
RESEARCH ARTICLE

Comparison of raw accelerometry data from

ActiGraph, Apple Watch, Garmin, and Fitbit

using a mechanical shaker table

James W. White, IIIID
1*, Olivia L. FinneganID

1, Nick Tindall1, Srihari NelakuditiID
2, David

E. Brown, III3, Russell R. Pate1, Gregory J. Welk4, Massimiliano de Zambotti5,

Rahul Ghosal6, Yuan Wang6, Sarah BurkartID
1, Elizabeth L. Adams1,

Mvs Chandrashekhar2, Bridget Armstrong1, Michael W. Beets1, R. Glenn WeaverID
1

1 Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America,

2 Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, United

States of America, 3 Division of Pediatric Pulmonology, Pediatric Sleep Medicine, Prisma Health Richland

Hospital, Columbia, SC, United States of America, 4 Department of Kinesiology, Iowa State University,

Ames, IA, United States of America, 5 SRI International, Menlo Park, CA, United States of America,

6 Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States of

America

* jww4@email.sc.edu

Abstract

The purpose of this study was to evaluate the reliability and validity of the raw accelerometry

output from research-grade and consumer wearable devices compared to accelerations

produced by a mechanical shaker table. Raw accelerometry data from a total of 40 devices

(i.e., n = 10 ActiGraph wGT3X-BT, n = 10 Apple Watch Series 7, n = 10 Garmin Vivoactive

4S, and n = 10 Fitbit Sense) were compared to reference accelerations produced by an

orbital shaker table at speeds ranging from 0.6 Hz (4.4 milligravity-mg) to 3.2 Hz (124.7mg).

Two-way random effects absolute intraclass correlation coefficients (ICC) tested inter-

device reliability. Pearson product moment, Lin’s concordance correlation coefficient

(CCC), absolute error, mean bias, and equivalence testing were calculated to assess the

validity between the raw estimates from the devices and the reference metric. Estimates

from Apple, ActiGraph, Garmin, and Fitbit were reliable, with ICCs = 0.99, 0.97, 0.88, and

0.88, respectively. Estimates from ActiGraph, Apple, and Fitbit devices exhibited excellent

concordance with the reference CCCs = 0.88, 0.83, and 0.85, respectively, while estimates

from Garmin exhibited moderate concordance CCC = 0.59 based on the mean aggregation

method. ActiGraph, Apple, and Fitbit produced similar absolute errors = 16.9mg, 21.6mg,

and 22.0mg, respectively, while Garmin produced higher absolute error = 32.5mg compared

to the reference. ActiGraph produced the lowest mean bias 0.0mg (95%CI = -40.0, 41.0).

Equivalence testing revealed raw accelerometry data from all devices were not statistically

significantly within the equivalence bounds of the shaker speed. Findings from this study

provide evidence that raw accelerometry data from Apple, Garmin, and Fitbit devices can

be used to reliably estimate movement; however, no estimates were statistically significantly

equivalent to the reference. Future studies could explore device-agnostic and harmonization
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methods for estimating physical activity using the raw accelerometry signals from the con-

sumer wearables studied herein.

Introduction

Over the past 20 years, device-based assessment of physical activity has improved due to the

introduction of wearable monitors, such as accelerometers. Wearable monitors provide

device-based estimates of movement and overcome recall and desirability bias that may ham-

per self-reported measures of physical activity [1, 2]. Best practice recommendations for using

accelerometers have shifted over the last decade from traditional activity counts (accelerations

per a given epoch) [3] to using raw accelerometry data from accelerometers (i.e., x-, y-, and z-

axis accelerometry data in ɡ’s typically collected multiple times per second) to estimate physi-

cal activity [4].

Consumer wearables (e.g., Apple Watch, Fitbit, Garmin) are increasingly popular measure-

ment tools for assessing physical activity. Not only are these devices equipped with accelerom-

eters to capture movement, but they are also unobtrusive and designed to be worn on the

wrist, targeted for comfort and style, affordable for consumers, rechargeable, waterproof, and

can be designed for children [5–8]. Technological advances allow consumer wearables to also

frequently have extended battery life (i.e., up to 54 days) [9] and remote data capture and mon-

itoring. For these reasons, there has been a multitude of measurement studies that have

explored the validity of physical activity estimates produced by consumer wearables [10, 11].

However, these studies are limited because they rely on estimates of physical activity that

are derived from proprietary algorithms developed by the companies that produce these

devices (e.g., Apple, Garmin, Fitbit, etc.). This is a key limitation because these algorithms are

unavailable for review by researchers [12]. The drawbacks of estimating physical activity based

on proprietary algorithms are that it is unclear whether best practice recommendations were

used to develop these algorithms, and the algorithms could be updated by these companies at

any time unbeknownst to the user [13, 14]. Thus, estimates of physical activity collected from

the same device across time may provide different estimates of activity due solely to changes in

the underlying algorithms that produce these metrics [13, 14].

An alternative, device-agnostic or monitor-independent approach may address these limi-

tations by enabling data from any device to be processed using the same algorithm or process-

ing methodology [15, 16]. A device-agnostic approach is a realistic possibility as consumer

wearables have released application programming interfaces (API) that allow access to the raw

accelerometry data (i.e., x, y, z axis readings collected by these devices) [17]. This has the

potential to increase the comparability of physical activity estimates across time and between

different consumer wearables and research-grade devices.

A necessary first step to applying a device-agnostic approach to raw accelerometry data col-

lected by consumer wearables is to conduct mechanical signal testing of the data via controlled

protocols [18]. This testing allows for the evaluation of device signals and their response to

known stimuli. It also allows for the evaluation of reliability and validity of the raw acceleration

output from consumer wearables without the influence of human variation [18]. It is also use-

ful to evaluate the raw acceleration output from research-grade devices herein because it allows

us to compare the acceleration output from research-grade and consumer wearables on the

same metric, when compared to more direct estimates of acceleration from a mechanical

shaker table. Therefore, this study will evaluate the between-device reliability and validity of
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the raw acceleration output from research-grade and consumer wearable devices, compared to

accelerations produced by a mechanical shaker table as the reference metric. While studies

have previously examined research-grade accelerometers with this methodology [19, 20], this

is among the first studies to report shaker table outcomes evaluating the raw accelerometry

data from consumer-grade devices.

Methods

Raw accelerometry data from a total of 40 devices were evaluated in this study. The research-

grade devices included n = 10 ActiGraph wGT3X-BT (ActiGraph; ActiGraph LLC Pensacola,

FL). The consumer wearable devices included n = 10 Apple Watch Series 7 (Apple; Apple

Technology Company, Cupertino, CA), n = 10 Garmin Viovactive 4S (Garmin; Garmin Ltd.,

Olathe, KS), and n = 10 Fitbit Sense (Fitbit; Google LLC, San Francisco, CA). Inter-device reli-

ability and validity of raw accelerations for all devices were tested, with accelerations produced

by a mechanical shaker table (Scientific Industries, Bohemia, NY; Mini-300 Orbital-Genie,

Model 1500) as the reference. Each device was securely mounted directly to the twin ratcheting

clamps of a mechanical shaker table (S1 Fig) that produces controlled oscillations at frequen-

cies between approximately fshaker = 0.6 and 5 Hertz (Hz). We converted fshaker in Hz to accel-

eration using the expression for centripetal acceleration, aorbital = v2/rorbital [21], where rorbital is

the radius of rotation for the orbital shaker rorbital. From the manual for this particular shaker

(supplementary https://cdn.shopify.com/s/files/1/0489/6990/8374/files/SI-M1600_Manual.

pdf?v=1617998279), the specified diameter of the orbit is 2rorbital = 1.9cm and the rotational

speed is given by v = 2πrorbitalfshaker, since for each complete cycle of 2π radians, the table tra-

verses a distance of circumference 2πrorbital in time 1/fshaker. In other words:

aorbitalðcm=s
2Þ ¼ 4p2rorbitalf

2

shaker

to convert this acceleration to units of earth’s gravity (g’s), divide aorbital by 9.81cm/s2.

A total of five devices were placed on the shaker table at once. Serial number/device ID and

position of devices (numbered 1 to 5 from left to right) were recorded for all devices. Prior to

each trial, the shaker table was placed on a level surface (i.e., floor); time from each device was

recorded at the second level.

Device software

ActiGraphs were initialized to provide output from each directional axis using ActiLife soft-

ware (version 6.13.4; ActiGraph LLC, Pensacola, FL). Garmin devices were initialized, and

data were recorded in RawLogger (version 1.0.20211201a) and exported through Garmin Con-

nect softwareTM. Apple devices were initialized, and data were recorded in SensorLog (version

5.2) and exported into comma-separated values (CSV) files via Health Auto Export (version

6.3). RawLogger and SensorLog are user-written apps that leverage the device-specific Applica-

tion Programming Interface (API) to collect the underlying sensor data on the respective

devices. RawLogger is available for download through the Connect IQTM store on the Garmin

ConnectTM app, and SensorLog and Health Auto Export are available for download through

the App Store. The research team developed a custom Fitbit app (Slog) leveraging the Fitbit

API for the same purpose, and Fitbit devices were initialized, and data were recorded and

exported through this app. The GitHub code for the custom Fitbit app is available athttps://

github.com/ACOI-UofSC/Slog_HR. Sampling frequencies from 25 Hz to 100 Hz were

recorded based on the capabilities of the ActiGraph (100 Hz), Apple (100 Hz), Garmin (25

Hz), and Fitbit (50 Hz).
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Reliability testing

Reliability testing included five identical devices mounted side-by-side (e.g., 5 ActiGraph

devices) positioned 1–5 from left to right. Each device was tested for a total of 10 trials (5 trials

at 0.6 Hz and 3.2 Hz) that lasted 2 minutes each [20]. A 15-second rest period took place at the

beginning and end of each trial. Thus, it took ten minutes and 30 seconds to test 5 devices at

one speed. The time of the 15-second rest periods and the trial start and end time were

recorded based on device time. A minimum of 20 trials were conducted for each device brand,

totaling 80 trials. Trials with missing data due to device malfunction: Apple (n = 20) and Fitbit

(n = 10) were repeated to ensure that raw acceleration data from all devices could be analyzed.

No trials had to be repeated for ActiGraph and Garmin devices.

Validity testing

For validity testing, five identical devices were mounted side-by-side until all devices were run

through the validity trials. The trials lasted 14 minutes and 30 seconds. Consistent with past

validation studies [20, 22], each trial began with a 15-second rest period (i.e., no movement)

followed by a standardized series of oscillations at seven frequencies (i.e., 3.2 Hz, 2.8 Hz, 2.4

Hz, 1.9 Hz, 1.5 Hz, 1.0 Hz, 0.6 Hz) lasting two minutes each. These frequencies were chosen

because they are consistent with human movement ranging from 1.5 to 16 mph [23]. The start

and stop times were noted at each frequency for both research-grade and consumer wearable

devices. Each trial ended with another 15-second rest period. A minimum of 2 trials were con-

ducted for each device brand, totaling 8 trials. Trials/devices with missing data due to device

malfunction: Apple (n = 4) and Fitbit (n = 1) or shaker table malfunction (n = 1) were repeated

to minimize missing data; no trials had to be repeated for ActiGraph or Garmin devices. Fol-

lowing all testing, raw acceleration data for both research-grade and consumer wearable

devices were downloaded and converted to a CSV file using ActiLife software and the device-

specific user-written apps, respectively.

Sample size considerations

A sample size of 10 was selected to be consistent with previous research [19] and to provide

reasonable variability within and between devices. Further, by selecting 10 devices the study

was adequately powered to detect equivalence bounds of ±10% from the shaker table speed.

Power is determined for an equivalence test by identifying the likelihood that the difference

between two estimates is within prespecified equivalence bounds [24]. Power is then deter-

mined based upon the smallest acceptable width of the equivalence bounds. Power was calcu-

lated to detect equivalence between devices for estimates of light activity and MVPA. With a

sample of 10 of each accelerometer, assuming an alpha of 0.05, and a standard deviation of the

difference 10%, the study was adequately powered (power = 0.8) to detect equivalence bounds

from -10% to 10% difference using standard statistical tests.

Data processing

Raw acceleration data from all devices (i.e., ActiGraph, Apple, Garmin, and Fitbit) were

extracted from the middle minute of each 2-minute oscillation frequency. Consistent with past

research, Euclidean Norm Minus One (ENMO) was calculated [25–28]. All values were multi-

plied by 1000 (milligravity-mg) to be consistent with published intensity thresholds based on

the GGIR package for accelerometry in R statistical software [29]. Data were aggregated to the

second level by extracting the mean and root mean square (RMS) value for each second for all

devices for ENMO. We calculated both mean and RMS, as both have been calculated
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previously, suggesting that there is no consensus on aggregation methods for raw accelerome-

try data [20, 22, 30].

Correlation coefficients

Two-way random effects absolute intraclass correlation coefficients (ICC) were calculated to

assess reliability for all devices. ICC values less than 0.50 were defined as poor reliability,

between 0.50 and 0.75 as moderate reliability, between 0.75 and 0.90 as good reliability, and

greater than 0.90 as excellent reliability [31]. Prior to statistical analyses for validity testing,

descriptive means and standard deviations for the mean and RMS were calculated across

devices for each speed ranging from 0.6 to 3.2 Hz. For the validity testing, Pearson product

moment (r) and Lin’s concordance correlation coefficient (CCC) were calculated to assess cor-

relation and agreement of raw acceleration data from ActiGraph and consumer wearable

devices compared to the reference (i.e., acceleration from the shaker table) [32]. Pearson prod-

uct moment interpretations were defined based on Dancey and Reidy [33], and Lin’s concor-

dance correlation coefficient was defined similarly based on recommendations from Altman

(1991), with coefficients less than 0.20 as poor and greater than 0.80 as excellent [34].

Discrepancy analyses

An absolute error was calculated to assess the magnitude of the error between the reference

metric and the raw acceleration data from ActiGraph and consumer wearable devices. The

mean bias was also calculated to assess whether the raw acceleration output from ActiGraph

and consumer wearable devices over- or underestimated acceleration output compared to the

reference metric. Raw acceleration data from one ActiGraph (ID = 210) was eliminated

because the device was faulty and provided implausible acceleration values (all ENMO values

were below 0). Thus, there were (N = 3,780) observations for ActiGraph, whereas Apple and

Garmin devices contributed (N = 4,200) observations. Missing data were present across all Fit-

bit devices except two, which contributed to (N = 3,975) observations for Fitbit.

Equivalence testing

Following the discrepancy analyses above, the Two-One-Sided-Tests method [35] was adopted

to assess the equivalence of the raw accelerometry data collected from the accelerometers com-

pared with accelerations from the shaker table [36]. For equivalence testing, the null hypothesis

is that the raw data collected via the accelerometers and the shaker table speeds are not equiva-

lent. To test this 90% equivalence bounds are required [37]. An equivalence zone of ±10% was

adopted based upon previous work and industry standards [37, 38]. Thus, should the 90% con-

fidence interval of the accelerometer data fall completely within ±10% of the shaker table

speed, equivalence is concluded. The ‘tost’ command in Stata was used to complete all equiva-

lence analyses.

Results

For reliability, ICCs (95% confidence intervals) are presented for the raw acceleration data

from all devices for both aggregation methods (i.e., mean and RMS) for all devices in Table 1.

The ICCs for ActiGraph were 0.97 (0.92, 0.99) and 0.97 (0.93, 0.98) for the mean and RMS

aggregation methods, respectively. The ICCs for Apple were 0.99 (0.99, 0.99) and 0.99 (0.99,

1.00) for the mean and RMS, respectively. The ICCs for Garmin were 0.88 (0.82, 0.92) and

0.90 (0.85, 0.93) for the mean and RMS aggregation methods, respectively. The ICCs for Fitbit
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were 0.88 (0.86, 0.89) and 0.87 (0.85, 0.88) for the mean and RMS aggregation methods,

respectively.

For validity, a summary table of outcomes based on the raw acceleration data from all

devices is presented in Table 2. Fig 1 shows the raw signals with baselines for all four monitors

at 1.9 Hz. Fig 2 shows the concordance of the raw acceleration data from all devices compared

to the reference metric. Fig 3 shows the absolute error of the raw acceleration data from all

devices compared to the reference metric. Fig 4 are Bland-Altman plots based on the estimated

mean ENMO for each device compared to accelerations from the reference metric. Fig 5 are

Bland-Altman plots based on the estimated RMS ENMO for each device compared to accelera-

tions from the reference metric.

Pearson product moment correlations between raw accelerometry estimates for ActiGraph

and the reference metric were r = 0.88 and r = 0.89 for the mean and RMS aggregation meth-

ods, respectively. CCCs (95% confidence intervals) when compared to the shaker table were rc
= 0.88 (0.87, 0.88) and rc = 0.88 (0.88, 0.89) for the mean and RMS aggregation methods,

respectively. Mean bias (95% confidence intervals) was 0.0mg (-40.0, 41.0) and 4.0mg (-36.0,

44.0), and absolute error was 16.9mg and 16.7mg for the mean and RMS aggregation methods,

respectively.

Pearson product moment correlations between raw accelerometry estimates for Apple and

the reference metric were r = 0.94 and r = 0.94 for the mean and RMS aggregation methods,

respectively. CCCs when compared to the shaker table were rc = 0.83 (0.82, 0.83) and rc = 0.90

(0.89, 0.90) for the mean and RMS aggregation methods, respectively. Mean bias (95% confi-

dence intervals) was -21.0mg (-50.0, 7.0) and -12.0mg (-45.0, 21.0), and absolute error was

21.6mg and 18.0mg for the mean and RMS aggregation methods, respectively.

Pearson product moment correlations between raw accelerometry estimates for Garmin

and the reference metric were r = 0.79 and r = 0.84 for the mean and RMS aggregation

Table 1. Summary of intraclass correlation coefficients for all devices aggregated based on the mean and root

mean square.

Device Mean 95CI RMS 95CI

ActiGraph 0.97 (0.92, 0.99) 0.97 (0.93, 0.98)

Apple 0.99 (0.99, 0.99) 0.99 (0.99, 1.00)

Garmin 0.88 (0.82, 0.92) 0.90 (0.85, 0.93)

Fitbit 0.88 (0.86, 0.89) 0.87 (0.85, 0.88)

Abbreviations: “95CI” 95% confidence interval, “RMS” root mean square

https://doi.org/10.1371/journal.pone.0286898.t001

Table 2. Summary statistics for all devices based on the mean and root mean square aggregation methods.

Devices ActiGraph Apple Garmin Fitbit

Mean Observations 3,780 4,200 4,200 3,975

Mean (mg) 54.4 32.7 23.8 46.1

SD (mg) 41.5 41.0 34.1 57.4

Pearson’s r 0.88 0.94 0.79 0.91

Root Mean Square Observations 3,780 4,200 4,200 3,975

Mean (mg) 58.1 41.8 29.0 58.8

SD (mg) 45.0 48.9 37.9 71.8

Pearson’s r 0.89 0.94 0.84 0.92

Abbreviations: “SD” standard deviation, “mg” = milligravity

https://doi.org/10.1371/journal.pone.0286898.t002
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methods, respectively. CCCs when compared to the shaker table were rc = 0.59 (0.58, 0.60) and

rc = 0.70 (0.69, 0.71) for the mean and RMS aggregation methods, respectively. Mean bias

(95% confidence intervals) was -30.0mg (-80.0, 19.0) and -25.0mg (-69.0, 19.0), and absolute

error was 32.5mg and 28.1mg for the mean and RMS aggregation methods, respectively.

Pearson product moment correlations between raw accelerometry estimates for Fitbit and

the reference metric were r = 0.91 and r = 0.92 for the mean and RMS aggregation methods,

respectively. CCCs when compared to the shaker table were rc = 0.85 (0.84, 0.86) and rc = 0.79

(0.78, 0.80) for the mean and RMS aggregation methods, respectively. Mean bias (95% confi-

dence intervals) was -8.0mg (-59.0, 44.0) and 5.0mg (-69.0, 79.0), and absolute error was

22.0mg and 24.2mg for the mean and RMS aggregation methods, respectively.

Findings from the equivalence tests between the raw acceleration estimates from all devices

and the reference metric are presented in Table 3. No device estimates were found to be statis-

tically significantly equivalent no matter the aggregation method when compared to the refer-

ence metric. For ActiGraph, mean differences were -12.9 and -9.1 based on the mean and

RMS aggregation methods, respectively. For Apple, mean differences were -29.6 and -20.5

based on the mean and RMS aggregation methods, respectively. For Garmin, mean differences

were -38.5 and -34.2 based on the mean and RMS aggregation methods, respectively. For

Fig 1. Raw signals with baselines for all four monitors at 1.9 Hz.

https://doi.org/10.1371/journal.pone.0286898.g001
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Fig 2. Lin’s concordance correlation coefficient of the raw acceleration data from all devices compared to the accelerations produced

by a mechanical shaker table. Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0286898.g002

Fig 3. Absolute error of the raw acceleration data from all devices compared to the accelerations produced by a mechanical shaker table.

Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0286898.g003
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Fitbit, the mean differences were -16.2 and -3.5 based on the mean and RMS aggregation

methods, respectively.

Discussion

The aim of this study was to evaluate the between-device reliability and validity of the raw

acceleration output from research-grade (i.e., ActiGraph wGT3X-BT) and consumer wearable

devices (i.e., Apple Watch Series 7, Garmin Vivoactive 4S, and Fitbit Sense) compared to accel-

erations produced by a mechanical shaker table. The raw acceleration data collected from all

devices exhibited good-to-excellent between-device reliability based on the mean and RMS

aggregation methods. For validity, the raw acceleration data from all devices exhibited a strong

positive correlation to the reference metric with moderate-to-excellent concordance no matter

the aggregation method. Except for Garmin, the raw acceleration data collected from con-

sumer wearables demonstrated absolute errors with the reference metric that were similar to

ActiGraph. However, equivalence testing revealed raw accelerometry data from all devices

were not significantly within the equivalence bounds of the shaker speed. Moreover, the raw

acceleration data collected from consumer wearables underestimated acceleration output to a

greater degree than ActiGraph, when compared to the accelerations produced by the mechani-

cal shaker table. Overall, the raw acceleration data for all devices differed when data were

aggregated based on the mean and RMS for each second, with values generally being more reli-

able and accurate based on the RMS aggregation method.

A key finding of this study is that the reliability of the raw accelerometry estimates for

Apple, Garmin, and Fitbit were similar to ActiGraph. In fact, consumer wearables exhibited

Fig 4. Bland-Altman plots of estimated mean ENMO from all devices compared to estimated shaker table acceleration.

https://doi.org/10.1371/journal.pone.0286898.g004
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moderate-to-excellent ICC values, with Apple demonstrating nearly perfect reliability (ICC of

0.99). These findings are similar to other studies evaluating the between-device reliability of

research-grade devices using a mechanical shaker table. For instance, Powell et al. [39]

reported an ICC of 0.99 between 23 RT3 accelerometers and Santos-Lozano et al. [19] reported

an ICC of 0.97 between 10 ActiGraph GT3X accelerometers. More recently, studies have

explored within-device reliability of various accelerometers and have reported ICCs ranging

from 0.77 to 1.00 [40, 41]. Thus, ICCs presented in this study suggest that raw acceleration

data collected from Apple, Garmin, and Fitbit provide reliable estimates of movement.

Fig 5. Bland-Altman plots of estimated root mean square ENMO from all devices compared to estimated shaker table acceleration.

https://doi.org/10.1371/journal.pone.0286898.g005

Table 3. Equivalence testing for ActiGraph, Apple, Garmin, Fitbit.

Mean Difference Lower 90% Bound Upper 90% Bound Interpretation

Mean ActiGraph -12.9 -15.8 -10.1 not significantly within the equivalence bounds

Apple -29.6 -32.4 -26.8 not significantly within the equivalence bounds

Garmin -38.5 -40.8 -36.2 not significantly within the equivalence bounds

Fitbit -16.2 -20.0 -12.3 not significantly within the equivalence bounds

RMS ActiGraph -9.1 -12.1 -6.0 not significantly within the equivalence bounds

Apple -20.5 -23.8 -17.2 not significantly within the equivalence bounds

Garmin -34.2 -35.5 -33.0 not significantly within the equivalence bounds

Fitbit -3.5 -8.3 1.3 not significantly within the equivalence bounds

Equivalence was set at 10% of the shaker speed (6.3mg) and differences were required to be completely within (±) these bounds to be considered equivalent

Abbreviations: “RMS” Root Mean Square, “mg” milligravity

https://doi.org/10.1371/journal.pone.0286898.t003
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In the present study, it is also important to note that raw accelerometry estimates collected

from Apple and Fitbit exhibited correlation and concordance with the reference metric that

was consistent with ActiGraph. On the other hand, raw acceleration data collected from Gar-

min exhibited less correlation and concordance with the reference metric than ActiGraph.

Our findings for Apple and Fitbit correlation are more consistent with a previous study that

reported an excellent Pearson correlation (r = 0.97) between accelerations produced by

GENEA accelerometers and a mechanical shaker table [30]. These findings suggest that raw

acceleration data from Apple and Fitbit produce estimates of movement that are similar to raw

acceleration data from ActiGraph. However, more information is needed to determine if the

raw acceleration data from Garmin can be used to accurately estimate movement. These find-

ings could be due to hardware differences between devices. For example, the dynamic acceler-

ometer range of the ActiGraph is ±8g [42], while the default accelerometer range for Fitbit is

±4g [43]. The dynamic accelerometer range is an estimate of the greatest amount of accelera-

tion that a device can accurately assess, and thus the relatively smaller accelerometer range of

Garmin and Fitbit compared to ActiGraph could have led to more error in Garmin and Fitbit

estimates at greater frequencies (S2 and S3 Figs). Differences in the raw acceleration output

collected from ActiGraph and the consumer wearables could also be due to the post-process-

ing of the raw data, which has been described previously [20].

Further evidence revealed that, compared to the reference metric, raw acceleration esti-

mates from Apple and Fitbit exhibited absolute differences that were similar to the raw acceler-

ation estimates from ActiGraph. On the other hand, raw acceleration estimates from Garmin

exhibited larger absolute errors relative to the raw acceleration estimates from ActiGraph. It is

also important to note that raw acceleration data from Apple and Garmin underestimated

acceleration output by more than 20mg and 30mg, respectively, compared to raw acceleration

estimates from ActiGraph. This is concerning for Garmin, since published intensity thresholds

derived from ActiGraph data worn on the non-dominant wrist indicate that sedentary thresh-

olds for children (7-11yrs) are under 35.6mg [26, 27]. Based on these intensity thresholds, it

would be difficult to distinguish between sedentary and light intensity thresholds for children

using raw acceleration output from Garmin. This may suggest that we need to move away

from cut-points, especially since a device-agnostic approach may allow for increased compara-

bility of physical activity estimates across time and between consumer wearables and research-

grade devices. One way to summarize raw acceleration data in a device-agnostic manner is to

generate open-source Monitor-Independent Movement Summary units (MIMS-units) [44].

MIMS-units could increase the standardization of raw data processing from different devices

and reduce between-device variability in estimates of movement [44].

Overall, the findings suggest that raw acceleration output from Apple and Fitbit are similar

to raw acceleration output from ActiGraph. However, no device estimates were found to be

statistically significantly equivalent to accelerations produced by the reference metric. These

limitations with accelerometry are well-documented for distinguishing between sedentary and

light activity. For instance, a study using 2-regression models to estimate energy expenditure

derived from ActiGraph counts in children (7-13yrs) observed mean absolute percent error

values that ranged from 32.5% to 39.4% and 14.5% to 42.9% for sedentary and light activities,

respectively [45]. A similar study reported that research-grade accelerometers (i.e., ActiGraph,

Actical, and AMP-331) tended to overestimate sedentary and light activities in adults [46].

Though most of the evidence on the associations of device-based sedentary behavior and

health is based on accelerometers that infer sedentary time from a lack of movement, this can

lead to misclassification of low-movement, non-sedentary behaviors as sedentary behaviors

[47]. The absolute errors of ActiGraph, Apple, and Fitbit (~20mg) compared to the reference

metric suggest that the relatively small window for sedentary behavior (under 35.6mg) may
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pose an issue for estimating physical activity outcomes from accelerometry [29]. Therefore,

additional metrics (i.e., heart rate) may need to be combined with accelerometry to improve

estimates of these outcomes. An advantage of consumer wearables is their ability to collect

accelerometry and heart rate data simultaneously. Thus, it may be possible to leverage the raw

acceleration and heart rate data from consumer wearables (i.e., Apple and Fitbit) to overcome

limitations with accelerometry alone for estimating physical activity outcomes.

There were several strengths of the present study. The first strength is that accelerations pro-

duced by a mechanical shaker table served as the reference to assess the reliability and validity

of accelerations produced by various accelerometers. This method allowed for a highly con-

trolled, repeatable evaluation of underlying accelerations produced by various accelerometers

shaken in orbital motion at known frequencies. Another strength is that the raw accelerations

from devices were evaluated, allowing for between-monitor comparisons of accelerations

through elimination of proprietary signal processing that has traditionally been used to derive

activity counts from research-grade devices [20]. Additionally, this study evaluated the raw

accelerations from consumer wearables, addressing concerns about the proprietary signal pro-

cessing of these devices [48]. By evaluating the raw accelerations for both research-grade and

consumer wearable devices, we were able to compare estimates from the devices on the same

metric (mg). Lastly, we calculated Lin’s CCC, absolute error, mean bias, and equivalence testing

to assess the agreement of the raw accelerometry data from research-grade and consumer wear-

able devices compared to accelerations produced by a mechanical shaker table. This allowed us

to evaluate the agreement of the accelerations between proxy and reference, the overall error of

the raw acceleration estimates, and the direction of the average error of the estimates from all

devices, whereas other studies only used Pearson correlation to assess validity [22, 30].

Pearson correlation merely measures the covariance between two variables, not the agree-

ment or error. Using these statistics, we were also able to compare the validity metrics pro-

duced by the raw acceleration estimates from consumer wearables to the validity metrics

produced by the raw acceleration estimates from a research-grade device. This provided pre-

liminary evidence for using the raw acceleration output from consumer wearables to estimate

physical activity outcomes. However, the raw acceleration output from consumer wearables

needs to be evaluated in settings that resemble free-living activities for children.

The limitations of the present study also need to be acknowledged. The first limitation is

that there may have been between trial variability in speed across trials that would systemati-

cally affect the findings herein. Another limitation may be the technological advances that

have occurred in the consumer wearables evaluated during the project. For instance, the Apple

Watch Series 8 was released during the project. However, most of the technological advance-

ments between the Apple Watch Series 7 and the Apple Watch Series 8 are centered on the

dual-core processor and the addition of a temperature sensor [49], and thus may not impact

accelerometer estimates between devices. Yet, information about the hardware of accelerome-

ters used in consumer wearable devices is largely proprietary. Another limitation may be the

post-processing of the raw acceleration data for all devices [20]. The post-processing of the raw

acceleration data for all devices is proprietary, so the data is not truly raw. It is also unclear

why missing data were present across all Fitbit devices except two. This may have been due to

software malfunction with the custom Fitbit app (Slog) that was used to leverage the Fitbit

Application Programming Interface.

Conclusions

Findings from this study suggest that raw accelerometry data from Apple, Garmin, and Fitbit

are reliable and provide estimates of raw accelerometry that are similar to ActiGraph, except
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for Garmin. Additionally, no raw accelerometry estimates were statistically significantly equiv-

alent to the reference. Thus, harmonization approaches across devices like MIMs may be nec-

essary if a truly device-agnostic approach is to be adopted. Future studies should explore using

device-agnostic and data harmonization approaches for estimating physical activity from raw

accelerometry data produced by Apple and Fitbit in settings that resemble free-living activities

for children.
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