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ABSTRACT 
 

Agricultural commodity prices exhibit unique challenges due to seasonality, inelastic demand, and 
production uncertainty, leading to significant fluctuations in time series data. This paper explores 
these complexities by applying Deep Learning (DL) models to forecast agricultural prices, 
specifically focusing on potato prices. While DL models have excelled in domains like image 
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processing and natural language processing, they require specialized architectures for effective 
time series forecasting. This study evaluates the Neural Basis Expansion Analysis for Interpretable 
Time Series Forecasting (N-BEATS) model, a novel DL architecture designed for time series data 
using daily potato price data from the Azadpur market in Delhi, spanning January 1, 2018, to April 
30, 2023.The performance of N-BEATS is compared with three baseline models: Convolutional 
Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). 
Evaluation criteria include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and 
Mean Absolute Percentage Error (MAPE). The results show that the N-BEATS model consistently 
outperforms the other models across all metrics. Additionally, the Diebold-Mariano (DM) test 
confirms the N-BEATS model's superior forecasting accuracy compared to the other models. This 
research highlights the potential of the N-BEATS model to significantly enhance the precision of 
agricultural price forecasting, providing valuable insights for farmers, planners, and other 
stakeholders in the agricultural sector. 

 

 
Keywords: Potato price; basis expansion; convolutional neural network (CNN); deep learning; long 

short-term memory (LSTM); gated recurrent unit (GRU); N-BEATS. 
 

1. INTRODUCTION 
 
Vegetables play a pivotal role in global 
agriculture, contributing significantly to the 
nutritional needs of the population and the 
economy. Among them, the potato stands out as 
one of the most important crops, ranking as the 
third most essential food crop in the world after 
rice and wheat, with a rich history originating in 
the Andes Mountains of South America [1]. In the 
fiscal year 2023, India witnessed a noteworthy 
increase in potato production, reaching 
approximately 59.74 million metric tons, with 
Uttar Pradesh contributing significantly to this 
surge [2]. The potato is not only a staple in the 
Indian diet but also a key economic crop, 
providing livelihoods for millions of farmers and 
contributing substantially to the country's 
agricultural GDP. Given its widespread 
consumption and economic importance, the 
volatility in potato prices has significant 
implications for both producers and consumers. 
Accurate price forecasting of potatoes is 
essential to stabilize markets, guide farming 
decisions, and prevent economic losses. This 
need for precise forecasting is heightened by the 
crop's susceptibility to factors such as weather 
conditions, storage limitations, and market 
demand fluctuations [3]. 
 
Time series analysis has long been the 
cornerstone of forecasting in various domains, 
including agriculture. Over the decades, a range 
of techniques has been developed to improve the 
accuracy of predictions. The Autoregressive 
Integrated Moving Average (ARIMA) model, 
introduced in the mid-20th century, was among 
the first to systematically address time series 
forecasting [4]. ARIMA's strength lies in its ability 

to model linear relationships in time series data, 
but its limitations became apparent as it 
struggled with non-linear patterns and complex 
seasonal effects [5]. To overcome these 
limitations, machine learning (ML) techniques 
emerged, offering more flexibility and the ability 
to capture non-linear dependencies. Models such 
as Random Forests, Support Vector Machines 
(SVM), and Gradient Boosting Machines (GBM) 
provided more accurate predictions by learning 
from vast amounts of data. However, these 
models still required manual feature engineering 
and were often limited in their ability to capture 
long-term dependencies. 
 
The advent of deep learning (DL) revolutionized 
time series forecasting by introducing 
architectures capable of automatically extracting 
features and learning intricate patterns from data. 
Recurrent Neural Networks (RNNs) and Long 
Short-Term Memory (LSTM) networks were 
among the first DL models to be applied to time 
series data, excelling in capturing sequential 
dependencies [6]. However, they were often 
prone to issues like vanishing gradients and 
required large computational resources. Building 
on these advancements, the N-BEATS (Neural 
Basis Expansion Analysis Time Series) deep 
learning architecture represents the latest 
innovation in time series forecasting. Designed 
specifically to address the shortcomings of earlier 
models, N-BEATS can deliver highly accurate 
forecasts without the need for extensive domain 
knowledge or feature engineering [7]. Its ability to 
model complex patterns and its hierarchical 
structure make it particularly suitable for 
applications such as potato price forecasting, 
where market dynamics are influenced by a 
multitude of factors. 
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Numerous studies have explored statistical, ML 
and DL algorithms for forecasting prices in 
diverse domains. Conejo et al. [8] proposed a 
novel technique for day-ahead electricity price 
forecasting using the wavelet transform and 
ARIMA models. Tan et al. [9] introduced a novel 
price forecasting method based on wavelet 
transform combined with ARIMA and GARCH 
models. Moving on to agriculture, Paul et al. [10] 
explored the effectiveness of four ML algorithms 
for forecasting the wholesale price of Brinjal in 
major markets of Odisha, India. Jaiswal et al. [11] 
presented a deep long short-term memory 
(DLSTM) model for agricultural price forecasting, 
which outperforms traditional time-delay neural 
network (TDNN) and ARIMA models. Choudhary 
et al. [12] successfully employed an empirical 
mode decomposition-based neural network 
model to forecast potato prices, demonstrating 
that this ensemble approach outperforms 
traditional single models in terms of accuracy 
and directional prediction. For stock price 
prediction, Mehtab and Sen [13] performed an 
agglomerative approach that combines 
statistical, ML and DL models. For financial TS 
forecasting, [14] proposed ELM-AE, a ML and 
DL-based method that outperforms existing 
methods based on MSE. Avinash et al. [15] put 
forth Hidden Markov (HM) guided DL models for 
forecasting agricultural commodity prices. 
Tripathi and Sharma [16] found that deep neural 
networks (DNNs) outperformed LSTM and CNN-
LSTM models in predicting Bitcoin prices using 
technical indicators. Durairaj and Mohan [17] 
proposed a CNN-based model for price 
forecasting incorporating chaos theory, 1D CNN 
and polynomial regression. These studies 
demonstrate the effectiveness of ML and DL 
learning algorithms for price forecasting in 
various domains and highlight the importance of 
selecting appropriate models based on the 
characteristics of the data. 
 

DL models initially found prominence in image 
processing, natural language processing (NLP) 
and computer vision (CV) applications, with later 
adaptations for TS forecasting. Oreshkin et al. 
[18] introduced a specialized DL architecture for 
TS forecasting, named Neural Basis Expansion 
Analysis for Interpretable Time Series 
Forecasting (N-BEATS). Nayak et al. [19] utilized 
Deep learning techniques including NBEATS for 
improved forecasting of price of TOP crops in 
India. Jossou et al. [20] proposed an N-BEATS-
based model for predicting labour based on 
electro hysterography forecasting and Sbrana 
and Lima de Castro [21] investigated its 
performance in forecasting cryptocurrency. This 

model aimed not only to deliver accurate 
predictions but also to enhance interpretability for 
end-users.  
 
Hence, in this study, a novel deep learning 
approach, N-BEATS, was employed alongside 
baseline models such as CNN, LSTM, and GRU 
to forecast the potato price series in a key market 
in India. By leveraging these advanced models, 
the research aims to enhance the accuracy of 
price predictions, offering valuable insights into 
market dynamics. This comprehensive analysis 
not only highlights the effectiveness of N-BEATS 
in comparison to traditional models but also 
underscores its potential in agricultural price 
forecasting. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area and Data Description 
 
This study utilizes the daily potato price series 
data of Azadpur market, Delhi, which contains 
1398 observations from January 1, 2018, to April 
30, 2023. The data is sourced from the 
'Agmarknet' website (https://agmarknet.gov.in/). 
 

2.2 Deep Learning Techniques used for 
Forecasting Price Series 

 
2.2.1 Convolutional neural network (CNN) 
 
A convolutional neural network (CNN) is a 
specialized type of artificial neural network 
known for its success in identifying visual 
patterns. Typically, a CNN architecture includes 
three primary types of layers: convolutional 
layers, sub-sampling layers, and fully connected 
layers. In a standard configuration, multiple 
convolutional and sub-sampling layers are 
stacked together, followed by several fully 
connected layers (see Fig. 2). Convolutional 
layers work by receiving inputs from neighboring 
nodes in the previous layer, like the cells in the 
visual cortex of animals. These layers utilize 
shared local weights, which not only conserves 
memory but also enhances classification 
performance. The sub-sampling layers, which 
perform non-linear down-sampling, reduce data 
dimensionality. This reduction decreases local 
sensitivity and computational complexity, 
allowing the network to learn features and 
patterns more effectively [22]. Finally, the fully 
connected layers, akin to those in standard 
neural networks, conduct comprehensive matrix 
computations with all activations and nodes. 
Once the convolutional and sub-sampling layers 

https://agmarknet.gov.in/
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have extracted features, the fully connected 
layers handle the reasoning and generate                   
the model's output. CNNs are trained by 
optimizing the model to minimize the discrepancy 
between actual and target output values              

through backpropagation. The integration of 
convolutional, sub-sampling, and fully connected 
layers equips CNNs to proficiently recognize 
patterns and features in visual data, making them 
highly effective for various computer vision tasks. 

 

 
 

Fig. 1. Location of Azadpur market in Delhi 
 

 
 

Fig. 2. One-dimension convolutional neural network (1D-CNN) architecture 
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2.2.2 Long short-term memory (LSTM) 
 

In 1997, Hochreiter and Schmidhuber addressed 
a significant limitation in traditional Recurrent 
Neural Networks (RNNs)—their inability to 
maintain crucial historical information over long 
sequences. To overcome this, they introduced 
the Long Short-Term Memory (LSTM) model, 
which integrates specialized gate mechanisms 
into the RNN architecture. LSTMs employ three 
key gate structures: the forget gate, the input 
gate, and the output gate, all implemented as 
sigmoid layers (shown in Fig. 3) [23]. These 
gates receive inputs from both the previous 
network output (ℎ𝑡−1) and the current input (𝑥𝑡), 
and are designed to manage the retention or 
deletion of information from the previous cell 
state (𝐶𝑡−1). 
 

The forget gate determines the relevance of 
previously processed information, with its output 
𝑓𝑡  deciding whether to retain or discard this 
information. A value of 0 indicates complete 
discarding, while a value of 1 signifies full 
retention. The forget gate's output is calculated 
as: 
 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                           (1) 
 

Similarly, the input gate decides which values 
need updating by processing the previous output 
(ℎ𝑡−1)  and current input (𝑥𝑡) through a weight 
matrix (𝑊𝑖), a sigmoid function (𝜎), and a bias 

term (𝑏𝑖), resulting in a new candidate value for 

the current cell state (𝐶𝑡): 
 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                           (2) 
 

The updated cell state value (𝐶𝑡̂) is computed by 

applying the hyperbolic tangent (𝑡𝑎𝑛ℎ)  function 
to the weighted input and hidden node, yielding a 
value between -1 and +1: 
 

𝐶𝑡̂ = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                      (3) 
 
The final cell state (𝐶𝑡) is updated by combining 
the forget gate's output (𝑓𝑡) and the previous cell 

state (𝐶𝑡−1) , along with the input gate's output 

(𝑖𝑡) and the new candidate state (𝐶𝑡̂): 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̂                              (4) 
 
The output gate then determines which parts of 
the cell state should influence the current output. 
The output (𝑜𝑡)   is calculated using a sigmoid 

function, and the final output (ℎ𝑡) is derived by 
applying the hyperbolic tangent function to the 
current cell state and multiplying it by the output 
gate value: 
 

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                           (5) 
 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)                                       (6) 

 
In the fully connected layer of the LSTM model, 
the Rectified Linear Unit (ReLU) activation 
function is employed, with the mean square error 
(MSE) used as the loss function for performance 
optimization Bakir et al. [24]. 

 
 

Fig. 3. LSTM architecture 
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2.2.3 Gated recurrent unit (GRU) 
 
GRU layers were introduced in 2014 as a 
streamlined and more efficient alternative to 
LSTM layers Chung Junyoung et al. [25]. GRUs 
streamline the architecture by combining the 
input and forget gates into a single update gate, 
and merging the hidden and cell states, resulting 
in fewer parameters compared to LSTM layers 
(Fig. 4). This simplification makes GRUs more 
efficient and cost-effective to process. GRUs are 
designed to prioritize recent events, which are 
typically more relevant for predicting future 
outcomes than older information. By efficiently 
retaining recent information, GRUs are better 
equipped to perform the current task. The reset 
gate in GRUs, composed of the hidden and cell 
states, determines how much past information 
should be forgotten, while the update gate 
retains useful information for predicting the 
present Nayak et al. [26]. The update gate 
determines the extent to which the GRU unit or 
cell will be updated and is given by: 
 

𝑍𝑡(𝑈𝑝𝑑𝑎𝑡𝑒 𝐺𝑎𝑡𝑒) = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)    (7) 
 
Similarly, the reset gate's operation is defined as: 
 

𝑅𝑡(𝑅𝑒𝑠𝑒𝑡 𝐺𝑎𝑡𝑒) = 𝜎(𝑊𝑅 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑅)       (8) 
 
The new candidate state in GRUs is computed 
by applying the hyperbolic tangent 
(𝑡𝑎𝑛ℎ) function to the reset gate, as shown in the 
equation: 
 

𝐻̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊. [𝑅𝑡∗(ℎ𝑡−1, 𝑥𝑡)] + 𝑏𝑧)              (9) 
 
This function helps the GRU control how much 
new information should be added to the current 
state, depending on what the reset gate decides 
to forget. The output of the tanh function, ranging 
between -1 and 1, allows the GRU to adaptively 
manage the flow of relevant information. The 
final hidden state is determined by the interaction 
between the previous hidden state and the new 
candidate state, modulated by the update gate: 
 

ℎ𝑡 = (1 − 𝑍𝑡) ∗ ℎ𝑡−1 + 𝑍𝑡 ∗ ℎ𝑡)                  (10) 
 
Here, the update and reset gates, controlled by 
the sigmoid activation function, manage the 
recurrent connections and inputs. Weight 
matrices ( 𝑊𝑍 , 𝑊𝑍  and 𝑊 ) and bias terms ( 𝑏𝑍 

and 𝑏𝑅 ) regulate the input values in these gates. 
The final hidden state is a combination of the 
previous hidden state and the new candidate 
state, adjusted by the update gate. 

2.2.4 Neural basis expansion analysis for 
interpretable time series forecasting (N-
BEATS) 

 
N-BEATS employs basis expansion as a key 
technique to enhance data interpretation and 
prediction accuracy [18]. This method transforms 
the original data into a higher-dimensional space 
by generating new features that capture non-
linear relationships within the dataset. Unlike 
traditional methods where the basis expansion 
technique is manually selected, N-BEATS utilizes 
a neural network to automatically identify and 
optimize the most effective data augmentation 
strategy during training. This adaptive approach 
allows the model to tailor its basis expansion to 
the unique characteristics of the dataset, leading 
to improved interpretability and predictive 
performance. 
 
2.2.4.1 The architecture of N-BEATS 
 
In tackling the univariate point forecasting 
problem in discrete time, the goal is to predict a 

future value vector 𝑦 ∈ 𝑅𝐻 = [𝑦𝑇+1, 𝑦𝑇+2, … , 𝑦𝑇+𝐻] 
over a forecast horizon 𝐻 (Fig. 5). This prediction 
is derived from a historical time series 
[𝑦1 , … , 𝑦𝑇] ∈ 𝑅𝑇 , using a lookback window of 
length 𝑡 ≤ 𝑇 , represented by 𝑥 ∈ 𝑅𝑡 =
[𝑦𝑇−𝑡+1, … , 𝑦𝑇] , ending with the last observed 

value 𝑦𝑇. The predicted values are denoted as 𝑦̂.  
 
The design principles of N-BEATS are founded 
on three core tenets: constructing a simple, 
generic, yet expressive deep learning 
architecture; avoiding dependence on time-
series-specific components like trend or 
seasonality; and ensuring the model's 
extendibility to enhance interpretability. The 
model takes the lookback period as input, with 
the forecast period containing actual values for 
evaluating the predictions. The input sequence 
length is typically a multiple of the forecast 
length, ranging from 2H to 7H for a forecast 
horizon 𝐻 .The architecture is organized into 
layered stacks, each composed of multiple 
blocks, as illustrated in the left blue rectangle. 
Each block consists of four fully connected 
layers, producing two outputs: a forecast and a 
backcast. The forecast predicts future values, 
while the backcast allows for immediate 
comparison with the input sequence, aiding in 
assessing the model's fit. At the block level, the 
network calculates expansion coefficients 
(𝜃) and performs basis expansion (𝑔) , which 
contribute to the model's adaptability and 
predictive accuracy [19]. 
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Fig. 4. GRU architecture 
 

 
 

Fig. 5. The architecture of N-BEATS 
 
In this architecture, the actual input sequence is 
only provided to the first block. The subsequent 
blocks receive the residuals generated by the 
previous block. Consequently, only the 
information not captured by the first block is 
passed on to the next block. This sequential 

processing ensures that each block attempts to 
capture the information missed by the previous 
one. The basic building block, which has a fork 

architecture, is depicted in Fig. 5. The 𝑙𝑡ℎ block 
accepts its input 𝑥𝑙  and outputs two vectors, 𝑥̂𝑙 
and 𝑦̂𝑙. For the first block, 𝑥𝑙  corresponds to the 
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overall model input a history lookback window of 
a specific length ending with the last observed 
value. The input window length is a multiple of 
the forecast horizon 𝐻, typically ranging from 2𝐻 
to 7𝐻. For subsequent blocks, 𝑥𝑙 consists of the 
residual outputs from the previous blocks. Each 
block generates two outputs: 𝑦̂𝑙 , the block’s 
forward forecast of length 𝐻; and 𝑥̂𝑙, the block’s 

best estimate of 𝑥𝑙, referred to as the ‘backcast,’ 
within the constraints of the block's functional 
space. 
 

Internally, the basic building block has two 
components. The first part is a fully connected 

network that produces the forward 𝜃𝑙
𝑓

and the 

backward 𝜃𝑙
𝑏 expansion coefficients. The second 

part includes the backward 𝑔𝑙
𝑏  and the forward 

𝑔𝑙
𝑓

 basis layers, which accept the respective 

expansion coefficients  𝜃𝑙
𝑓
 and 𝜃𝑙

𝑏 , project them 

onto a set of basis functions, and generate the 
backcast 𝑥̂𝑙 and the forecast outputs 𝑦̂𝑙. 
 

The operation of the first part of the 𝑙𝑡ℎ block is 
described by the following equations: 
 

ℎ𝑙,1 = 𝐹𝐶𝑙,1(𝑥𝑙), ℎ𝑙,2 = 𝐹𝐶𝑙,2(ℎ𝑙,1),

ℎ𝑙,3 = 𝐹𝐶𝑙,3(ℎ𝑙,2),

ℎ𝑙,4 = 𝐹𝐶𝑙,4(ℎ𝑙,3) 
 

𝜃𝑙
𝑏 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑙

𝑏(ℎ𝑙,4), 𝜃𝑙
𝑓

= 𝐿𝑖𝑛𝑒𝑎𝑟𝑙
𝑏(ℎ𝑙,4) 

 

where the Linear layer is a simple linear 

projection, i.e., 𝜃𝑙
𝑓

= 𝑊𝑙
𝑓

ℎ𝑙,4 . The FC layer is a 

standard fully connected layer with ReLU non-
linearity. This part of the architecture aims to 

predict the forward expansion coefficients 𝜃𝑙
𝑓
 to 

optimize the accuracy of the partial forecast 𝑦̂𝑙 by 
appropriately combining the basis vectors from 

𝑔𝑙
𝑓

. Additionally, it predicts the backward 

expansion coefficients 𝜃𝑙
𝑏 , which are used by 𝑔𝑙

𝑏 

to produce an estimate of 𝑥𝑙 , helping the 
downstream blocks by removing unhelpful 
components from their input for forecasting. 
 

The second part of the network maps the 

expansion coefficients 𝜃𝑙
𝑓

 and 𝜃𝑙
𝑏  to outputs via 

basis layers: 

𝑦̂𝑙 = 𝑔𝑙
𝑓

(𝜃𝑙
𝑓

) , 𝑥̂𝑙 = 𝑔𝑙
𝑏(𝜃𝑙

𝑏) 
 

This operation is further defined by: 
 

𝑦̂𝑙 = ∑ 𝜃𝑙,𝑖
𝑓

𝑣𝑖
𝑓

𝑑𝑖𝑚(𝜃𝑙
𝑓

)

𝑖=1

, 𝑥̂𝑙 = ∑ 𝜃𝑙,𝑖
𝑏 𝑣𝑖

𝑏

𝑑𝑖𝑚(𝜃𝑙
𝑏)

𝑖=1

 

where 𝑣𝑖
𝑓
 and 𝑣𝑖

𝑏  are the forecast and backcast 

basis vectors, respectively, and 𝜃𝑙,𝑖
𝑓

 is the 𝑖𝑡ℎ 

element of 𝜃𝑙
𝑓
. 

 
The classical residual network architecture adds 
the input of a stack of layers to its output before 
passing the result to the next stack. In contrast, a 
novel hierarchical doubly residual topology is 
proposed. This architecture introduces two 
residual branches: one over the backcast 
prediction of each layer and the other over the 
forecast branch. Its operation is described by the 
following equations: 
 

𝑥𝑙 = 𝑥𝑙−1 − 𝑥̂𝑙−1, 𝑦̂ = ∑ 𝑦̂𝑙
𝑙

 

 
For the first block, the input is the model-level 
input 𝑥 , so 𝑥1 ≡ 𝑥 . In all other blocks, the 
backcast residual branch 𝑥𝑙  performs a 
sequential analysis of the input signal. The 
previous block removes the signal portion 𝑥̂𝑙−1 
that it can approximate well, simplifying the 
forecasting task for downstream blocks. This 
structure also facilitates smoother gradient 
backpropagation. More importantly, each block 
outputs a partial forecast 𝑦̂, which is aggregated 
first at the stack level and then at the overall 
network level, providing a hierarchical 
decomposition. The final forecast 𝑦̂is the sum of 
all partial forecasts. In a generic model context, 

allowing arbitrary 𝑔𝑙
𝑏  and 𝑔𝑙

𝑓
 for each layer 

makes the network more transparent to gradient 

flows. In a special case with structured 𝑔𝑙
𝑏 and 𝑔𝑙

𝑓
 

shared across a stack, this enables 
interpretability through the aggregation of 
meaningful partial forecasts. The residual 
connections in the network help capture 
information missed by previous blocks. 
Combining different blocks forms a stack, which 
produces a partial prediction. The final forecast is 
obtained by combining all these partial 
predictions. 
 

2.3 Data Pre-processing and 
Normalization 

 
To ensure effective fitting of deep learning 
models and unbiased extrapolation, it is essential 
to preprocess and normalize the data series. 
Normalization rescales the values of both series 
to a range between 0 and 1 while preserving 
their inherent shape. This standardized approach 
enhances model training robustness and 
improves the model's ability to generalize 
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patterns from the data. The normalization 
process is defined by the following equation: 
 

𝑋′
𝑡 =

𝑋𝑡 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 

 

where 𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥  and 𝑋𝑡  are the minimum, 

maximum and observation at time 𝑡, respectively 
and 𝑋′

𝑡 is the rescaled value. 
 

2.4 Hyperparameter Tuning 
 

Here, we provide a comprehensive overview of 
the hyperparameters used in developing the 
various forecasting models. The fine-tuning 
process utilized the random search method for 
hyperparameter optimization. Specifically, 
random search was employed to optimize 
hyperparameters for the DL models. Training 
accuracy was evaluated across a range of 
randomly selected hyperparameter 
combinations, with the final configuration 
selected based on the highest achieved accuracy 
(as detailed in Table 1). In our study, we 
implemented four different algorithms: CNN, 
LSTM, GRU, and N-BEATS to forecast the 
potato price series. 

2.5 Performance Measure 
 

a) Mean absolute percentage Error (MAPE) 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖 − 𝑦̂

𝑦𝑖

|

𝑁

𝑖=1

 

 
b) Mean absolute error (MAE) 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦̂|

𝑁

𝑖=1

 

 
c) Root Mean Squared Error (RMSE) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂)2

𝑁

𝑖=1

  

 
where, 𝑁 is the number of observations in the 

dataset, 𝑦𝑖 is the true values of the variable being 
predicted and 𝑦̂  is the predicted values of the 
variable. 

 
Table 1. The hyperparameters and their values of different models used for comparison 

 

Models Hyperparameters Values 

N-BEATS Fully connected layers 4 
Lookback 7 
Horizon 1 
Stacks 30 
Neurons per layer 512 
Epochs 500 
Loss function MAE 
Optimizer Adam 

CNN Filters 128 
Kernel size 5 
Batch size 128 
Epochs 100 
Loss function MAE 
Optimizer Adam 

LSTM Inputs 128 
Activation function ReLU 
Batch size 128 
Epochs 100 
Loss function MAE 
Optimizer Adam 

GRU Inputs 128 
Activation function ReLU 
Batch size 128 
Epochs 100 
Loss function MAE 
Optimizer Adam 
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3. RESULTS AND DISCUSSION 
 

3.1 Descriptive Statistics 
 
The descriptive statistics of the experimental 
datasets used in this study is displayed in Table 
2, while Fig. 6 illustrate the actual time series plot 
of the Potato price series. It is evident from the 
graphs that data exhibit non-stationarity. This 
observation is further validated through statistical 
tests. 
 
The potato price series data, with a price range 
between Rs. 335 and Rs. 4600 per quintal, 
exhibits significant volatility, as indicated by the 
standard deviation shown in Table 2. The data 
displays positive skewness and leptokurtic 
characteristics, suggesting a non-normal 
distribution. This non-normality is confirmed by 
the Shapiro-Wilk and Jarque-Bera tests. The 

dataset contains a total of 1398 observations, 
which are divided into training (80%) and testing 
(20%) sets. The training set, consisting of 1198 
observations, is used for model development, 
while the testing set, with 300 observations, is 
used for model validation and post-                
sample prediction. This approach                  
ensures a thorough analysis of potato price 
dynamics by incorporating both training and 
testing subsets. 
 

3.2 Test for Stationarity 
 
Stationarity is a critical consideration in 
forecasting models and is evaluated in this study 
using the Augmented Dickey-Fuller (ADF) test 
[15]. The null hypothesis of the ADF test posits 
that the series is non-stationary or contains a unit 
root. The results, detailed in Table 3, confirm that 
the series is stationary. 

 
Table 2. Descriptive statistics of Potato price series data 

 

Descriptive Statistics Price (Rs. /Quintal) 

Minimum 335 
Mean 1132.55 
Maximum 4600 
Standard Deviation 569.47 
Coefficient of Variation (%) 50.28 
Skewness 1.53 
Kurtosis 3.16 
Jarque-Bera test 1280.78 (<0.0001) 
Shapiro-Wilk’s test 0.87 (<0.0001) 

The value in the parentheses indicates p-value 
 

 
 

Fig. 6. Time series plot of Potato price series 
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Table 3. ADF test result of potato price series 
 

Data Augmented Dickey-Fuller Remarks 

Statistic 𝒑 - value 

Potato -2.63 0.08 Stationary 

 
Table 4. Results obtained by different models on the testing dataset for potato price series 

 

Models MAPE (%) MAE RMSE 

CNN 2.15 23.44 49.88 
LSTM 2.82 31.35 55.98 
GRU 2.62 28.94 53.26 
N-BEATS 2.09 22.48 49.68 

 
Table 5. Diebold–Mariano test results of potato price series 

 

Models CNN LSTM GRU N-BEATS 

CNN - -70.96 
(0.98) 

-61.34 
(0.92) 

57.71 
(0.99) 

LSTM -70.96 
(0.98) 

- -4.95 
(0.94) 

3.99 
(0.98) 

GRU -61.34 
(0.92 

-4.95 
(0.94) 

- 0.31 
(0.92) 

N-BEATS 57.71 
(0.99) 

3.99 
(0.98) 

0.31 
(0.92 

- 

Values in the parentheses indicates p-value 

 

 
 

Fig. 7. 3D Bar diagram of evaluation criteria of Potato price series on the testing dataset 
 

3.3 Performance Evaluation 
 
Performance evaluation of each model on the 
potato price series dataset utilized metrics 
including MAPE, MAE, and RMSE, as reported in 
Table 4. The N-BEATS model consistently 
demonstrated superior performance, achieving 
the lowest MAPE of 2.09, MAE of 22.48, and 

RMSE of 49.68. This highlights the N-BEATS 
model's exceptional ability to capture the 
underlying patterns and dynamics of the potato 
price series, leading to more accurate forecasts. 
 
Traditional models such as ARIMA struggle with 
capturing nonlinear patterns, while parametric 
nonlinear models like GARCH face limitations 
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due to their rigid assumptions. To address these 
challenges, researchers have increasingly turned 
to machine learning (ML) methods. However, for 
large datasets, ML's predictive accuracy can 
diminish due to the need for manual feature 
extraction. Consequently, deep learning (DL) 
architectures, including CNN, LSTM, and GRU, 
have become popular for modeling price data. 
This study presents the N-BEATS algorithm for 
forecasting daily potato prices from the Azadpur 
market, Delhi. Comparative analysis shows that 
N-BEATS outperforms CNN, LSTM, and GRU in 
predictive accuracy, achieving the lowest values 
for key performance metrics such as MAPE, 
MAE, and RMSE, which signifies its 
effectiveness in capturing trends and patterns in 
time series data (Fig. 7). 
 
N-BEATS' success is attributed to its unique 
architecture, which employs stacked blocks of 
fully connected layers for both backcasting and 
forecasting. The inclusion of residual links and 
double residual stacking enhances the model's 
learning capacity and prediction refinement. N-
BEATS demonstrates remarkable adaptability 
and flexibility, efficiently handling diverse time 
series patterns and various data types. The 
model's performance is further validated by the 
Diebold-Mariano (DM) test, which confirms its 
superior forecasting accuracy compared to other 
benchmark models (Table 5). This highlights N-
BEATS' ability to capture complex patterns and 
its suitability for different forecasting tasks, 
making it a promising tool for time series 
analysis. Although the current N-BEATS 
architecture does not incorporate spatiotemporal 
modeling, future adaptations designed for such 
data could offer even greater utility, especially in 
contexts involving spatial-temporal dynamics. 
Overall, the study establishes N-BEATS as a 
highly effective and superior approach for time 
series forecasting, with significant implications for 
practitioners and researchers in the field. 

 
4. CONCLUSION 
 
The study highlights the crucial role of accurate 
forecasting in agricultural commodity prices due 
to its substantial impact on India's economy. 
Traditional models like ARIMA are limited in their 
ability to capture nonlinear patterns, prompting 
researchers to explore machine learning (ML) 
methodologies. However, the manual feature 
extraction required for ML, especially with large 
datasets, presents challenges. The advent of 
deep learning (DL) architectures, such as CNN, 
LSTM, GRU, and particularly N-BEATS, has 

transformed price data modeling. N-BEATS 
stands out with its unique architecture, which 
includes stacked blocks and innovative features 
like residual links and double residual stacking, 
demonstrating superior performance in capturing 
complex time series patterns. Its adaptability and 
flexibility are evidenced by its strong 
performance in comparative analyses and the 
Diebold-Mariano test. Although the current N-
BEATS architecture does not incorporate 
spatiotemporal modeling, future adaptations 
designed for such data may offer even greater 
potential. Overall, N-BEATS proves to be a 
powerful and advanced tool for time series 
forecasting, with important implications for both 
practitioners and researchers in the field. 
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