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Recent stringent experiment data of neutrino oscillations induces partial symmetries such as Z2 and Z2 × CP to derive lepton
mixing patterns. New partial symmetries expressed with elements of group algebras are studied. A specific lepton mixing pattern
could correspond to a set of equivalent elements of a group algebra. The transformation which interchanges the elements could
express a residual CP symmetry. Lepton mixing matrices from S3 group algebras are of the trimaximal form with the μ − τ
reflection symmetry. Accordingly, elements of S3 group algebras are equivalent to Z2 × CP. Comments on S4 group algebras are
given. The predictions of Z2 × CP broken from the group S4 with the generalized CP symmetry are also obtained from elements
of S4 group algebras.

1. Introduction

Discoveries of neutrino oscillation [1–3] opened a window to
physics beyond the standard model. In order to explain pos-
sible patterns of lepton mixing parameters, discrete flavor
symmetries were extensively investigated in recent decades
[4–21]. The general route on this approach is as follows. First,
suppose that the Lagrangian of leptons is invariant under
actions of some finite group Gf .

After symmetry breaking from vacuum expectation
values of scalar multiplets, Gf is reduced to Ge in the charged
lepton section and Gν in the neutrino section. Accordingly,
the mass matrix of charged leptons is invariant under some
unitary transformation, i.e.,

X+
e M

+
e MeXe =M+

e Me: ð1Þ

So we have

U+
e M

+
e MeUe = diag m2

e ,m2
μ,m2

τ

� �
,

U+
e XeUe = diag eiα1 , eiα2 , eiα3

� �
:

ð2Þ

The counterparts for Dirac neutrinos are written as

X+
νM

+
νMνXν =M+

νMν,
U+

νM
+
νMνUν = diag m2

1,m2
2,m2

3
� �

,

U+
νXνUν = diag eiβ1 , eiβ2 , eiβ3

� �
:

ð3Þ

For Majorana neutrinos, they read

XT
νMνXν =Mν,

UT
νMνUν = diag m1,m2,m3ð Þ,
U+

νXνUν = diag ±1,±1,±1ð Þ:
ð4Þ

So residual symmetries Xe and Xν can determine the lep-
ton mixing matrix UPMNS ≡U+

e Uν up to permutations of
rows or columns.

However, mixing patterns based on small flavor
groups cannot accommodate new stringent experiment
data, especially the nonzero mixing angle θ13. Although
some large groups could give a viable θ13, the Dirac
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CP-violating phase from them is trivial [22]. In order to
alleviate the tension between predictions of flavor groups
and experiment constraints, one can resort to partial
symmetries. Namely, the lepton mixing matrix is par-
tially determined by symmetries such as Z2 [23–25] and
Z2 × CP [26–43]. Here CP denotes a generalized CP trans-
formation (GCP). For Z2 symmetries, an unfixed unitary
rotation is contained in the mixing matrix. Even so, they
may predict some mixing angle, Dirac CP phase, or corre-
lation of them. If the residual symmetry is (Z2e × Z2e,
Z2ν × CPν) or (Zne, Z2ν × CPν) with n ≥ 3, the Dirac CP
phase would be trivial or maximal in the case that the
residual flavor group is from small groups S4 and A5
[30, 32, 39]. Here, the symmetries of the charged lepton
sector and those of neutrinos are marked with the sub-
scripts e and ν, respectively. To obtain a more general
CP phase, one can choose the residual symmetry
(Z2e × CPe, Z2ν × CPν) [44, 45]. Then, the lepton mixing
matrix contains two angle parameters to constrain by
experiment data.

In this paper, we explore a new construct to describe
partial symmetries which was proposed recently in Ref.
[46]. The partial symmetry is expressed by an element of
a group algebra. According to Ref. [47], a group algebra
K½G� is the set of all linear combinations of elements of
the groupGwith coefficients in the field K . A general element
of K½G� is denoted as

〠
g∈G

agg: ð5Þ

K½G� is an algebra over K with the addition and multipli-
cation defined, respectively, as

〠
g∈G

agg + 〠
g∈G

bgg = 〠
g∈G

ag + bg
� �

g,

〠
g∈G

agg

 !
〠
h∈G

bhh

 !
= 〠

g∈G,h∈G
agbh
� �

g · h,
ð6Þ

where the operation “·” denotes the multiplication of group
elements. The product by a scalar is defined as

a 〠
g∈G

agg

 !
= 〠

g∈G
aag
� �

g: ð7Þ

From the above definitions, we can see that a group
algebra describes the superposition of symmetries expressed
by group elements. Similar to the residual symmetry
Z2 × CP, the elements of a group algebra with continuous
superposition coefficients may also describe partial symme-
tries of leptons. They may be used to predict the lepton
mixing pattern. For simplicity, we consider the group

algebra constructed by two group elements in this paper.
Namely, the residual symmetry is expressed as

Xe,ν = x1e,νA1e,ν + x2e,νA2e,ν, ð8Þ

where A1e,ν and A2e,ν are elements of a small group.
Through equivalent transformations, the superposition
coefficients are dependent on a real parameter in a special
parametrization. So we can obtain clear relations between
mixing parameters and the adjustable coefficient. In spite
of the economy of the structure, Xe,ν seems strange. It is
not a group element in general. The choice of Ai seems
random. To realize the characteristic of the novel con-
struct, we study a minimal case with the S3 group algebra.
We find that X in the S3 group algebra is equivalent to the
symmetry Z2 × CP in the case of Dirac neutrinos. Further-
more, the maximal or trivial Dirac CP phase could be
obtained from X in the S4 group algebra. Although we
cannot prove that the equivalence holds for X in a general
algebra, we may have more choices in the realization of
partial symmetries.

This paper is organised as follows. In Section 2, we show
an economical realization of group algebras. In Section 3, we
study a minimal case with an S3 group algebra. Finally, we
give a conclusion.

2. Realization of a Group Algebra

An element of a group algebra is constructed by the superpo-
sition of elements of a group. Here, we consider the elements
of group algebras obtained from two group elements. We
note that the representation matrix of X is not unitary in
general even if the representation of the group elements
is unitary. In order to keep the representation of X unitary,
we set extra constraints on coefficients and group elements,
namely,

x1j j2 + x2j j2� �
I + x1x

∗
2A1A

+
2 + x2x

∗
1A2A

+
1 = I,

x1j j2 + x2j j2� �
I + x2x

∗
1A

+
1A2 + x1x

∗
2A

+
2A1 = I,

(
ð9Þ

where the signal “∗” denotes the complex conjugation. An
economical solution to the constraint equations is

x1j j2 + x2j j2 = 1,
eiαA1A

+
2 + e−iαA2A

+
1 =O,

e−iαA+
1A2 + eiαA+

2A1 =O,

8>><
>>: ð10Þ

where α is the phase of the term x1x
∗
2 and O is the zero

matrix. Up to a global phase, by a redefinition of the matrix
A1 or A2, X can be parameterized as [46]
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X θð Þ = cos θA1 + i sin θA2, ð11Þ

where i is the imaginary factor and A1 and A2 satisfy the
constraints

A1A
+
2 = A2A

+
1 ,

A+
1A2 = A+

2A1:
ð12Þ

So A1A
+
2 and A+

1A2 are generators of Z2 groups. X can be
rewritten as X = A1e

iθB with B = A+
1A2, B

2 = I.
Let us make some necessary comments here:

(a) For Majorana neutrinos, the residual symmetry is
Z2 × Z2. It can be broken to the partial symmetry
Z2. X depends on a continuous parameter θ. It is
not a Z2 symmetry in general. So X is used for the
description of residual symmetries of charged leptons
and Dirac neutrinos

(b) With a special choice of group elements Ai and
the parameter θ, X could become a generator of
a large cyclic group. An example is given in
Ref. [46]

(c) The mixing matrix from XðθÞ is dependent on a
parameter θ. Furthermore, XðθÞ is equivalent to
Z2 × CP in the case of S3 group algebras. This
interesting observation still holds for some elements
of S4 group algebras

(d) Although X is dependent on the parameter θ, some
mixing angle or CP phase may be independent of θ.
We may separate impacts of discrete group elements
and θ in special cases

3. A Minimal Case for S3 Group Algebra

For illustration, we consider a minimal case that the group
algebra is constructed by elements of the group S3.
Although the 3-dimensional representation of S3 group
algebras is reducible, it can be viewed as the special case
of S4 group algebras. In this section, we first consider
the special case that the mass matrix of charged leptons
is diagonal. So the lepton mixing matrix is just dependent
on the residual symmetry Xν. Then, we show equivalence
of elements of S3 group algebras and the residual symme-
try Z2 × CP. Comments on S4 group algebras are also
made. Finally, we discuss general residual symmetries of
the charged lepton sector.

3.1. Mixing Patterns from S3 Group Algebra in the Case of the
Diagonal Mass Matrix M+

e Me. The 3-dimensional reducible
representation of the group S3 is expressed as

I =

1 0 0
0 1 0
0 0 1

0
BBBBB@

1
CCCCCA,

S12 =

0 1 0
1 0 0
0 0 1

0
BBBBB@

1
CCCCCA,

S13 =

0 0 1
0 1 0
1 0 0

0
BBBBB@

1
CCCCCA,

S23 =

1 0 0
0 0 1
0 1 0

0
BBBBB@

1
CCCCCA,

S123 =

0 0 1
1 0 0
0 1 0

0
BBBBB@

1
CCCCCA,

S132 =

0 1 0
0 0 1
1 0 0

0
BBBBB@

1
CCCCCA:

ð13Þ

According to the unitary conditions of Equation (12),
viable nontrivial realizations of Xν are listed as

X1ν ≡ S23e
iθS12 ,

X2ν ≡ S23e
iθS13 ,

X3ν ≡ S12e
iθS13 ,

X4ν ≡ S12e
iθS23 ,

X5ν ≡ S13e
iθS12 ,

X6ν ≡ S13e
iθS23 ,

X7ν ≡ S123e
iθS12 ,

X8ν ≡ S123e
iθS23 ,

X9ν ≡ S123e
iθS13 ,

X10ν ≡ S132e
iθS12 ,

X11ν ≡ S132e
iθS23 ,

X12ν ≡ S132e
iθS13 :

ð14Þ
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All theses Xν correspond to the same lepton mixing
matrix up to permutations of rows, columns, or trivial phases.
We consider X1ν as a representative, whose expression is

X1ν ≡

cos θ i sin θ 0
0 0 eiθ

i sin θ cos θ 0

0
BBBBB@

1
CCCCCA: ð15Þ

It is diagonalized as

U+
νX1νUν = diag eiθ1 , eiθ, eiθ2

� �
, ð16Þ

where eiθ1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2/4

p
− is/2, eiθ2≡−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2/4

p
− is/2, s ≡ sin θ.

The matrix Uν reads

Uν =

eiθ1 − cei θ−θ1ð Þ

is ffiffiffiffiffiffi
N1

p 1ffiffiffi
3

p eiθ2 − cei θ−θ2ð Þ

is ffiffiffiffiffiffi
N2

p

1ffiffiffiffiffiffi
N1

p 1ffiffiffi
3

p 1ffiffiffiffiffiffi
N2

p

ei θ−θ1ð Þffiffiffiffiffiffi
N1

p 1ffiffiffi
3

p ei θ−θ2ð Þffiffiffiffiffiffi
N2

p

0
BBBBBBBBBB@

1
CCCCCCCCCCA
, ð17Þ

where c ≡ cos θ,Nj ≡ 2 + ð1 + c2 − 2c cos ðθ − 2θ jÞÞ/s2, j = 1, 2.
It is of trimaximal form with the μ − τ reflection symmetry
[27, 48–50], i.e., Uα2 = 1/

ffiffiffi
3

p
with α = e, μ, τ and jUμjj = jUτjj

with j = 1, 2, 3. The lepton mixing matrix UPMNS is equal to
Uν up to permutations of rows or columns. Given the recent
global fit data of neutrino oscillations[51], viable mixing
matrices are

U1 ≡Uν,U2 ≡ S23U1,U3 ≡U1S13,U4 ≡U2S13: ð18Þ

Note that U3ðθÞ =U1ðθ + πÞ and U4ðθÞ =U2ðθ + πÞ.
Furthermore, according to the standard parametrization [52]

UPMNS =

c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23

0
BBB@

1
CCCA

�
eiα1 0 0

0 eiα2 0

0 0 1

0
BBB@

1
CCCA,

ð19Þ

where sij ≡ sin θij and cij ≡ cos θij, δCP is the Dirac
CP-violating phase, α1 and α2 are Majorana phases, and U1
and U2 are interchanged through the following transforma-

tion: θ23 → π/2 − θ23 and δCP → δCP + π. So without loss of
generality, we can just consider U1. Lepton mixing angles
and the Dirac CP phase are listed as

sin2θ13 =
1 + c2 − 2c cos θ − 2θ2ð Þ
2 + s2 − 2c cos θ − 2θ2ð Þ ,

sin2θ12 =
1

3 cos2θ13
,

sin2θ23 =
1
2 ,

δCP = − sign sð Þπ2 ,

ð20Þ

where s ≠ 0. Dependence of sin2θ13 and sin2θ12 on the vari-
able θ is shown in Figure 1. From the figure, we can see that
sin2θ12 is a slowly varying function of the parameter θ. So
the parameter space of θ is mainly constrained by sin2θ13.
According to the function χ2 defined as

χ2 = 〠
ij=13,23,12

sin2θij − sin2θij
� �

exp
σij

 !2

, ð21Þ

where ðsin2θijÞexp are best global fit values from Ref. [51]

and σij are 1σ uncertainties; best fit data of θ, sin2θij, and δCP
are listed in Table 1. They are in the 3σ ranges of the global
fit data.

3.2. Equivalence of Elements of S3 Group Algebras and
Z2 × CP. The neutrino mass matrix M+

νMν which is invari-
ant under the action of X1ν is of the form

M+
νMν =

mee meμ m∗
eμ

m∗
eμ mττ meμ +mee −mττ

meμ m∗
eμ +mee −mττ mττ

0
BB@

1
CCA,

ð22Þ

where mee and mττ are real and Im ðmeμÞ = ð1/2Þðmee −mττÞ
tan θ. Obviously, M+

νMν follows the residual symmetry
Z2 × CP, i.e.,

C+
Magic M+

νMνð ÞCMagic =M+
νMν,

S+23 M+
νMνð ÞS23 = M+

νMνð Þ∗,
ð23Þ

where

CMagic ≡
1
3

1 −2 −2
−2 1 −2
−2 −2 1

0
BB@

1
CCA, C2

Magic = I: ð24Þ
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Correspondingly, for X1ν we have

C+
MagicX1νCMagic = X1ν, S+23X1νS23 = X2ν: ð25Þ

S23 works as the GCP for the mass matrix M+
νMν on

the one hand. On the other hand, it acts as an equivalent
transformation for symmetries X1ν and X2ν. So X1ν is
equivalent to the residual symmetry ZMagic

2 × CP.

3.3. Comments on Equivalence of Elements of S4 Group
Algebras and Z2 × CP. For the S4 group with the GCP, the
residual symmetries Z2 × CP could bring maximal or trivial
Dirac CP phase. We have seen that Xν ≅ Z2 × CP in S3 group
algebras gives a maximal CP phase.

In fact, the equivalence can still hold for some X in S4
group algebras which are not elements of S3 group algebras.
The trivial CP phase could be obtained from X. Here, we give
an example of X from S4 group algebras with a different

Table 1: Best fit data of the parameters θ, sin θij, and δCP.

Order χ2
min θbf sin2θ13

� �
bf sin2θ23

� �
bf sin2θ12

� �
bf δCPð Þbf

Normal 4.856 ±0.131π 0.0216 0.5 0.341 ∓π/2
Inverted 5.855 ±0.132π 0.0220 0.5 0.341 ∓π/2

−0.6 −0.4 −0.2 0.2 0.4 0.6

0.01

0.02

0.03

0.04

sin2𝜃13

𝜃

(a)

−1.5 −1.0 −0.5 0.5 1.0 1.5

0.35

0.40

0.45

sin2𝜃12

𝜃

(b)

Figure 1: Dependence of functions sin2θ13 and sin2θ12 on the variable θ. Two dashed lines in (a) and (b) label the 3σ range of the mixing angle
from the recent global fit [51]. For sin2θ13, we take the 3σ range in the normal mass ordering.
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representation. Three generators of S4 which satisfy the
relation [32]

S2 =V2 = SVð Þ2 = TVð Þ2 = I,
T3 = STð Þ3 = I,

STVð Þ4 = I,

ð26Þ

are expressed as [32]

S = 1
3

−1 2 2
2 −1 2
2 2 −1

0
BB@

1
CCA,

T =
1 0 0
0 ω2 0
0 0 ω

0
BB@

1
CCA,

V = ∓

1 0 0
0 0 1
0 1 0

0
BB@

1
CCA,

ð27Þ

where ω = ei2π/3. A nontrivial example of the S4 group
algebra element could be X = ðTVÞ cos θ + i sin θðSTVÞ.
Its specific expression is of the form [46]

X θð Þ =

i
3 sin θ − cos θ 2

3 e
iπ/6 sin θ −

2
3 e

−iπ/6 sin θ

−
2i
3 sin θ

2
3 e

iπ/6 sin θ
1
3 e

−iπ/6 sin θ − e−i2π/3 cos θ

−
2i
3 sin θ −

1
3 e

iπ/6 sin θ − ei2π/3 cos θ −
2
3 e

−iπ/6 sin θ

0
BBBBBB@

1
CCCCCCA
:

ð28Þ

If we take Xν = XðθÞ and suppose that the mass matrix
of charged leptons is diagonal, we can obtain the lepton
mixing matrix written as

U = diag 1, ω, ω2� �
·

−
ffiffiffi
2
3

r
c1

1ffiffiffi
3

p −
ffiffiffi
2
3

r
s1

ffiffiffi
1
6

r
c1 +

ffiffiffi
1
2

r
s1

1ffiffiffi
3

p
ffiffiffi
1
6

r
s1 −

ffiffiffi
1
2

r
c1

ffiffiffi
1
6

r
c1 −

ffiffiffi
1
2

r
s1

1ffiffiffi
3

p
ffiffiffi
1
6

r
s1 +

ffiffiffi
1
2

r
c1

0
BBBBBBBBB@

1
CCCCCCCCCA
,

ð29Þ

where c1 ≡ cos θ1, s1 ≡ sin θ1, and θ1 is a parameter con-
strained by the mixing angle θ13. So the mixing pattern
is of trimaximal form with a trivial Dirac CP-violating
phase. For XðθÞ, we can verify that the following relation
holds, i.e.,

C+
1X θð ÞC1 = X θð Þ, ð30Þ

where C1 = T+ST , C2
1 = I, and T+C1T = C∗

1 . So C1 and T
are a Z2 symmetry and the corresponding CP transforma-
tion, respectively. Following the methods used in GCP
[30], the lepton mixing matrix from the residual symmetry
Z2 × CP can be expressed as Ua =ΩR13ðθ1ÞP, where Ω
and R13ðθ1Þ are expressed, respectively, as

Ω =

−
ffiffiffi
2
3

r
1ffiffiffi
3

p 0

ωffiffiffi
6

p ωffiffiffi
3

p −ωffiffiffi
2

p

ω2ffiffiffi
6

p ω2ffiffiffi
3

p ω2ffiffiffi
2

p

0
BBBBBBBB@

1
CCCCCCCCA
,

R13 θ1ð Þ =
cos θ1 0 sin θ1

0 1 0
−sin θ1 0 cos θ1

0
BB@

1
CCA,

ð31Þ

P is a phase matrix which can be neglected in our case
of Dirac neutrinos. In particular, the matrix Ω satisfies the
relations as follows

Ω+C1Ω = diag −1, 1,−1ð Þ, T =ΩΩT : ð32Þ

We can check that the matrix Ua from the Z2 × CP is
just the U shown in Equation (29). So XðθÞ is equivalent
to the symmetry Z2 × CP generated by C1 and T . Further-
more, let us consider the element X ′ðθÞ ≡ T+XðθÞT . The
lepton mixing matrix from X ′ðθÞ is U ′ = T+U . Since T
is a phase matrix, U ′ is equivalent to U . So the CP trans-
formation interchanges the equivalent elements XðθÞ and
X ′ðθÞ. Therefore, the observation from the case of the S3
algebra still holds in this example of the S4 group algebra.

3.4. Discussion on General Residual Symmetries of the
Charged Lepton Sector. We have studied the case that the
mass matrix M+

e Me is diagonal. The corresponding symme-
try of the charged lepton sector is Uð1Þ ×Uð1Þ ×Uð1Þ,
namely, Xe = diag ðeiα1 , eiα2 , eiα3Þ. Now we discuss a more
general case that Xe is expressed by an element of the S3
group algebra. Because all the elements listed in Equation
(14) give the same mixing matrix up to permutations of rows
or columns, we can take X1e = S23e

iθeS12 . Then, the matrix Ue
is of the form

Ue =

eiθ1e − cee
i θe−θ1eð Þ

ise
ffiffiffiffiffiffiffi
N1e

p 1ffiffiffi
3

p eiθ2e − cee
i θe−θ2eð Þ

ise
ffiffiffiffiffiffiffi
N2e

p

1ffiffiffiffiffiffiffi
N1e

p 1ffiffiffi
3

p 1ffiffiffiffiffiffiffi
N2e

p

ei θe−θ1eð Þffiffiffiffiffiffiffi
N1e

p 1ffiffiffi
3

p ei θe−θ2eð Þffiffiffiffiffiffiffi
N2e

p

0
BBBBBBBBB@

1
CCCCCCCCCA
, ð33Þ
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where eiθ1e ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2e /4

p
− ise/2, eiθ2e≡−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2e /4

p
− ise/2, se ≡

sin θe, ce ≡ cos θe, and Nje ≡ 2 + ð1 + c2e − 2ce cos ðθe − 2θjeÞÞ/
s2e , j = 1, 2. With respect to the mixing matrix UPMNS ≡
U+

e Uν, we have an element UPMNSðαiÞ = 1. Obviously, it
does not satisfy the constraint of the global fit data of neu-
trino oscillations. So the combination of the residual sym-
metries (X1e, X1ν) does not give a realistic lepton mixing
patten in the case of S3 group algebra. Furthermore, if θe is
equal to 0, X1e is reduced to S23. The corresponding matrix
Ue becomes

Ue′=

0 −sin θ′ cos θ′
−1ffiffiffi
2

p cos θ′ffiffiffi
2

p sin θ′ffiffiffi
2

p

1ffiffiffi
2

p cos θ′ffiffiffi
2

p sin θ′ffiffiffi
2

p

0
BBBBBB@

1
CCCCCCA
, ð34Þ

where θ′ is an angle variable from the degeneracy of the
eigenvalues of S23. Then, UPMNS contains a zero element.
This observation still holds when S23 is replaced by S12
or S13. So the combination (Z2e, X1ν) is not a viable choice
for the residual symmetries of leptons.We can also check that
UPMNS from the combination (Z3e, X1ν), where Z3e is gener-
ated by S123 or S132, does not satisfy the constraint of the global
fit data of neutrino oscillations either. It contains an element
which is equal to 1. Therefore, when the residual symmetry
of the neutrino sector is X1ν in the S3 group algebra, we can
only take Xe = diag ðeiα1 , eiα2 , eiα3Þ.

4. Conclusion

We have studied a new structure to describe partial symme-
tries of charged leptons and Dirac neutrinos. The residual
symmetry is expressed by an element of group algebras. In
our construction, a specific lepton mixing pattern corre-
sponds to a set of equivalent residual symmetries which are
expressed by elements of group algebras Xi. These equivalent
symmetries Xi can be interchanged through a transformation
which corresponds to a residual CP symmetry. For S3 group
algebras and a special case of S4 group algebras, we found that
Xi is equivalent to a residual symmetry Z2 × CP. The corre-
sponding lepton mixing matrix is trimaximal. It is a difficult
mathematical problem for us to determine whether Xi is
equivalent to Z2 × CP in general cases. Even so, observations
from simple examples could still give us some interesting
clues: (a) The parameter in partial symmetries may be viewed
as a quantity to measure how discrete symmetries are mixed
in the residual symmetry. (b) A partial symmetry dependent
on a continuous parameter may be equivalent to a discrete
symmetry with GCP. (c) The elementary residual CP trans-
formation could be a permutation matrix or a diagonal phase
matrix. A general one may be a finite product of elementary
ones. Therefore, despite stringent experiment data, we could
still construct some novel partial symmetries to obtain viable
lepton mixing patterns.
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