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ABSTRACT 
 

The industry's usage of machining has been restricted by a lack of knowledge and understanding 
about important input parameters and the machinability of materials, which makes it difficult to fulfill 
the necessary criteria for material removal rate, surface roughness, tool wear, and many other 
issues. This paper examines the Performance evaluation of Aluminum alloy 356 cow-horn 
composite as a turning machining material using response surface methodology. A356/cow horn 
particles (CHp) composite from Ochieze, 2017, was used as a raw material and the composite 
composition by mass is 90% Aluminum alloy and 10% cow-horn reinforcement. The molten 
composite was made more wettable by adding 2% weight of magnesium powder. The addition of 
magnesium powder reduced the interface energy of the matrix reinforcement and raised the 
composite's surface energy, which in turn decreased its surface tension. The Response Surface 
Methodology was utilized to create the experiment's design. After optimization, several significant 
models are shown with a probability value of less than 0.05. The findings of the analyzed result 
show that the suggested mathematical models obtained from the data can accurately portray the 
performance within the limitations of the components under discussion. The investigation 
demonstrates that, as opposed to depth of cut, cutting speed considerably impacts surface 
roughness and tool wear rate. Ra and TWR are not significantly affected by the depth of cut. 
Numerical optimization was used to identify combinations of process parameters that will give the 
best response. Adjusting the feed rate, depth of cut, and cutting speed to 900 rpm, 0.25 rev/mm, 
and 1.5 mm achieve the optimal composite turning process at a surface roughness of 160.256 mm, 
material removal rate of 15.4011 mm3/min, and tool wear of 0.000362687 mg/mm respectively. 

 

 
Keywords: Tool wear ratio; aluminum alloy cow horn composites; material removal rate; response 

surface methodology; surface roughness. 
 

1. INTRODUCTION 
 
Metal matrix composites are gaining popularity in 
key industries such as aerospace, automotive, 
and agriculture due to their superior strength, 
high wear resistance, and elastic modulus 
compared to low-density materials, Light weight 
highly contributing to energy consumption. Metal 
matrix composites are among the best 
engineering materials because of their numerous 
valuable attributes, which include outstanding 
heat stability, stiffness, and conductivity [1-8]. 
Composite materials are well known for their 
extraordinary qualities, which include the 
presence of the matrix phase, a vital component 
that facilitates load transfer, structural integrity, 
and improved mechanical properties [9-14]. The 
composite materials' matrix and reinforcement 
can be constructed using metal, inorganic, and 
biological elements. Long and short fibers and 
particles are the two most common and utilized 
reinforcing materials [13, 15-19]. 
 

Composite materials are preferable to metals in 
various applications due to their high strength-to-
weight ratio, which increases the performance 
level of diverse engineering applications, high 
stiffness, and good damage resistance under 
different operating conditions, thereby 
significantly advancing engineering to a higher 

level [20-23]. These unique features make them 
a desirable substitute for conventional materials 
in many technological applications to improve 
optimal performance [11,20,24,25]. A few 
advantages of composite materials are their 
increased strength and stiffness, improved 
fatigue resistance, ability to endure heat, wear, 
corrosion, and decreased weight [26,27]. 
Appropriate application-specific properties can 
be obtained by carefully organizing the metal 
matrix and adding reinforcement. 
 
Metal Matrix Composites (MMC) are composite 
materials made from metals such as titanium, 
magnesium, and aluminum alloys. The reinforced 
materials, including particles, short (whiskers), or 
long fibers give composites the stiffness, 
strength, thermal stability, and other structural 
properties that improve their performance in their 
specific application areas [28-31]. Lately, there 
has been an increase in interest in the 
development of composites with low-cost, low-
density reinforcements to meet engineering goals 
[32-34].  
 
Aluminum Matrix Composites (AMCs), having 
aluminum as a principal constituent, are a high-
performance, lightweight class of materials [35]. 
Fibers, whiskers, or particles can serve as low-
cost reinforcement in AMCs, with particle 
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materials emerging as the most significant and 
dominant material [36-38].  
 
One of the most crucial procedures of machining 
operations in material removal is metal turning 
[39-41]. Turning mechanism is the most widely 
used machining method in the industry for 
creating high-quality components. It is used to 
create the form and dimensions required for the 
finishing or semi-finishing of a rotating object. It 
has determined that developing optimization 
strategies for choosing cutting conditions in 
cutting operations quantitative forecasts of 
various technological performance metrics, 
ideally equations [42-46]. The critical technical 
technology for producing multiple mechanical 
components and products is machining requires 
optimum selections of best cutting conditions, 
thereby reducing material waste, time, and tool 
[47,48]. A standard method of material removal 
in machining operations is turning. Many 
academics have investigated the geometrical 
and material properties of machining. A lack of 
experience and understanding of material 
machinability has hampered the use of 
machining in the industry, thereby increasing the 
rate at which accidents occur, damaging human 
beings and machines in use [49-52]. Fabricating 
numerous mechanical components requires 
dependable patterns and processes, repeatable 
processes, and precise instruments [53]. One of 
the common ways of making desired geometry 
components is through machining [54]. However, 
aluminum metal matrix composites (AMMCs) are 
among the most widely utilized composites 
because of their ease of fabrication, high 
strength, and lightweight [55,56]. Disc brake 
development heavily uses composites in 

automotive and aerospace engines [57,58]. In 
the turning operations machining process, the 
tool's life, the force required for cutting, the 
roughness of the machined surfaces, and energy 
consumption are the most crucial cutting 
performance indicators [54]. The industry's 
machining utilization has been hindered by a lack 
of knowledge and understanding regarding the 
machinability of materials and the crucial input 
parameters, which makes it difficult to meet the 
necessary standards for material removal rate, 
surface roughness, tool wear, and many other 
factors. The primary issue with turning                     
AMMC is excessive tool wear, which either 
renders the operation impractical or                     
impossible. Therefore, there are unique 
requirements for the wear resistance of the 
cutting tools when machining composite 
materials. Repeatable procedures, accurate 
tools, and ideal input variables are needed to 
fabricate a large number of mechanical                        
parts and the usage of the proper input                 
settings leads to the optimal machining process 
[59,60]. 
 

2. MATERIALS AND METHODS 
 

2.1 Materials 
 

Materials incorporated into this project                 
include; Aluminum alloy A356, Cow-horn 
particles and HSS cutting tool, Lathe machine, 
Surface tester (Surfcorder SE3500) and 
Dynamometer (XXR-UN01). Figs. 1 and 2 
displayed the cow-horn and aluminum alloy 356 
samples that were used. The lathe machine 
configuration for executing a turning operation is 
shown in Fig. 3. 

 

 
 

Fig. 1. Cow horn 
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     Fig. 2. Aluminum alloy 356 
 

 
 

Fig. 3. Lathe machine setup 
 

2.2 Methods 
 
The cow-horn were collected and cleaned with a 
blower to remove impurities. Moisture content 
was removed by heating the cow-horn in an oven 
at 1150°C [29]. The cow-horn was cooled to 
room temperature after removing the impurities 
by heating process. The dried cow horn was 
processed into a fine powder using a grinding 
machine [61]. The powder was sieved to obtain 
the required particles of a uniform size of 150µm 
[61] which significantly improves the mechanical 
Properties and enhancement optimal particle 
distribution. The mold samples were preheated 
for moisture removal and cooled at room 
temperature. The composite composition by 

mass is 90% Aluminum alloy and 10% cow-horn 
reinforcement [62]. The weights of the 
reinforcements (cow-horn) were determined 
using a compact electronic scale. The sourced 
Aluminum alloy weight for the composite was 
determined using a weighing balance, and 
pulverized cow horn was kept in a furnace 
preheated to improve wettability.  
 
The aluminum alloy was heated to a temperature 
of 550°C in a crucible furnace powered by diesel, 
coupled to a temperature probe, and tested to 
ensure complete melting [62]. To further improve 
the metal's wettability, magnesium powder (2% 
weight) was added to the molten metal, and the 
addition of magnesium powder increased the 
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metal's surface energy, decreasing its surface 
tension and reducing the interface energy of the 
matrix reinforcement. The preheated pulverized 
cow-horn particles were mixed with the liquid 
aluminum using an automated mechanical stirrer 
[63]. The composite mixture was super-heated at 
550°C [62]. The composite was then created by 
pouring the combined aluminum alloy cow horn 
into a mold and letting it cure. 
 

3. RESULTS 
 
Response surface methodology (RSM) was used 
to optimize the turning process of AACHC 
controlled factors (feed rate, depth of cut and 
cutting speed) and observed results (surface 
roughness, material removal rate and tool wear). 
Optimization was carried out to obtain the best 
combination level of input variables that                          
gives the best response. Numerical                    
method in RSM was used to find the optimum 
turning combination of AACHC and its desired 
response. 
 
The regression model equation was obtained 
using equation 2. The model selection was 
based on the effect of the variables (cutting 
speed, feed rate and depth of cut). The 
individual response in terms of coded and 
actual variables is a function of the input 
variables as related in equation 1. 
 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑘)                                           (1) 
 
𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽123𝑥1𝑥2𝑥3 + 𝜀  (2)   
 
Where;  
 
𝑥1 = 𝐹𝑅,   𝑥2 = 𝐶𝑆, 𝑎𝑛𝑑   𝑥3 = 𝐷𝐶 
 
y = Required output response (surface 
roughness, material removal rate and tool 
wear). 
 
𝑓 = Response function 
 
ɛ = Random error (measurement error on 
response and background noise) 
 
k is the number of independent variables. 
 
𝛽0 is the intercept value of the variables 
 
𝛽1, 𝛽2, 𝛽3, 𝛽123 are coefficients associated with each  

variable and interaction of 𝑥1, 𝑥2, 𝑥3, 𝑥1𝑥2𝑥3   
respectively. 
 

3.1 Machining Operation Using Design of 
Experiment (DOE) 

 
A preliminary study on A356/cow horn particle 
composite formulation was done by examining 
how the machining parameters affect the created 
material. Three (3) excipients were chosen for 
A356/cow horn particle formulation based on 
their function. Two of them and the feed rate 
were used as variables in the I-optimal custom 
design as they may affect the responses. The 
variables' ranges were also studied using the I-
optimal custom technique in design expert 
software. Table 1 shows the summary data table 
of the actual design after the experiment. Table 2 
shows Model terms of build information. 
 
The model terms help to determine the 
significance of the model and its impact in 
obtaining optimal result. The power ranges in 
Table 2 shows the true effect of the model and 
the power ensures reliability of the result 
generated. 
 

3.2 Surface Roughness  
 
Table 3 shows the interactions and correlations 
of surface roughness over various input 
parameters. The surface roughness of the 
material is influenced positively by the cutting 
speed and depth of cut, which have a 
considerable effect; the surface roughness is not 
affected by feed rate. The material's surface 
roughness will rise with increased cutting depth 
and speed. Table 3 shows that model terms 
affect the cutting conditions when the P-value is 
less than 0.0500. B and C are essential model 
terms in this instance. Model terms are 
unimportant (have no influence) if their values 
are more extensive than 0.1000. 
 
Table 4 shows the fit statistics for Ra. The table 
shows that the model added an excellent 
significant explanation of the data with R2 of 
0.9818 and adjusted R2 of 0.8907. The high R2 
and adjusted R2 value show that the model 
explains the data variation instead of being noisy. 
Obtaining an R-squared of 0.9818, which is in 
close proximity to 1, indicates that a noteworthy 
proportion of the data variation is captured by the 
model. Achieving an adjusted R-squared of 
0.8907 suggests that model fit and complexity 
are well-balanced and also the surface 
roughness is well explained by input variables. 
Table 5 evaluates the coefficient in terms of 
coded factors of Ra. 
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Table 1. Summary data table of the actual design after experiment 
   

 Factor 
1 

Factor 
2 

Factor 
3 

Response 
1 

Response 2 Response 
3 

Group Run  a: Feed 
Rate 

B: 
Cutting 
Speed 

C: 
Depth 
of Cut 

Surface 
Roughness 

Material 
Removal 
Rate 

Tool wear 

  
 𝒓𝒆𝒗

/𝒎𝒎 

𝒓𝒑𝒎 𝒎𝒎 𝒎𝒎 𝒎𝒎𝟑/𝒎𝒊𝒏 𝒎𝒈/𝒎𝒎 

1 AACHC1 A 0.15 500 1 121.994 24.32 0.00074 
1 AACHC2 B 0.15 900 1.5 157.78 16.67 0.00039 
1 AACHC3 C 0.15 900 1 155.86 19.54 0.00041 
1 AACHC4 D 0.15 500 1.5 122.211 23.34 0.00071 
1 AACHC5 E 0.15 700 0.5 124.202 22.24 0.00065 
2 AACHC6 F 0.15 700 1 127.289 20.52 0.00063 
2 AACHC7 G 0.15 900 1.5 157.78 16.67 0.00039 
2 AACHC8 H 0.15 700 1.5 133.484 20.29 0.00058 
2 AACHC9 I 0.15 500 0.5 119.094 30.91 0.00092 
2 AACHC10 J 0.15 900 0.5 136.311 19.61 0.00042 
3 AACHC11 K 0.25 900 1 162.794 4.61 0.00014 
3 AACHC12 L 0.25 900 1.5 168.47 3.75 0.00011 
3 AACHC13 M 0.25 500 0.5 131.121 15.8 0.00037 
3 AACHC14 N 0.25 700 0.5 149.205 9.5 0.00031 
4 AACHC15 O 0.25 900 0.5 162.194 9.31 0.00026 
4 AACHC16 P 0.25 500 1.5 158.032 12.11 0.00034 
4 AACHC17 Q 0.25 500 1 157.88 12.5 0.00036 
4 AACHC18 R 0.25 700 1 159.992 9.48 0.0003 
4 AACHC19 S 0.25 700 1.5 161.213 7.44 0.00028 

 
Table 2. Model terms of build information 

 

Term Standard Error* Error df† VIF Restricted‡ VIF Power 

A 0.5515 2 1.01974 1.00356 19.1 % 
B 0.2890 3 

  
42.2 % 

B 0.1704 3 
   

C 0.2930 3 
  

41.1 % 
C 0.1688 3 

   

Ab 0.2966 3 
  

42.0 % 
aB 0.1694 3 

   

Ac 0.2918 3 
  

39.8 % 
Ac 0.1715 3 

   

BC 0.3937 3 
  

16.3 % 
BC 0.2457 3 

   

BC 0.2173 3 
   

BC 0.1309 3 
   

 

Table 3. Model terms of surface roughness 
 

Source Term df Error df F-value p-value 
 

Whole-plot 1 1.67 7.25 0.1380 not significant 
a-Feed Rate 1 1.67 7.25 0.1380 

 

Subplot 12 2.95 17.25 0.0203 Significant 
B-Cutting Speed 2 2.93 63.28 0.0039 

 

C-Depth of Cut 2 2.92 12.17 0.0384 
 

Ab 2 2.95 2.28 0.2524 
 

Ac 2 2.95 0.1118 0.8978 
 

BC 4 3.02 2.12 0.2809 
 



 
 
 
 

Mba et al.; J. Basic Appl. Res. Int., vol. 30, no. 5, pp. 1-17, 2024; Article no.JOBARI.12300 
 
 

 
7 
 

Table 4. Fit statistics of surface roughness 
 

Std. Dev. 9.11 
 

R² 0.9818 

Mean 145.63 
 

Adjusted R² 0.8907 
C.V. % 6.26 

   

 
Table 5. Coefficients in terms of coded factors of surface roughness 

 

Source Coefficient Estimate Standard Error VIF 

Intercept 144.50 4.24 
 

Whole-plot Terms: 
   

a-Feed Rate 11.42 4.24 1.00 

Subplot Terms: 
   

B[1]-Cutting Speed 12.16 1.11 
 

B[2] 1.77 0.6620 
 

C[1]-Depth of Cut 5.43 1.14 
 

C[2] -1.09 0.6433 
 

aB[1] -1.87 1.18 
 

aB[2] -0.9317 0.6472 
 

aC[1] -0.4497 1.14 
 

aC[2] 0.2149 0.6709 
 

B[1]C[1] 3.24 1.65 
 

B[2]C[1] 2.45 1.07 
 

B[1]C[2] -0.6823 0.8819 
 

B[2]C[2] -1.08 0.5414 
 

 

3.3 Final Equation in Terms of Coded 
Factors 

 
𝐒𝐮𝐫𝐟𝐚𝐜𝐞 𝐑𝐨𝐮𝐠𝐡𝐧𝐞𝐬𝐬 = +144.50 + 11.42a +
12.16B[1] + 1.77B[2] + 5.43C[1] − 1.09C[2] −
1.87aB[1] − 0.9317aB[2] − 0.4497aC[1] +
0.2149aC[2] + 3.24B[1]C[1] + 2.45B[2]C[1] −
0.6823B[1]C[2] − 1.08B[2]C[2].  

 
The Ra response can be predicted using the 
coded factors equation for specific levels of each 
factor. The coded equation assists in 
ascertaining the relative significance of the 
factors using a comparison of their factor 
coefficients. The link between the coded factors 
and the response variable is expressed in the 
final equation. Engineers can grasp how                         
changes in one or more components                                                  
affect the result by using this summary                            
of the effects of several factors on surface 
roughness. The equation can be used                                               
to predict the reaction for specific factor sets 
without the need for additional trials. This 
predictive power helps with parameter 
optimization by identifying the optimal 
combination of variables to get the desired 
outcome. 
 

3.4 Final Equation in Terms of Actual 
Factors 

 

𝐒𝐮𝐫𝐟𝐚𝐜𝐞 𝐑𝐨𝐮𝐠𝐡𝐧𝐞𝐬𝐬 = 500CS × 0.5DC +
74.29615 + 254.05677FR × 500CS × 1DC +
80.71898 + 296.09010FR × 500CS × 1.5DC +
82.68288 + 287.19312FR × 700CS × 0.5DC +
84.75815 + 259.7267FR × 500CS × 1DC +
83.28848 + 301.76010FR + 700CS × 1.5DC +
88.77588 + 292.86312FR + 900CS × 0.5DC +
126.18321 + 115.34646FR + 900CS × 1DC +
127.85104 + 157.37979FR + 900CS × 1.5DC +
134.12148 + 148.48281FR  
 

For certain levels of each element, the equation 
expressed in terms of the actual factors           
predicts the Ra response. Here, each                              
factor's levels should be determined per their 
original units. Fig. 4 shows the graph of          
predicted values and actual values of surface 
roughness. 
 

The fact that the data points are nearly evenly 
distributed and have few outliers suggests that 
the data is normally distributed. The predictive 
model that was employed to estimate surface 
roughness is validated by the Fig. 4. There is a 
good model fit as the points are near to the line 
of perfect agreement. 
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Fig. 4. Graph of predicted values and actual values of surface roughness 
 

Table 6. Model terms of MRR 
 

Source Term df Error df F-value p-value 
 

Whole-plot 1 1.25 87.20 0.0412 Significant 
a-Feed Rate 1 1.25 87.20 0.0412 

 

Subplot 12 3.00 19.15 0.0166 Significant 
B-Cutting Speed 2 2.83 77.05 0.0034 

 

C-Depth of Cut 2 2.81 24.80 0.0164 
 

Ab 2 2.88 0.2280 0.8092 
 

Ac 2 2.88 0.1383 0.8763 
 

BC 4 3.09 2.32 0.2535 
 

 

Table 7. Fit statistics of MRR 
 

Std. Dev. 1.62 
 

R² 0.9932 

Mean 15.72 
 

Adjusted R² 0.9590 
C.V. % 10.30 

   

 

Table 8. Coefficients in terms of coded factors of MRR 
 

Source Coefficient Estimate Standard Error VIF 

Intercept 15.59 0.6787 
 

Whole-plot Terms: 
   

a-Feed Rate -6.33 0.6775 1.00 
Subplot Terms: 

   

B[1]-Cutting Speed -3.63 0.2999 
 

B[2] 0.4449 0.1796 
 

C[1]-Depth of Cut -2.17 0.3103 
 

C[2] 0.2956 0.1732 
 

aB[1] 0.2101 0.3240 
 

aB[2] -0.0311 0.1746 
 

aC[1] -0.0870 0.3109 
 

aC[2] 0.0898 0.1827 
 

B[1]C[1] 0.8588 0.4708 
 

B[2]C[1] -0.2694 0.3105 
 

B[1]C[2] -0.5082 0.2449 
 

B[2]C[2] 0.0658 0.1524 
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Fig. 5. Graph of predicted values and actual values of material removal rate 
 

3.5 Material Removal Rate 
 

Table 6 shows that P-values of the essential 
factors are significant, satisfying the peak 
performance of the model terms. Model terms A, 
B, and C are essential in this context. Table 6 
displayed the relationships between material 
removal rate and input parameters. The relevant 
input parameters that are used have a beneficial 
impact on the material's MRR. With more input 
variables, the MRR will increase. 
 

Table 7 shows the fit statistics for                                     
MRR. The table shows that the model                          
added an excellent significant explanation                          
of the data with R2 of 0.9932 and adjusted                   
R2 of 0.9590. The high R2 and adjusted                       
R2 value show that the model explains the data 
variation instead of being noisy. Table 8 
evaluates the coefficient in terms of coded 
factors of MRR. 
 

3.6 Final Equation in Terms of Coded 
Factors 

 
𝐌𝐚𝐭𝐞𝐫𝐢𝐚𝐥 𝐑𝐞𝐦𝐨𝐯𝐚𝐥 𝐑𝐚𝐭𝐞 = +15.59 − 6.33a −
3.63B[1] + 0.4449B[2] − 2.17C[1] + 0.2956C[2] +
0.2101aB[1] − 0.0311aB[2] − 0.0870aC[1] +
0.0898aC[2] + 0.8588B[1]C[1] −
0.2694B[2]C[1] − 0.5082B[1]C[2] +
0.0658B[2]C[2]. 
 
The MRR reaction can be predicted using the 
coded factors equation for specific levels of each 
factor. The link between the coded factors and 
the response variable is expressed in the final 
equation. Engineers can grasp how changes in 

one or more components affect the result by 
using this summary of the effects of several 
factors on material removal rate. The result for 
specific factor sets can be anticipated using the 
equation without conducting additional 
experiments. This predictive power helps with 
parameter optimization by figuring out the best 
combination of variables to get the desired 
outcome. 
 

3.7 Final Equation in Terms of Actual 
Factors 

 
𝐌𝐚𝐭𝐞𝐫𝐢𝐚𝐥 𝐑𝐞𝐦𝐨𝐯𝐚𝐥 𝐑𝐚𝐭𝐞 = 500CS × 0.5DC +
49.10438 − 128.74688FR × 500CS × 1DC +
43.91938 − 127.54688FR × 500CS × 1.5DC +
42.78625 − 125.30625FR × 700CS × 0.5DC +
40.59938 − 123.64687FR × 700CS × 1DC +
39.48938 − 122.44687FR × 700CS + 1.5DC +
37.90625 − 120.20625FR × 900CS × 0.5DC +
40.28125 − 129.10625FR × 900CS × 1DC +
37.65625 − 127.90625FR × 900CS × 1.5DC +
35.40203 − 125.66563FR  
 
The equation stating the actual factors predicts 
the MRR response for specific levels of each 
factor. In this case, the levels of each factor 
should be stated in their respective units. Fig. 5 
shows the graph of predicted values and actual 
values of material removal rate. 
 
A normal distribution of the data is suggested by 
the roughly equal distribution of the data points 
and the scarcity of outliers. Fig. 5 provides 
confirmation for the prediction model used to 
measure material removal rate. Considering that 
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the points are close to the line of perfect 
agreement, there is a good model fit. 
 

3.8 Tool Wear 
 

Table 9 shows that the P-values of the essential 
factors (A, B, C, and aB) are significant, 
satisfying the peak performance of the model 
terms. Table 9 presents the correlation between 
input parameters and tool wear. A positive effect 
on tool wear is produced by the pertinent input 
parameters that are applied. The wear of the tool 

will rise with more input variables and vice     
versa. 

 
Table 10 shows the fit statistics for TWR. The 
table indicates that the model added an excellent 
significant explanation of the data with R2 of 
0.9952 and adjusted R2 of 0.9714. The high R2 
and adjusted R2 value show that the model 
explains the data variation instead of being noisy. 
Table 11 evaluates the coefficient in terms of 
coded factors of tool wear. 

 
Table 9. Model terms of tool wear 

 

Source       Term df Error df F-value p-value 
 

Whole-plot 1 1.75 28.78 0.0436 significant 

a-Feed Rate 1 1.75 28.78 0.0436 
 

Subplot 12 2.95 50.42 0.0043 significant 

B-Cutting Speed 2 2.94 185.48 0.0008 
 

C-Depth of Cut 2 2.93 25.83 0.0137 
 

Ab 2 2.95 32.88 0.0096 
 

Ac 2 2.96 0.3995 0.7021 
 

BC 4 3.01 3.15 0.1858 
 

 
Table 10. Fit statistics of tool wear 

 

Std. Dev. 0.0001 
 

R² 0.9952 

Mean 0.0004 
 

Adjusted R² 0.9714 
C.V. % 15.17 

   

 
Table 11. Coefficients in terms of coded factors of tool wear 

 

Source Coefficient Estimate Standard Error VIF 

Intercept 0.0004 0.0000 
 

Whole-plot Terms: 
   

a-Feed Rate -0.0002 0.0000 1.00 

Subplot Terms: 
   

B[1]-Cutting Speed -0.0001 6.991E-06 
 

B[2] -4.355E-06 4.164E-06 
 

C[1]-Depth of Cut -0.0001 7.165E-06 
 

C[2] 6.591E-06 4.055E-06 
 

aB[1] 0.0001 7.404E-06 
 

aB[2] -4.705E-07 4.078E-06 
 

aC[1] -2.881E-06 7.182E-06 
 

aC[2] 3.584E-06 4.217E-06 
 

B[1]C[1] 0.0000 0.0000 
 

B[2]C[1] 5.986E-06 6.682E-06 
 

B[1]C[2] -0.0000 5.523E-06 
 

B[2]C[2] -1.363E-06 3.384E-06 
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Fig. 6. Graph of predicted values and actual values of tool wear 
 

3.9 Final Equation in Terms of Coded 
Factors 

 
𝐓𝐨𝐨𝐥 𝐖𝐞𝐚𝐫 = 0.0004 − 0.0002a − 0.0001B[1] −
(4.355E − 06B[2]) − 0.0001C[1] + (6.591E −
0.6C[2]) + 0.0001aB[1] − (4.705E − 07aB[2]) −
(2.881E − 06aC[1]) + (3.584 − 06aC[2]) +
0.0000B[1]C[1] + (5.986E − 06B[2]C[1]) −
0.0000B[1]C[2] − (1.363E − 06B[2]C[2])  
 
The reaction can be predicted using the coded 
factors equation for specific levels of each factor. 
The relative significance of the factors can be 
ascertained using the coded TWR equation and 
factor coefficient comparison. The link between 
the coded factors and the response variable is 
expressed in the final equation. Engineers can 
grasp how changes in one or more components 
affect the result by using this summary of the 
effects of several factors on tool wear rate. The 
equation can be used to anticipate the response 
for specific factor sets without conducting 
additional trials. This predictive skill supports 
parameter optimization by identifying the optimal 
combination of factors to yield the desired 
outcome. 
 

3.10 Final Equation in Terms of Actual 
Factors 

 
𝐓𝐨𝐨𝐥 𝐖𝐞𝐚𝐫 = 500CS × 0.5DC + 0.001546 −
0.004504FR × 500CS × 1DC + 0.001404 −
0.00427FR × 500CS + 1.5DC + 0.001370 −
0.004225FR × 700CS × 0.5DC + 0.001161 −

0.003404FR × 700CS × 1DC + 0.001099 −
0.003171FR × 700CS × 1.5DC + 0.001055 −
0.003125FR × 900CS × 0.5DC + 0.000858 −
0.002592FR + 900CS × 1DC + 0.000747 −
0.002358FR + 900CS × 1.5DC + 0.000721 −
0.002313FR  
 

The TWR for specific levels of each ingredient 
can be examined using the real factors equation. 
In this instance, the levels of each element 
should be stated in their original units. Fig. 6 
shows the graph of predicted values and actual 
values of tool wear. 
 

The small number of outliers and the relatively 
equal distribution of the data points lead to a 
normal distribution of the data. The prediction 
model used to calculate the material removal rate 
is validated in Fig. 6. A good model fit is evident 
given that the points are near the line of 
complete agreement. 
 

4. OPTIMIZATION USING RSM 
 

The Design-expert software's module for 
optimization looks for a mix of factor levels that 
concurrently satisfies all responses and process 
factors. By choosing the desired outcomes             
for each element and response, numerical 
optimization techniques were applied in this 
work. The AACHCs' numerical optimization 
procedure was successful at a desirability 
function of 1. The optimization depicted                                    
in Fig. 4 enhances the machining procedure by 
modifying parameters to accomplish the intended        
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Fig. 7. Graph of numerical optimization of AACHC 
 

results, which include reduced tool wear, 
effective material removal, and a                        
better surface polish. The optimization 
treatments' outcomes are emphasized by the red 
dots, which draw attention to particular data 
points.  
 
Fig. 7 shows the graph of numerical optimization 
of AACHC. The optimal value was achieved 
when the feed rate, cutting speed, and depth of 
cut were at 0.16161 rev/mm, 900 rpm, and 1.5 
mm, and it gives the best response at a surface 
roughness of 160.256 mm, material removal rate 
of 15.4011 mm3/min, and tool wear of 
0.000362687 mg/mm respectively. 
 

5. CONCLUSION 
 
This paper examines the optimization of cow 
horn composite aluminum alloy 356 turning 
process parameters. The samples were 
investigated for Ra, MRR after machining with 
the TWR. From the results of the analyses, the 
following conclusions are drawn:  
 

1. AACHC, adopted from Ochieze, 2017 was 
successfully utilized for this investigation. 

2. The ANOVA tables of the TWR, Ra, and 
MRR demonstrate that some models have 
significant probability values (P-values) 
less than 0.05. 

3. Numerical optimization was used to 
identify combinations of process 
parameters and to attain the lowest TWR, 
MRR, and Ra possible. 

4. The impact of process factors on 
responses was examined individually and 
in interaction. Cutting speed has an 

enormous effect on TWR and Ra, as 
evidence. 

5. The TWR and Ra are only a little 
influenced by the depth of the cut. 

6. The regression equation model generated 
can predict the coded, actual factors' Ra, 
TWR, and MRR. 

7. Adjusting the feed rate, depth of cut, and 
cutting speed to 900 rpm, 0.25 rev/mm, 
and 1.5 mm achieve the optimal composite 
turning process. 

8. This research is valuable because it 
provides information on the optimal input 
parameters to be used in order to achieve 
the ideal output parameters. These 
parameters will minimize material waste, 
boost energy consumption, and yield the 
best surface finishing. 
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