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ABSTRACT 
 

Aims: Two methods of calibrating regression models of inter-moult period (IMP) as a function of 
temperature exposure (T) for crustaceans, in particular, Antarctic krill (Euphausia superba) are 
reviewed in terms of both theoretical and empirical properties in order to make recommendations on 
the application of the methods and/or the use of the resultant fitted models.  
Methodology: The method and fitted model that used a meta-analysis of published results from 
laboratory-reared krill using means of directly observed IMP for a range of controlled, constant 
temperature regimes has valid theoretical and empirical support. The alternative used moult 
frequencies obtained as a “byproduct” of 5-d Instantaneous Growth Rate (IGR) experiments carried 
out at sea for which individual IMPs were not directly observed. Instead mean IMP given T and 
animal total length (L) was predicted using the moult frequencies disaggregated to binary data of 
moulted versus not-moulted as dependent variable in the calibration of a logistic regression on T 
and L. The shape of the daily development rate, R, the inverse of IMP, versus T response curve 
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fitted using direct observations is a classical monotonically increasing curve whereas for 
combinations of sex/maturity classes the curves fitted using indirect observations are parabola-like 
with sexually dimorphic concavities of either up or down. Four sources of bias in predictions of mean 
IMP using the indirect observations and estimation method are described. One source due to an 
unrepresentative sampling frame can lead to large positive bias in estimated mean IMP based on 
theory which has been absent until now and that applies a discrete uniform distribution for next 
moult date corresponding to ideal asynchrony. This bias and that due to IGR experimental 
measurement error in T cannot be remedied. 
Conclusion: The indirect method and the corresponding fitted models are unreliable and should not 
be used. 

 

 
Keywords: Inter-moult period; laboratory experiments; at-sea IGR experiments; models; sampling 

methods. 
 

1. INTRODUCTION 
  
Inter-moult period (IMP) is as the name suggests 
the time between consecutive moults which 
involve exuviation of the exoskeleton for an 
individual of a species of crustacean. It is 
analogous to the development time for a 
consecutive stage in insect development such as 
that marked by the period between consecutive 
sheddings of the head capsule of larvae. 
Kawaguchi et al. [1] calibrated their model for 
adult Antarctic krill (Euphausia superba) 
(combined sex) for IMP as a function of 
temperature (T) using a meta-analysis of 
published mean IMPs from studies that directly 
observed IMPs for individual, laboratory-reared, 
Antarctic krill using observed times between 
consecutive collections of exuviae for each 
animal maintained in its own experimental vessel 
under known constant temperature regimes 
which included ancillary light and feeding 
regimes. The latest of the studies used in the 
meta-analysis was published in 1991 [2]. The 
model of [1] for IMP considered only adults as 
did [3] who carried out more recent experiments 
in the Australian Antarctic Division’s specialised 
krill aquarium using three temperature regimes of 
-1°C, 1°C and 3°C and observations of individual 
IMP and daily growth rate for males and females 
in maturity stages 3 to 5.  
 
In Tarling et al. [4] the data used to calibrate their 
model of IMP as a joint function of T and animal 
total length (L) were moult frequencies obtained 
as a “byproduct” of 5-d Instantaneous Growth 
Rate (IGR) experiments carried out at sea where 
individual IMPs were not directly observed and 
where moult frequencies were disaggregated to 
the individual animal level to give binary data of 
moulted versus not-moulted data recorded along 
with L and T where T was taken is the sea 
surface temperature at time of capture. These 

binary data with covariates of L and T were fitted 
using logistic regression. 
 
Candy and Kawaguchi [5] used the model of [1] 
for IMP as a function of temperature combined 
with a model of seasonal average sea surface 
temperature (SST) and the models given by [1] 
for instantaneous growth rate (IGR) within an 
algorithm to predict average length at age for 
ages up to 6 years. Wiedenmann et al. [6] refined 
the predictive algorithm of [5] by making some 
very simple assumptions about movement 
through the water column using the proportion of 
the day that is spent in “deep” versus and 
“shallow” habitat using the monthly averages of 
temperature for these coarsely defined habitats 
in the regions around South Georgia. They also 
used the IGR model of [7] rather than that of [1] 
but used the model of [1] for IMP. 
 
The models of IMP as a function of temperature 
and total length for separate sex and maturity 
classes of [4] were applied by [7] and more 
recently by [8] so that the models of [1] and [4] 
are clearly of an equally aged provenance. The 
first point to note is that these empirical models 
of IMP have not been updated or replaced since 
they were published in 2006. Therefore, it is 
reasonable to conclude that there has been a 
lack of progress since 2006 in the development 
of models of IMP which is hard to explain for 
such an ecologically and economically important 
species. 
 
Wiedenmann et al. and [8] both noted the 
substantial difference in shape of the fitted 
temperature response curves between males 
and females for IMP in [4] and that both 
contradict the fundamentally different 
exponentially decreasing trend in IMP with 
increasing temperature in [1] for combined males 
and females. This is seen in Fig. S3 of [8] where 
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the curve shape in [4] for females is parabola-like 
and concave-up whereas Fig. 8 of [4] shows this 
last trend along with a concave-down shape for 
males with the shapes for both sexes becoming 
more pronounced with increasing length. 
Wiedenmann et al. state that they explored both 
IMP models of [1] and [4] but chose the model of 
[1] for its “simplicity” but did not describe the 
outcome of their “exploration”. Bahlburg et al. [8] 
note IMPs predicted by both models can be very 
different, especially at temperatures <1˚C or 
>3˚C. 
 
Neither [6] nor [8] mention the fundamental 
difference in the respective datasets used for 
model calibration and its possible implications for 
growth projection whereas the two types of data 
were briefly mentioned by [3]. Bahlburg et al. 
only note the different coastal and oceanic 
sectors of Antarctica that the respective sample 
specimens studied were sourced for laboratory 
experiments [1] (i.e. East Antarctica) versus in 
situ studies (i.e. at sea) [4] (i.e. Atlantic sector of 
the Southern Ocean) and used for model 
calibration. However, this is not strictly correct 
since the meta-analysis of laboratory studies 
used by [1] were not exclusively based on 
observations from the Indian sector of the 
Southern Ocean. For example, the captive-
reared krill experiments described in [2] were 
carried out “at the Polish Antarctic Station 'H. 
Arctowski' on King George Island, South 
Shetland Islands”. 
 
Potential sources of these substantial differences 
in shape of the IMP response as a function of 
temperature for these two sets of models are 
investigated with respect to the fundamental 
difference in the respective datasets used for 
model calibration. Further, the theoretical 
underpinning of models calibrated using 
observed development times (analogous to IMP) 
is well known [9,10] but such theory for the 
method of [4] of estimation of average IMP from 
moult frequencies without observation of actual 
sample IMPs was not given or referenced in [4] 
nor has been presented in subsequent literature. 
Four sources of bias in the predictions of mean 
IMP using the models of [4], that are avoided by 
using the models, estimation methods and type 
of data used by [1], are described. In 
investigating one of these sources a theory is 
presented that employs some specific 
assumptions on the distribution of next moult 
date that infer ideal asynchrony in moulting and 
derives a putative equivalence of probability of 
moulting obtained from IGR experiments with 

daily development rate based on directly 
observed IMPs. 

 
Investigation of potential bias in the model 
predictions of [4] also further considers their 
empirical properties. To this end the 
development rate predictions across temperature 
values, given a fixed total length in the case of 
[4], are obtained from the published equations 
from [1] and [4] and graphically compared along 
with the meta-analytic IMP sample means used 
by [1]. 

 
2. METHODS  
 
2.1 Datasets and Statistical Methods 

Used to Calibrate Models of IMP 
 
2.1.1 Estimation using direct observations 

of IMP 

 
The nature of the data used by [4] compared to 
[1] to calibrate their models of IMP are 
fundamentally different. As noted earlier [1] 
calibrated their IMP model using a meta-analysis 
of published mean IMPs from directly observed 
IMPs for individual, laboratory-reared, krill using 
observed times between consecutive collections 
of exuviae for individual krill maintained each in 
its own experimental vessel under known 
constant temperature regimes which included 
ancillary light and feeding regimes. For example, 
the experiments of [11] considered three 
temperature regimes of 0.12°C, 0.97°C, and 
4.48°C while [2] employed a single temperature 
regime of 2.0  0.5°C.  

 
2.1.2 Estimation using indirect 

“observations” of IMP; moult counts or 
presence/absence of moults from at-
sea IGR experiments 

 
 In contrast the data used by [4] were from 51, 5-
d IGR experiments carried out at sea where 
individual IMPs were not directly observed. The 
standard method [4] refer to (i.e. they denoted 
this the “1/MR” method) involves inferring from 
the frequency of moults in a 5-day incubation 
period the mean IMP using the formula 
IMP=Nd/m where N is the total sample of krill 
each incubated in individual 500-mL perforated 
polycarbonate jars [4], m is the number observed 
moulting during the incubation period of d days 
(i.e. standardised to 5-d) and this is applied to 
each IGR experiment. Note that m/N is the usual 
unbiased estimate of the probability, P(d), of 
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molting in the incubation period given the sum of 
N Bernoulli trials. 
 
The regression method of [4] (they denote as the 
“IMP” method) uses the disaggregated binary or 
Bernoulli trial data (i.e. moult vs not-moult) for the 
complete set of IGR experiments fitted as a 
binomial/logistic model and so disaggregates the 
“1/MR” formula to individual krill with predictor 
variables of total length (L) and temperature (T) 
with the regression fitted separately for each 
sex/maturity class. Tarling et al. [4] note 
problems with the “1/MR” method of obtaining 
IMP estimates of (i) empirical results giving an 
unreasonably wide range of estimated                  
IMPs (ii) in theory, synchrony of molting could 
result in biased estimates of IMP, however, they 
claim that their “IMP” method overcomes               
these problems by aggregating across 
synchronous and asynchronous experimental 
cohorts. 
 
It is important to note that [4] gave no theoretical 
justification for their “1/MR” method or its 
extension to their “IMP” method for estimating 
mean IMP from moult frequencies for a sample 
of captive krill using IGR-experimental 
incubations. In particular, the proportion of 
development per day for the hypothetical 
individual of average IMP, expressed as the 
inverse of that average IMP (within potential 
determinates such sex, maturity, and/or total 
length categories) is theoretically interpreted as a 
rate of development in units of proportion per day 
summing to unity from day 1 up to the day-
equivalent to the average IMP for each 
temperature regime in constant temperature 
laboratory studies. This can be generalised to 
fluctuating temperatures in the field [5,9]. This is 
well supported theoretically [10] and empirically 
[12] for observed development times. Tarling et 
al. [4], in their “1/MR” and “IMP” methods in 
effect equate a P*, which is the conversion of 
P(d) to a daily value by dividing it by d, to the 
above daily rate but this equivalence has not 
been demonstrated in the literature either 
theoretically or empirically using simulation. This 
equivalence is established theoretically in the 
Appendix but only under some very restrictive 
assumptions combined with the mathematically 
correct calculation of P* from P(d) as given later. 
Even if this equivalence is accepted more 
generally, it remains to also demonstrate  
whether the “1/MR” and “IMP” methods give 
either unbiased or biased estimates of mean 
IMP. Examination of such bias is given in Section 
2.3. 

2.2 Empirical Results: Comparing 
Development Rate Response 
Curves 

 
To understand the difference between the IMP 
models of Kawaguchi et al. [1] and Tarling et al. 
[4], Fig. 1 shows the predictions of rate of 
development (i.e. reciprocal of IMP, see Equation 
1 of [10]) as a function of temperature for adult 
krill, with the model of [4] predictions using a 
fixed total length (L) of 55 mm. Fig. 1 also 
overlays mean rates calculated using the meta-
data used in [1], the reciprocal of each study 
mean IMP as extracted from Fig. 5 of [1] using 
the PlotDigitizer software 
(https://plotdigitizer.com/app), and mean IMPs 
averaged over length and sex classes for the 
1°C and 3°C regimes that were visually extracted 
from Fig. 3 of [3] giving approximate values of 23 
d and 18.5 d, respectively. Fig. 1 also shows 
approximate 95% confidence bounds for the 
equivalent rate curve based on the 
corresponding approximate 95% confidence 
bounds of the model of IMP of [1] using digitized 
data of the upper bound shown in Fig. 5 of [1] 
combined with calculating an approximate 
standard error of rate predictions using a first 
order Taylor series approximation to the variance 
of log10(IMP) predictions.  
 

2.3 Sources of Bias in Tarling et al IMP 
Model Estimation 

 
2.3.1 Mathematical error in converting 

probability of moult from a 5-d 
experimental incubation period to a 1-d 
period equivalent 

 
For the [4] “1/MR” model/method it was noted 
earlier that for an IGR experiment the estimated 
mean IMP, m% , is calculated as Nd/m [Equation 

(3) in [4]], where d is the experiment’s fixed 
incubation period, and express this as D= m%

=1/(P/d) where P=m/N (i.e. the estimate of the 
binomial probability from N Bernoulli trials with m 
“successes” or moults). 
The extension of the “IMP” model/method of [4] 
gives the estimate of mean IMP, ( )m x% , given a 

vector of predictor variables x  and estimated 

regression parameters α̂  and incubation period d 

as ( ) ( )ˆ/ ,m d P d =x x α%  [corresponding to Equation 

(6) of [4]] where the logistic regression model 
fitted to the binary data (i.e. moult vs non-moult 
during 5-day incubation period, d=5) is given by 
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( )
 
 

2

0 1 2 3

2

0 1 2 3

exp
,

1 exp

L T T
P d

L T T

   

   

+ + +
 =

+ + + +
x α  

 

[i.e. Equation (7) of [4]] so that 2(1, , , )L T T =x . 
 

In effect [4] in their Equation (6) take the 
prediction of ( ),P dx α  for the multi-day standard 

incubation period d and simply divide it by d to 
obtain a probability of moult for an individual day 
(i.e. a conversion of standardization from d days 
to 1-d). As described earlier, this 1-d 
standardized probability 
 

( ) ( )* , /P P d d =x α x α  
 

is inferred by [4] to be a daily development rate 
fraction (R) so that its reciprocal can be inferred 
as the development time D=1/R (i.e. IMP). 

However, this conversion by simply scaling by d 
is incorrect as seen when basic probability theory 
is applied. This conversion can be substantially 
in error and thus cause substantial positive bias 
in the estimate of IMP with this bias increasing 
with increasing ( )*P x α . This can be seen, after 

dropping dependence on x  and xα  to simplify 

notation, as follows. 

 
For a period of d-days incubation, consider that 
no moult is observed for a random individual, the 
probability of this outcome is ( )1 P d −  

 and this 

corresponds to the probability that for each day 
in the period no moult occurs so that 

 

( ) ( )1 1 *
d

P d P −  = −   . 

 

 
 

Fig. 1. Predicted rate curves from IMP 
Models of [1] (adults, heavy solid line; approximate 95% confidence bounds, fine solid lines) and [4] (adult 

female, dashed line; adult male, dotted line each for L of 55 mm) versus Temperature (T). Study mean rates 
calculated using the meta-data used in [1] (open circles) were obtained as the reciprocal of each study mean IMP 

with these extracted from Fig. 5 of [1] using the PlotDigitizer software (https://plotdigitizer.com/app) along with 
95% bounds on the estimated rate curve and mean IMPs averaged over length and sex classes for the 1°C and 

3°C regimes as visually extracted from Fig. 3 of Brown et al. (2010) (filled circles). 
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Then it follows that the probability of observing a 
moult in the d-days period as given by ( )P d  

converts to the 1-d period using the formula 

( )
1/

* 1 1
d

P P d= −  −    and not the formula given by 

[4] [their Equations (3) and (6)] corresponding to 

( )* /P P d d= . The bias induced by the [4] 

method can be more clearly seen when we 
expand the correct formula using a d of 5-d as 
applied in the IGR experiments. This can be 
seen as 
 

( ) ( ) ( ) ( ) ( ) ( )
5 2 3 4

5 1 1 * * 1 1 * 1 * 1 * 1 *P P P P P P P = − − = + − + − + − + −
 

 

 

Therefore for *P  very small, say 0.01, the term 
in square brackets is close to 5 since each term 
after the “1” is close to 1 giving a total value of 
this term of 4.9, so that ( )06* /TP P d d=  would be 

slightly less but close to the correct value 

( )
1/

* 1 1
d

P P d= −  −   . However, given the inference 

of 1/ *m P =  and a range of IMP of, for example 

30-d to 10-d, the corresponding values for the 
above term are 4.678 and 4.095, respectively. 
The corresponding bias of the [4] formula for the 
estimate of IMP given true values, m , of 30-d and 

10-d are calculated using the formula 
 

( )  ( )
1/

% 100 1 1 / 1
d

bias d P d P d = −  −  −   
  

 

Where; ( ) ( )1 1 *
d

P d P= − −  

 

which give percent mathematical bias or error (as 
separate from bias due to transformation of a 
sample statistic, see below) values of 6.9% and 
22.1% for d of 5 for the population mean IMP, m , 

given *P , respectively. The above assumes, as 
in [4], that the IGR incubation period d is short 
enough that there is no chance for an individual 
animal to moult more than once in that period. 
Given that the standard value of d was 5-d this is 
a reasonable assumption. 

 
2.3.2 Statistical bias due to inverting the 

estimate of P* to estimate mean IMP 

 
The sample estimate of the proportion of moults 
out of a sample of N incubated krill in d days 
given by ( )ˆ /P d m N=  has, from the above, an 

expected value ( ) ( )1 1 *
d

P d P= − −  where under 

the discrete uniform distribution for next moult 
date for the population sampled by an IGR 

experiment has a probability of a randomly 
selected animal moulting on any given day 
between the distributional limits for next moult 

date of *P  (Appendix). The sample estimate of 

*P  is given by ( )
1/

ˆ ˆ* 1 1
d

P P d = − −
   while the 

(biased) estimate of [4] is given by ( )ˆ* /P P d d=% . 

An estimate of mean IMP for an IGR sample is 
given by either ˆˆ 1 / *m P =  or, using [4], as 

1 / *m P = %% . The respective transformations of 

( )P̂ d  to an estimate for m  each impart bias to 

their respective estimates of m . The expected 

value of the [4] estimate, m%, is using a second-

order Taylor series expansion approximately 

( ) ( ) 22 21 /m P mE E d  +% %  where 2

P  is the usual 

binomial variance formula, ( ) ( ) 2 ˆ ˆ1 /P P d P d N = − , 

and ( )mE %  is not equal to m  given the results of 

the above section. Therefore, including bias due 

to using the incorrect formula for estimating *P , 
if ( )100, 5, 1 / 6, 30mN d P d = = = =  then the 

expected value of m%  is 1.069*1.057 m

corresponding to a combined 13% over-
estimation of population mean m . 

 

 For the IMP model of [4] and using their 
corresponding estimate of mean IMP, 

( ) ( )ˆ/ ,m d P d =x x α% , generalising the above the 

transformation-bias adjusted estimate of ( )m x%  

from the above gives 

( ) ( ) ( ) ( ) 
1

' 2 2 2ˆ1 /
m

m m m d


   
−

= +
x

x x x
%

% % %  

 

 so that, to a close approximation, the estimate is 
positively biased as a percentage by the amount 

( ) ( )2 2 2100 /
m

mB d


 =
x

x
%

%  excluding the bias induced 

by not using the correct formula for the estimate 
of mean IMP, . The expression for 

( )
2

m


x%
 is 

given by  
 

( )

( )
2

1

2

ˆ
m

dh

d







− 
=   

 
x

x x
%

 
 

where ̂  is the variance-covariance matrix of α̂ , 

( ).h is the logistic link function, and the linear 

predictor is  = x α . Although for reasonable 

sample sizes, if the “1/MR” method is used (i.e. 

01,  = =x α ) where for the above example of N 

taking a value of 100 this gives B as 6%, then the 
transformation bias is relatively small. However, 

m
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this may not be the case for ( )m x%  due to greater 

uncertainty for upper and lower ranges of 
combinations of L and T due to model prediction 
error, due to the term 

̂
x x , where this could be 

further exacerbated by subdividing the data into 
separate sex/maturity classes. It is not possible 
to investigate this bias without the estimate of ̂

which was not made available in [4]. Tarling et al. 
[4] failed to follow even standard reporting by not 
presenting the standard errors of parameter 
estimates (i.e. square root of the diagonal 
elements of 

ˆ
ˆ
 ) from the fit of their model (7). 

 
2.3.3 Unrepresentative sampling frame 

leading to positive bias in IMP 
estimates 

 
In the Introduction it was noted that a theory for 
the method of [4] of estimation of average IMP 
from moult frequencies without observation of 
actual sample IMPs was not given or referenced 
in [4] nor has been presented in subsequent 
literature. A theory is presented in the Appendix 
that employs some specific assumptions on the 
distribution of next moult date that corresponds 
to ideal asynchrony in moulting and derives a 
putative equivalence of probability of moulting, 

*P , obtained from IGR experiments with mean 
daily development rate based on directly 
observed IMPs. 
 
Given the theory described in the Appendix the 
bias in estimates of mean IMP using the “1/MR” 
and “IMP” methods of [4] is elucidated. This bias 
occurs when any of the 5-consecutive day IGR 
sampling windows do not fall completely within 
the distributional limits of date of next moult for 
the population from which the particular IGR 
experiment’s sample is drawn. In practice, this 
can result in the artifact of a P of zero using the 
“1/MR” method, which gives an undefined 
estimate of average IMP, if the sampling window 
starts and ends before the onset of next moult, 
giving a structural zero for the IGR experiment as 
opposed to a sample-caused zero where moults 
in the population at large occur in the window but 
the sample did not include any of those moults 
by chance. Alternatively, the IGR sampling 
window could overlap either lower or upper 
distributional limits and this will bias low the 
estimated value of P*. In both cases this bias in 
the estimate the population value of P* is due to 
an unrepresentative sampling frame. The 
Appendix shows this using an assumed discrete 
uniform distribution for next moult dates and the 
partial overlap at the lower distributional limit that 

results in an “effective” value of d, d’, that is less 
than d but greater than zero. The bias is due to a 
reduced (effective) value of d and if d’ is zero this 
corresponds to a structural zero in moult 
frequency for those incubation days occurring 
before the onset of first moults. An example of 
the bias in the estimate of mean IMP (1/P*) is 
given in the Appendix where for a value of P* of 
0.05, a d of 5, and d’ of 3, the percentage bias in 
the naïve estimate (i.e. assuming an effective 
value of d’ of 5 when it is actually 3) of population 
mean IMP is very large at 65%. 
 
Note that there is no compensatory mechanism 
which could offset the chances of d’ being less 
than d such as an equal chance of d’ being 
equally larger than d in some sort of symmetry 
since in fact d’ can never be greater than d only 
equal to d or less than d but greater than or 
equal to zero. Therefore, the bias will always be 
either positive or zero, if in this last case, the IGR 
sampling window is always within the 
distributional limits so that d=d’. This distribution 
implies that within the sampled population next 
moult dates reflect perfect asynchrony which 
implies that the probability of a moult is equal for 
each day within the distribution limits and is not, 
for example bell-shaped, which would imply 
some level of synchrony (Appendix). The claim in 
[4] that mixing of individuals from the different 
cohorts sampled in their “IMP” method 
overcomes the bias caused by any synchrony by 
somehow balancing out under-estimates with 
over-estimates, is a statement of hope given that 
they gave no theoretical or empirical support of 
this assertion. Tarling et al. [4] note that some of 
the “1/MR” estimates of IMP are unrealistically 
large and can span a range of up to 120 days, 
whereas from laboratory-rearing the range 
quoted by [2] was 10 to 30 d so the above 
potential source of positive bias could explain 
these extreme estimates. 
 
 It is demonstrated here that bias is possible and 
substantial even when there is perfect 
asynchrony (Appendix) and given d’ is unknown 
there is no remedy for such an unrepresentative 
sampling frame. Unknown levels of synchrony in 
timing of moults greatly complicate any further 
investigation of the method of [4]. 
 
2.3.4 Measurement error in temperature 

exposure 
 
An additional fundamental difference between 
the datasets used by [1] compared to [4] is that 
while the temperature the krill are exposed to 
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over the complete IMP of each individual is 
known in the laboratory, for the moults of krill 
captured in at-sea IGR experiments only the sea-
surface temperature at time of capture and that 
of the onboard holding vessels is known. Since 
the sampled animals have had their last moult in 
the wild there could be a substantial number of 
days before capture so that the temperature of 
their immediate environment during some or 
most of the period from previous moult that 
occurred prior to capture is unknown. Therefore, 
the temperature used in the Tarling et al. [4] 
model calibration is a measurement with error 
that may not only be imprecise but also biased 
across IGR experiments and individual captures. 
For calibration of a model of IMP, the direct 
observation of individual IMP combined with a 
known temperature environment for the complete 
interval of the inter-moult period was available as 
used by Kawaguchi et al. [1] so the above issue 
with measurement error of the temperature 
exposure variable is avoidable. 
 
The bias in the estimate of mean IMP via the 
bias in the estimate of ( ) * ˆ ,P P dxα  where from 

Section 2.3.1 
 

( )  ( )
1/* ˆ ˆ, 1 1 ,

d

P P d P d = −  −  xα xα   

 
 using the “IMP” method incurred due to 
measurement error in one of the covariates, that 
is T with its true and unknown value replaced by 

SST at time of capture, ( )SST
T , is not possible to 

quantify. This is because there is no way to 

relate ( )SST
T  for an individual IGR experiment to 

the true temperature variable that is predictive of 
IMP. This true variable is potentially average 
temperature over the entire temperature 

exposure profile, ( )true
T , for some relevant cohort 

for an individual IGR experiment. Ideally, the 
correct relationship between IMP and 
temperature involves the numerical integral over 
time of development rate as a function of 
exposure temperature for each small time unit 
over the period between the unobserved last 
moult at-sea and observed on-board moult (i.e. 
the IMP); see eqn (2) of [10]. Adjusting for bias in 
binary response regression due to measurement 
error can be carried out using a calibration 

dataset [13] for which, in this case both ( )true
T  and 

( )SST
T  are available across a number of IGR 
experiments. Alternatively, an assumed known 
distribution for the error, ( ) ( )SST true

i i iT T = − , in the ith 

IGR experiment can be applied where it is 

required that the expected value of   is zero and 

a prior estimate of variance is available. This 

combined with an empirical distribution for ( )true
T  

and applied via Monte Carlo simulation was used 
by [14] to estimate bias in parameter estimates 
for a binomial response regression with a 
complementary log-log link function but the 
principle also applies to the empirically similar 
logistic link function. However, no such 
calibration dataset or data that could inform 

assumptions on the distributions of ( )true
T  and   

across IGR cohorts are available from such 
experiments. Therefore, the bias in estimation of 

( )ˆ ,P dx α  and thus mean IMP, 

( ) ( ) *ˆ ˆ, 1/ ,m d P P d  =xα xα%  due to measurement 

error  , that may have non-zero expectation, 

exists and could be substantial but is unknown.  
 
Apart from the above model calibration issue, in 
applying such a model to predict IMP as part of 
an algorithm to predict the average length-at-age 
trajectory that was first developed by [5] [and not 
[6], since they fail to cite the former with respect 
to growth increment and not just prediction of 
IMP given that [6] simply express “step 3” of the 
algorithm of [5] with a simple mathematical 
equation] some assumptions on variable 
temperature exposure are required. In this 
respect, Candy and Kawaguchi (2006) use 
average sea-surface temperature (SST) that 
varies only with season and do not incorporate 
variability due to diurnal movements of krill 
through the water column and how that affects 
temperature exposure relative to the necessarily 
simplistic method of applying average SST. 
Wiedenmann et al. (2008) refine the predictive 
algorithm of [5] by making some very simple 
assumptions about movement through the water 
column using the proportion of the day t, ( )t , 

that is spent in “deep” versus and “shallow”, 

( )1 t− , habitat and use the monthly averages of 

temperature of such habitats in the regions 
around South Georgia. Although these are crude 
approximations to the actual unobserved 
individual temperature exposure profiles or, more 
simply, their average across a cohort, they did 
allow some investigation of the sensitivity of a 
range of values assumed for ( )t  on model 

outputs with the result that these outputs were 
found to have low sensitivity. However, it should 
be noted that the sensitivity analysis is 
contingent on the above simplistic investigation 
using just two broad depth strata, their monthly 
temperature averages, and very general 
assumptions on the diurnal movement pattern. 
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The unobserved temperature profiles are a 
limitation for IMP model application but given the 
above there is an alternative for model calibration 
that is the data obtained from laboratory-based 
investigations. It should be noted that there are 
also limitations or caveats that apply to 
laboratory-based studies that derive from the 
unnatural conditions in which krill are kept which 
could directly affect observed IMPs. There are a 
number of these factors that are important, 
including potentially sub-optimal feeding regimes, 
sub-optimal light regimes, the effects of isolation, 
and limited movement in individual-level 
experimental vessels but the one of key interest 
here is accounting for exposure to water column 
differences in temperature given laboratory 
rearing uses constant temperature regimes.  
 
It may be possible to simulate such temperature 
variations due to diurnal movement in krill 
research installations such as that of the 
Australian Antarctic Division [16]). This would 
allow predictions of IMP using models such as 
that of [5] to be compared to observed IMP under 
the equivalent average temperatures for a range 
of variable temperature regimes. Such studies 
have been carried out on insect species in which 
parameters of a development rate function of 
temperature have been estimated given rearing 
in both laboratory experimental regimes (see eqn 
7 of [10]) and using the abovementioned 
integration under ambient screen temperatures in 
terrestrial field stations (see eqn 6.5 of [15]). 
However, it is obviously not possible to record 
the temperature exposure profile for krill in their 
natural marine environment. 
 

3. DISCUSSION 
 

3.1 Empirical Results  
 
What is clear from Fig.1 is that the meta-data 
means based on observed IMPs for individual 
krill cover the full range of temperatures from -
0.5°C to 5°C and mean development rates show 
no indication of a decline above 1°C while there 
is a quite dramatic decline in rate above this 
temperature for adult females for L of 55 mm for 
the IMP model of [4]. This is also the case for 
smaller values of L, as can be seen in terms of 
minimum IMP corresponding to maximum rate 
(see Fig. S3 of [8]). The other obvious 
characteristic of the rate curves obtained from 
the IMP models in [4] is the completely different 
shape for adult males compared to adult 
females. The adult male rate curve declines 
monotonically up to an upper temperature of 

approximately 3°C which it should be noted 
covers most of the range of temperatures that 
Antarctic krill are exposed to across their range 
from sub-Antarctic to Antarctic (including oceanic 
and shelf zones, see Fig. 2 of [17]). It is safe to 
say that such a declining rate versus temperature 
response curve for ectotherms, including the 
most studied order of Arthropoda of Insecta 
([12]), is unique if it is in fact an accurate 
characterisation. Ectotherms invariably show a 
declining development time (i.e. analogous to 
IMP) and a corresponding increasing 
development rate with increasing temperature as 
long as temperatures do not exceed tolerable 
levels for the species. If the upper range of 
experimental temperatures negatively affects 
subject animals then some decline in rates will 
be observed ([12]). This is clearly not the case 
for the meta-data used by [1] as seen in Fig. 1. In 
one of the studies contributing to the metadata 
used in [1], Polek and Denys [11] state that “the 
length of intermolt periods (IMP's) was inversely 
proportional to temperature (20.10 d, SD=1.60, 
at 0.12°C; 16.87 d, SD=1.68, at 0.97°C; and 
12.48 d, SD=0.90, at 4.48°C)”. This agrees with 
the IMP model of [1].  
 
Polek and Denys [11] also found IMP increased 
proportionally with total length (L) at the two 
lowest temperature regimes while somewhat 
similarly in Fig. 3 of [3] mean IMP decreased with 
increasing temperature and there was a 
significant positive slope between IMP as 
regressed on L for a restricted range of L from 30 
to 40 mm but only for the lowest temperature 
regime of -1°C (thus the reason for excluding this 
regime of [3] from Fig. 1). However, model 
predictions of IMP increasing with L as shown in 
Fig. 7 of [4] for L up to 60 mm with the increase 
in IMP with L greatest at the highest 
temperatures is not consistent with [11] and [3] 
though in this last case the range of L was 
considerably restricted. Evenso, the results from 
these last two studies are based on observed 
IMP as response variable and not on indirect 
estimates based on moult frequencies. 
 
Note that a linearly increasing rate-temperature 
response model which has a zero ordinate value 
for a given temperature (i.e. an estimated 
temperature threshold below which development 
cannot occur) is the basis of commonly used 
degree-day mediated predictions of insect 
emergence dates ([9]).  
 
Additionally, to support this conclusion that the 
estimated male response curve of [4] must be 
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viewed as extremely unusual if not an artifact of 
serious bias in parameter estimates, the obvious 
question is what possible physiological 
mechanism would result in the sexual 
dimorphism where adult males show a 
structurally different temperature response to that 
of adult females? Fig. 3 of [3] shows 
predominately a very similar average response 
for males and females. Also, [8] fail to comment 
on the shape of the IMP model of [4] for 
immature females which like mature females has 
a concave-up shape with temperature for given L 
but the “up-swing” for T above 2°C is much 
greater for mature females for an L of 50 mm 
(Fig. 8 of [4]) corresponding to the strong “down-
swing” seen in Fig. 1 here. The slight “up-swing” 
for immature females is likely to have been 
statistically indistinguishable from a monotonic 
decline as is the case for the model of [1] which 
could have been a consideration if [4] had 
presented 95% confidence bounds for their 
predicted regression curves as was provided by 
[1] for their IMP model. Further, the trends for 
males under 50 mm and juveniles are weak (Fig. 
8 of [4]) and if 95% confidence bounds had been 
presented about these trends they might have 
enclosed the no-trend line set at mean IMP for 
these particular sex and maturity classes. The 
question then arises as to why these sex/maturity 
classes do not express a strong response of IMP 
with temperature as is the case in [1] for adults 
and for ectotherms in general. 
 

The predicted trend of increasing in IMP with 
increasing temperature for the models of [4] for 
males, juveniles up to 3°C, and above 2°C (i.e. 
the up-swing) for mature females given the 
contradictory evidence of the monotonically 
decreasing trend model of [1] obtained using 
directly observed individual IMPs, and the 
general weight of empirical evidence on the 
nature of this relationship for ectotherms in 
general, as mentioned earlier, should give rise to 
suspicions that the above models of [4] give 
biased predictions of mean IMP given 
temperature and L. Therefore, there are serious 
concerns with the IMP models of Tarling et al. [4] 
and the predictions they produce (see Fig. 1) are 
likely to be spurious given the above 
considerations. 
 

3.2 Theoretical Considerations of Bias 
 
Tarling et al. [4] justify that their “IMP” method 
overcomes the problems they note with the 
“1/MR” method with the following; “This had the 
effect of mixing the krill; individuals from 

experiments with molt-synchrony were combined 
with others without synchrony; situations in which 
molt-synchrony may have increased the 
probability of molting were combined with others 
in which the probability was decreased.” Firstly, it 
is important to note that the “IMP” method is 
equivalent to the “1/MR” method when 
aggregating the binary moult frequencies across 
animals with the same values of predictors L and 
T to obtain the number of moulted , m, versus 
not-moulted, N-m, for each value of L and T and 
then using a generalised “1/MR” method to 
regress the binomial M=m, conditional on N, on T 
and L using logistic regression. This is because 
this last-mentioned regression gives identical 
maximum likelihood estimates of regression 
parameters to the binary (disaggregated) data as 
long as the modelled probability from the logistic 
regression remains constant within aggregations 
(i.e. this is easily shown using products of the 
Bernoulli likelihoods). Therefore, contrary to the 
above hope-filled assurances by [4], the “IMP” 
suffers the same shortcomings as the “1/MR” 
method and this is the basis of the flaws 
described in the “1/MR” method being equally 
applicable to the “IMP” method. Secondly, this 
assumption of positive biases in estimates of IMP 
effectively balancing negative biases due to an 
unknown level of mixing of animals that 
developed synchronously with those that 
developed asynchronously without any 
theoretical or empirical support was shown in 
theory in Section 2.3.3 and the Appendix to be 
invalid. This is a due, given this theory, to the 
effective incubation period, d’, never being 
greater than an IGR experiment’s actual 
incubation period, d. 
 

The directions of bias for the “1/MR” and “IMP” 
methods of [4] were shown to be positive for all 
sources but the source of bias described in 
Section 2.3.4 for which it is unknown due to there 
being no way of estimating the temperature 
exposure between last (at-sea) moult and the 
observed moult under experimental incubation at 
either the individual animal level or on average at 
the cohort level. For the positive biases it was 
also shown that the magnitude of the bias 
depends upon a number of factors as described. 
For the bias due to the mathematical error 
(Section 2.3.1) and due to transformation bias 
(Section 2.3.2) these could be removed by 
adjustments to the “1/MR” and “IMP” methods 
based on the formulae given. However, for the 
biases that depend on unknown quantities given 
in Sections 2.3.3 and 2.3.4 there is no remedy 
possible. 



 
 
 
 

Candy; Ann. Res. Rev. Biol., vol. 39, no. 6, pp. 1-15, 2024; Article no.ARRB.117484 
 
 

 
11 

 

Further, in terms of combining models of IMP 
and IGR in body length, [8] in their section 
“Towards more general krill growth models” 
state: “Another example of uncertain 
mechanisms are the two IMP-based models that 
predict growth as an increment in body length at 
the event of moulting. For the model dynamics, 
more frequent moulting implies higher growth 
rates whereas fewer moulting events correspond 
to less growth, when growth rates are positive”. 
This ignores a very important result obtained by 
[3] that for the first time for this species, their 
study was able to confirm, by fitting a bivariate 
Linear Mixed Model, that compensation 
mechanisms exist between IMP and IGR and to 
quantify the degree of compensation at both the 
between- and within-animal levels. Specifically, 
“compensation mechanisms” are a natural 
feedback mechanism that prevents a short IMP 
combining with a large IGR from contributing to 
an unrealistically large growth increment and 
thus accumulated to give unrealistically fast 
progression along the predicted length-at-age 
curve to its asymptote or conversely prevents 
long IMP combining with small IGR to give 
unrealistically small growth increments. Brown et 
al. [3] note that taking such compensation into 
account would allow modelling of growth 
trajectories in the wild to quantify the distribution 
of length given age. However, this would require 
growth modelling to be carried out at the 
individual animal level in order to take into 
account this compensation mechanism. 
 

4. CONCLUSION 
 
The empirical evidence is that the temperature 
response curves estimated by the “IMP” method 
of [4] using binary moult frequency data show (i) 
completely atypical response curves with 
temperature that are of a fundamental different 
form to the curves derived from observed IMPs, 
(ii) are highly heterogeneous across the sexes, 
and (iii) have weak to close to non-existent 
trends for smaller sizes (e.g. 40 mm) and 
juveniles. Combined with this are the four 
sources of potentially serious bias in both the 
“1/MR” and “IMP” methods that were described 
where for two of these there is no possibly 
remedy.  
 
Given the above, caution is warranted against 
further uncritical promulgation of the flawed 
models of [4] for predictive purposes and further 
fundamental research on IMP and growth is an 
urgent priority, especially given excellent and 
accessible research aquariums such as that at 

the Australian Antarctic Division at Kingston, 
Tasmania (Kawaguchi et al., [16]). Potentially the 
model of [1] could be updated with the data from 
[3] on adult males and females and any other 
similar more recently published and future 
studies. Also, the feasibility of experimental 
studies of IMP under variable temperature 
regimes that could potentially simulate diurnal 
movement within the water column is well worth 
investigating in order to validate any effect of 
such variation on predictions from models such 
as that of [1] calibrated from observations of IMP 
under constant temperature rearing. 
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APPENDIX 
 
A distribution theory, structural zeros in sample moult frequency and effective incubation 
period 
 
A distribution theory 
 
Consider a single IGR experiment and its sample of a wild population of adult Antarctic krill with a 

sample, ( )s N , of size of N from a total population, ¥ , possibly a krill swarm of unknown size in terms 

of total number. Let 
0H  be the date and time the sample is taken, which can be quantified as the 

number of days from an earlier fixed and arbitrary date and time, and each sample animal is 
incubated in individual jars for the next d consecutive days (for the following whole or integer values 
for number of days in a period will be considered so that fractions of a day are not accounted for 
though this does not limit the generality of results).  
 
Let the date of the earliest next moult for the population relative to 

0H  be ( )
0 0H t+

¥  and the 

corresponding date for the sample be ( )
0 0

s
H t+  where ( ) ( )

0 0 0 0

s
H t H t+  +

¥  where ( )
0t
¥ and ( )

0

s
t  are 

measured in days. Let the date of the latest next moult for the population be ( )
0 eH t+

¥  and the 

corresponding date for the sample be ( )
0

s

eH t+  where ( ) ( )
0 0

s

e eH t H t+  +
¥ . The period of the IGR 

incubations is assumed to be common and between dates 
0H  and 

0H d+ . The above assumes all 

date parameters refer to the start of the day while the IGR incubation period, d, refers to completed 
days. Since for the following only periods representing number of days between dates are considered 

the value of 
0H  can be considered zero without loss of generality. The distribution of the date, H , of 

next moult for a random animal from the population is assumed to have a discrete uniform distribution 

with range 
( ) ( )( )0 , et t
¥ ¥

 so that 

 
( )Pr *H k P= =   

 

where 
( ) ( ) ( ) 0 0, 1,..., ek t t t +
¥ ¥ ¥

. Further if we specify ( ) ( )
0 1e mt t = + −

¥ ¥  where the mean IMP for ¥  is m  and 

an integer then * 1/ mP = . Note also that there are ( ) ( )
01m et t = + −

¥ ¥  days in the interval including starting 

day ( )
0t
¥  so that summing the constant daily value *P  across m  days gives a value of unity. So given 

these distributional properties the parallel of *P  with a constant daily development rate (i.e. 
proportion), as in Fig. 1 for the case of observed IMPs and their corresponding means across the 
range of constant temperature regimes as used by [1] to estimate their model of IMP, is clear. This 
extends to the accumulation of the seasonally temperature dependent development rates (i.e. 1/ m ) 

across the austral summer in order to achieve cumulative integer values (i.e. an accumulation of a set 
of consecutive sums each to unity) that specify IMPs for the consecutive sequence of moults as given 

in step (1) of the algorithm of [5]. However, this putative theoretical equivalence between *P  and 

constant daily development rate requires very restrictive assumptions on the distribution of H . The 
above discrete uniform distribution implies asynchrony in moulting since if for a subset of consecutive 

days 
( ) ( ) 0 0,...,k t r t r  + +
¥ ¥

 where 
( ) ( )( )0er r t t  −
¥ ¥

 and where the complement is k  so that 

 ,k k k  , then if ( ) ( )Pr PrH k H k =  =  , so that H  no longer follows a discrete uniform distribution, 

then this would indicate a degree of synchrony of moulting. This follows since given the above more 
animals moult within a limited time period than expected under asynchrony. 
 

In Section 2.3.1 it was shown that ( )
1/

* 1 1
d

P P d= −  −    and the only situation where the formula of [4],

( )06* /TP P d d= , is correct is if the incubation period is restricted to a single day, so that d is 1.  
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Also note that the above theory requiring asynchrony and therefore a constant *P  for a given IGR 
experiment also assumes a constant temperature. This assumption is implemented in [4] by using a 
value of T of “sea surface temperature at time of capture” and as noted in Section 2.3.4 this is not the 
temperature the animals are exposed to over the whole inter-moult period prior to observed moults. 
 
Structural zeros in sample moult frequency and effective incubation period 
 
The IGR sampling window is, given the above, from date of capture, 

0H , the period between dates 

0H  and 
0H d+  of d days. Again after setting 

0H  to zero without loss of generality, for ( )
0d t
¥  then the 

moult frequency for the IGR sample is 0m   (i.e. number of observed krill moulting in the d-day 

incubation period is zero) out of the total sample of N. This gives an undefined estimate of m  , 

ˆˆ 1 / *m P =  (Section 2.3.2), since ( )ˆ ˆ* * 0P d P P= =  . These zeros are structural zeros since no matter 

how many IGR samples are taken or how large N is, the value of m is always zero since 

( ) ( )Pr 0 1 * 1
d

m P= = −  . For the case ( ) ( )
0 0

s
t d t 
¥  then for the realised sample m is zero but for other 

unrealised samples the case could be ( ) ( )'
0 0

s
t t d 
¥  so that m can be greater than zero and in fact for 

( )
0d t
¥  then ( ) ( )Pr 0 1 * 1

d
m P= = −   since 0 * 1P  . Therefore, zero values of m in this last case are 

sampling zeros and not structural zeros. If it is always the case that ( )
0 0t 
¥  and ( )

et d
¥  so that the IGR 

sample “window” falls within the distribution limits of H, then given the above distributional theory  
 

( ) ( ) ( ) ( )/ , 1 1 * 1 1 1/
d d

mE m N N d P d P = = − − = − −   

 

and given appropriate adjustment for bias induced by the inverse transformation and after applying 
the correct formula above (see Section 2.3.1) the “1/MR” method gives an unbiased estimate of IMP. 
This conclusion also applies to estimates of mean IMP as a function of T and L obtained using the 
“IMP” method of [4].  
 

The above cases with respect to the IGR sample window of either completely outside the date of next 
moult distributional limits, ( )

0d t
¥ , and completely within those limits, ( )

0 0t 
¥  and ( )

et d
¥ , have been 

considered above. However, there is a third possible case of 0 d d   where ( )
0d d t = −
¥  and ( )

00 t d 
¥  

where the IGR sampling window straddles ( )
0t
¥ . In this case the “effective” incubation period for which 

it is possible for a moult to occur, d , is shorter than the nominal period, d, by d d−  days. For these 

days prior to ( )
0t
¥  then moulting frequency summed over these days is a structural zero. The 

probability of moult for the IGR d-day incubation is ( ) ( )1 1 *
d

P d P= − −  where where *P  is not the 

correct population value and d is not the true effective incubation period where a moult is possible for 

all days in the IGR experimental period d. The true population probability, *P , is given by 

( ) ( ), 1 1 *
d

P d d P


 = − − . Then, since ( ) ( ) ( ), /P d d P d E m N = = , we can equate the above formulas to give 

 

( ) ( )1 1 * 1 1 *
d d

P P


− − = − − . 

 

This equality can be expressed in terms of the true expected value of m  and the naïve and incorrect 

value m  as  

 

( ) ( )1 1 1/ 1 1 1/
d d

m m 


− − = − −  

 

Giving 
 

( )
1

/
1 1 1/

d d

m m 
−  = − −

 
. 
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The percentage bias of the naïvely calculated value of population mean IMP, m , is given by  

 

( )100 /m m mB   = − . 

 

For example, for a true mean IMP of 20 d giving * 0.05P = , and d of 5, and for a d of 3 then B is 

64.98%. For d of 4 then B is 24.36%.  

 
The key point is that occurrence of zero moult frequencies caused by sampling does not bias 
estimates of mean IMP, given the above assumption of a specific discrete uniform distribution and the 
assumption that for all IGR experiments the IGR sampling window falls completely within distributional 
limits, ( )

0 0t 
¥  and ( )

et d
¥ , if sampling is random since d d= . In the cases described above where the 

sampling frame is not representative due to effective incubation period, d  , being less than the 

nominal incubation period, d, (where structural zeros correspond to 0d= ) then a large positive bias is 

incurred. Note also that, given the above caveats, if d d=  then the bias is zero. 

 
Given that there is no compensatory mechanism for the above biases (i.e. values of d  cannot be 

greater than d ) and the sampling frame cannot be informed due to unknown values of ( )
0t
¥  and ( )

et
¥  

and thus d   combined with the very restrictive assumption of asynchrony imposed via the above 

discrete uniform distribution, the conclusion is that the “1/MR” and “IMP” methods should not be used. 
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