPS I Mouse liver AAV8 CRISPR/Cas9 Albumin locus of 
hepatocytes 

Alpha-L-iduronidase   [91] 

MPS II Mouse liver AAV2/AAAV8 ZFN Human IDS coding 
sequence 

Intron 1 of the albumin locus IV infusion? [61] 

Transthyretin 
amyloidosis  

Mouse liver Lipid nanoparticles CRISPR/Cas9 Cas9 mRNA with single 
guide RNA 

Transthyretin gene Hydrodynamic tail vein 
injection 

[142] 

Abbreviations: ATD, alpha-1 antitrypsin deficiency; AAV, Adeno-associated vector; ABE, adenine base editing; Ad, adenovirus; ALS, amyotrophic lateral sclerosis; CAR, chimeric antigen receptor; CRISPR/Cas, clustered 
regularly interspaced short palindrome repeats-associated Cas nuclease; dCas9, dead Cas9; DMD, Duchenne muscular dystrophy; gRNA, guide RNA; HBV, hepatitis B virus; HDR, homology-directed repair; HIV, human 

immunodeficiency virus; HITI, homology-independent targeted integration; HR, homologous recombination; HTI, hereditary tyrosinemia; LCA, Leber's congenital amaurosis; LNP, lipid nanoparticles; NHEJ, nonhomologous 
end-joining; PNA, peptide nucleic acids; RNP, ribonucleoprotein; SCD, sickle cell disease; sgRNA, single-guide RNA; TALEN, transcription activator-like effector nuclease; ZFN, zinc-finger nuclease. 
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4. CONCLUSION 
 

The future implications for genetic therapies have 
no bounds. A majority of trials outlined in this 
article are either animal studies or phase 1 and 
phase 2 trials. Most modalities have passed 
animal studies showing safety and efficacy. 
These data points will encourage future research 
into different liver diseases. SiRNA seems to be 
the forefront of therapy modalities in trials 
currently. There are multiple animal trials 
associated with the CRISPR/Cas9 system, but 
very few clinical trials at this time [143]. Even 
with all this promising data, and studies to give 
validity to these concepts, there has been a lot of 
public mistrust over the recent years with genetic 
therapies, especially mRNA therapies with the 
advent of the COVID-19 vaccines. Future 
problems for gene therapy include the 
management of off-target effects and specifying 
delivery particles to decrease this effect. There 
still are leaps-and-bounds to be made on the 
efficacy and penetrance of genetic therapies and 
normalizing these types of therapies to the 
public. Gene therapy is most likely the future of 
medicine across the board. These concepts can 
be difficult to comprehend not only for patients 
but for clinicians that are not specialized in 
genetics/biochemistry. There is a need to 
understand these basic concepts of genetic 
therapy so clinicians can perform their due 
diligence to explain how medications work, and 
to give hope for patients that are struggling with 
liver diseases that do not have effective 
treatment modalities today. 
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