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Abstract 
 

In this paper, we consider the derivation of hybrid block method for the solution of general first order 
Initial Value Problem (IVP) in Ordinary Differential Equation. We adopted the method of Collocation 
and Interpolation using power series approximation to generate the continuous formula. The properties 
and features of the methods are analyzed and some numerical examples are also presented to illustrate the 
accuracy and effectiveness of the method. 
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1 Introduction  
 
In recent times, the integration of Ordinary Differential Equations (ODEs) is carried out using block methods. 
In this paper, we propose an order five hybrid block integrator method for the solution of first order ODEs of 
the form:  
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�� = �(�, �), �(�) = ��,				��[�. �]                                 (1.0)                                                                          
 
Where � is continuous within the interval of integration[�, �]. We assume that � satisfies Lipchitz condition 
which guarantees the existence and uniqueness of solution of (1.0).The discrete solution of (1.0) using linear 
multistep method has being studied by authors like [1] and continuous solution of (1.0) [2] and [3,4]. One 
important advantage of the continuous over discrete approach is the ability to provide discrete schemes for 
simultaneous integration. These discrete schemes can be reformulated to general linear methods (GLM) [5]. 
The block methods are self-starting and can be applied to both stiff and non-stiff initial value problem in 
differential equations. More recently, authors like [6,7,8,9] and [10] to mention few proposed methods 
ranging from predictor- corrector to hybrid block method for initial value problem in ordinary differential 
equation. 
 
In this work, hybrid block method using Power series expansion will be considered. This will help in coming 
up with a more computationally reliable integrator that can solve first order differential equations problems 
of the form (1.0). 
 

2 Derivation of Hybrid Method 
 
In this section, we intend to construct the proposed two-step linear multistep method which will be used to 
generate the main method and other methods required to set up the block method. We consider the power 
series polynomial of the form: 
 

�(�) = ∑ ���
��

���                                                                                                 (2.0) 

 
which is used as our basis to produce an approximate solution to (1.0) as 
 

�(�) = ∑ ���
������

���                                                                                                                (3.0) 

 
and  
 

	��(�) = ∑ ����
��������

���   =�(�, �)                                           (4.0) 

 
where ��  are the parameters to be determined,  �	and �  are the points of collocation and interpolation 

respectively. This process leads to (� + � − 1) of non-linear system of equations with unknown coefficients, 
which are to be determined by the use of Maple 17 Mathematical software. 
 

3 Hybrid Block Method 
 
Using equation (3.0) and (4.0), m=1 and t=5 our choice of degree of polynomial is (� + � − 1). Equation 

(3.0) is interpolated at the point � = �� and equation (4.0) is collocated at � = (0,
�

�
, 1,

�

�
, 2) which lead to 

system of equation of the form 
 

∑ ������
������

��� = ����     � = 0                                                                                                      (5.0) 

 

∑ �������
������

���   =����  � = (0,
�

�
, 1,

�

�
, 2)                                                                                  (6.0)  

 
With the mathematical software, we obtained the continuous formulation of equations (5.0) and (6.0) of the 
form  
  

�(�) = ���� + ℎ[���� + ��
�

�
��

�

�

+ ������ + ��
�

�
��

�

�

+ ������]                                                 (7.0) 
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After obtaining the values of �� and	��, � = 0 and � = (0,
�

�
, 1

�

�
, 2) in (7.0) 

 

We evaluated at the point � = ����	, � = (1,
�

�
,
�

�
, 2) which gives the following set of discrete schemes to 

form our hybrid block method. 
 

���� = �� +
29

180
ℎ�� +

31

45
ℎ����/� +

2

15
ℎ���� +

1

45
ℎ����/� −

1

180
ℎ���� 

 

����/� = �� +
251

1440
ℎ�� +

323

720
ℎ����/� −

11

60
ℎ���� +

53

720
ℎ����/� −

19

1440
ℎ���� 

 

����/� = �� +
��

���
ℎ�� +

��

��
ℎ����/� +

�

��
ℎ���� +

��

��
ℎ����/� −

�

���
ℎ����																																																									(8.0) 

 

���� = �� +
7

45
ℎ�� +

32

45
ℎ����/� +

4

15
ℎ���� +

32

45
ℎ����/� +

7

45
ℎ���� 

 
Equations (8.0) are of uniform order five, with error constant as follows 
  

[
1

5760
,
3

10240
,
3

10240
, −

1

15120
]� 

 

4 Consistency 
 
Definition: The Linear Multistep method is said to be consistent if it is of order P≥ 1 and its first and second 
characteristic polynomial defined as �(�) = ∑ ���

��
��� and �(�) = ∑ ���

��
���  where Z satisfies  

(�)∑ �� = 0, (��)�
�(1) = 0, (���)�

��� ���(1) = 2! �(1), See [1]. 

 
The discrete Schemes derived are all of order greater than one and satisfy the condition (i)-(iii). 
 

5 Zero Stability of the Block Method 
 
The block method is defined by [11] as 
 

�� =���

�

���

+ ℎ���

�

���

���� 

 
�ℎ���	�� = [��, ����, ����, … , ������]

T 

            �� = [��, ����, ����, … , ������]
T 

 
��
��	and ��

�� are chosen r x r matrix coefficient and � = 0,1,2… represents the block number, � = ��, the 
first step number in the m-th block and r is the proposed block size. 
 
The block method is said to be zero stable if the roots of ��, � = 1(1)� of the first characteristics polynomial 
is  
 

�(�) = det �����
���

�

���

� = 0, �� = �	 

  
satisfies |Rj|≤ 1, if one of the roots is +1, then the root is called Principal Root of �(�). 
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The first characteristics polynomial of the scheme is 
 

�(�) = det	[��� − ��] 
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�� = �� = �� = 0	��	�� = 1 
 
We can see clearly that no root has modulus greater than one (i.e. �� ≤ 1) ⍱�. The hybrid block method is 
zero stable. 
 

6 Numerical Examples 
 
Problem 1: 
 
�� = �,					�(0) = 1, ℎ = 0.1 
 
Exact Solution: �(�) = exp(�) 
 

Table 1. Comparison of approximate solution of problem 1 
 

x Exact solution 
 

Proposed scheme   Error in proposed 
scheme  

Error in [2] 

0.1 1.105170918075648  1.105170917860730 2.149179E-10 1.226221039551945e-05  
0.2 1.221402758160170   4.7505E-10 1.355183832019158e-05  
0.3 1.349858807576003  1.349858806788490 7.875129E-10 1.497709759790133e-05  
0.4 1.491824697641270  1.491824696480820 1.16045E-09 1.655225270247307e-05  
0.5 1.648721270700128  1.648721269097010 1.603118E-09 1.829306831546695e-05  
0.6 1.822118800390509  1.822118798264440 2.126069E-09 2.021696710463594e-05  
0.7 2.013752707470477 2.013752704729200 2.741277E-09 2.234320409577606e-05  
0.8 2.225540928492468   5.989459E-09 2.469305938346267e-05  
0.9 2.459603111156950  2.459603106852120 4.30483-09 2.729005110868599e-05  
1.0 2.718281828459046  2.718281824122030 4.337016E-09 3.01601708376864e-05 

 

 
 

Fig. 1. Plot of error in proposed scheme and error in [2] 
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Problem 2: 
 
�� = 0.5(1 − �),					�(0) = 0.5, ℎ = 0.1 
 
Exact Solution: �(�) = 1 − 0.5e −0.5x 
 

Table 2. Comparison of approximate solution of problem 2 
 

x Exact solution Proposed scheme Error in proposed scheme Error in [7] 
0.1 0.524385287749643  0.524385287750861 1.218026E-13 5.574430e-012  
0.2 0.547581290982020  0.547581290981880 1.399991E-13 3.946177e-012  
0.3 0.569646011787471  0.569646011786286 1.184941E-12 8.183232e-012  
0.4 0.590634623461009  0.590634623462548  1.538991E-12 3.436118e-011  
0.5 0.610599608464297  0.610599608463187  1.110001E-12 1.929743e-010  
0.6 0.629590889659141  0.629590889658614  5.270229E-12 1.879040e-010  
0.7 0.647655955140643  0.647655955142752 2.10898E-12 1.776835e-010  
0.8 0.664839976982180  0.664839976969201  1.297895E-11 1.724676e-010  
0.9 0.681185924189113  0.681185924158290 3.08229E-11 1.847545e-010  
1.0 0.696734670143683  0.696734670139561 4.121925E-11 3.005770e-010  

 

 
 

Fig. 2. Plot of error in proposed scheme and error in [7] 
 

7 Discussion of Result 
 
We observed that from the two problems tested with this proposed block hybrid method the                   
results converges to exact solutions and also compared favourably with the existing similar methods (see 
Tables 1, 2). 
 

8 Conclusion 
 
In this paper, we have presented Hybrid block method algorithm for the solution of first order ordinary 
differential equations. The approximate solution adopted in this research produced a block method with 
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stability region. This made it to perform well on problems. The block method proposed was found to be 
zero-stable, consistent and convergent. 
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