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Abstract
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of the test, we analyzed a real data set from the study of tumor sizes in mice.
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1 Introduction

Statistical test of significance concerning comparison of location of two independent samples is
seen in application in many research and study domains. In the medical setting, one may wish
to test whether there exist a difference in location between two populations with respect to two
distinct treatment regimes. Most test for such problems, particularly the parametric ones have
their own predefined assumptions. For example, the t-tests and F-tests are appropriate on the
assumption that the two populations are normally distributed. However, most of these tests are
not robust for size, in the sense that they do not maintain their level of significance if the normality
assumption is violated. On occasions where the normality assumption is not met, the F and t-test
may consequently lead to substantive misleading conclusions and inferences about the population.

Under such situations it is more appropriate to apply a nonparametric test such as Wilcoxon, or
those tests which appear to be robust adaption of the t-test like the trimmed t-test and the Welch
test. However, more often than not, applied researchers and data analysts have no foreknowledge
regarding the underlying distribution of the data.

Most adaptive tests for the two-sample location problem are variants of the two-staged adaptive
test proposed by Hogg, Fisher and Randles [1]. These adaptive tests investigates the underlying
distribution of the data with respect to tailweight and skewness before a test is prescribe. A recent
book by O’Gorman [2] gives detailed description of this test procedure. The test first deals with the
classification of the unknown distribution underlying data with respect to tailweight and skewness
under different score functions and secondly exploit a two dimensional selector statistic to select an
appropriate rank score test for the classified data. Their method is confined to four scores; median
scores, Wilcoxon scores, scores for right-skewed distributions and scores for light-tailed distributions.

In this paper, nine winsorized scores are considered in the adaptive test of Hogg, Fisher and
Randles [1]. We then extend the adaptive two-sample location problem to longitudinal data and
hence construct a statistic for testing parallelism in response profiles. In profile analysis, if the
test is significant, it is reasonable to conclude that there is group and time interaction and that
responses are not parallel [2]. Our interest in this problem is motivated by the fact that statistics
for testing significant difference of two independent samples in longitudinal studies often utilize the
parametric tests which are inefficient for non-normal distributions, hence the need for more reliable
test. Moreover, we wish to inform and increase the popularity of adaptive tests among applied
researchers who utilize statistical methods. In the present paper, we used data from a well known
study which emphasized on different treatments for tumor in mice as a motivating example.

The remainder of the paper is organized as follows. In section 2, to present our problem, we first
introduced our hypothetical data, its corresponding model and hypothesis with a data example.
Adaptive tests for testing the hypothesis are discussed in section 3. In section 4 simulation studies
are performed to demonstrate the practical performance of our adaptive test. Section 5 presents
the analysis of the data example introduced in section 2 and sections 6 gives the outlook which
concludes the paper.

2 The Problem Setting and Data Example

Consider an experiment that is performed to compare two treatments, where responses are measured
in longitudinal setting. Let Yijk represents the observation of the kth subject at the jth time in the
ith treatment group, where i = 1, 2, j = 1, 2, ..., t and k = 1, 2, ..., nij . We assume that there are nij

subjects in the ith (i = 1, 2) treatment, and that n1j = n2j . We further assume that the number
of subjects measured at each time point are the same for the two treatments. Thus for each time
point we let n1 = n2. Table 1 gives a hypothetical description of the data in context.
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Table 1. Hypothetical data for the two sample location problem in longitudinal
setting

Treatment Time

1 2 . . . t

Y111 Y121 . . . Y1t1

1 Y112 Y122 . . . Y1t2

...
...

...
...

Y11n Y12n . . . Y1tn

Y211 Y221 . . . Y2t1

2 Y212 Y222 . . . Y2t2

...
...

...
...

Y21n Y22n . . . Y2tn

Let n =
∑2

i=1 ni represent the combined sample and Y ′ = (Y1jk, Y2jk) denote the vector of
observations for the combined sample. Suppose we wish to model the response vector Y as one
following two-way ANOVA model with interaction given by

Yijk = µ+ αi + βj + γij + ϵijk (2.1)

where the random errors ϵijk are uncorrelated random variables with zero mean and common
variance σ2 > 0. Here we consider the 2 treatment effects α1, α2 and three time effects βj for
j = 1, ...., t as fixed constants. Let Y = Xβ+ ϵ be a linear model, where Y is an n× 1 vector of the
longitudinal reponses and X an n× p design matrix consisting of 0/1 to denote treatment/placebo
group. View β as the fixed effect parameter vector corresponding to X. Then if E(ϵ) = 0 and
cov(ϵ) = σ2I, the linear model is a Gaus Markov model. In this case, Equation 2.2 is a Gauss
Markov model form of Equation 2.1.

Y = Xβ + ϵ (2.2)

This is so because without loss of generality, if n1 = n2 = 2 and t = 3 then for Equation 2.2 we can
write

Y =



Y111

Y112

Y113

...
Y211

Y212

Y213

...
Y321

Y322

Y323



, X =



1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 1



β =



µ
α1

α2

β1

β2

β3

γ11
γ12
γ13
γ21
γ22
γ23


Note that E(ϵ) = 0 and cov(ϵ) = σ2I.

Given this exposition together with the hypothetical data, our interest is to test

H0 : α1 = α2
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against the two sided alternative
H1 : α1 ̸= α2

for each time point.

For now, we consider a data example for the above stated hypothesis. This data is from O’Gorman
[2].

2.1 Data example

This example considers the tumor sizes of mice that were injected with mouse colon Carcinoma
tumor cells. The data consists of 10 mice randomly assigned to three treatment groups. In the
present paper we considered only two groups. Mice randomly assigned to Group A, that received
injections of tissue culture medium around the growing tumor, and Group C mice, who received
injections of normal spleen cells, immune RNA, and tumor antigen. The tumor sizes were measured
on days 11, 13, 15 and 17. The data is presented in Table 2.

Table 2. Tumor Volumes (mm3) over the course of the experiment

Days

Group Mouse 11 13 15 17

A 1 157.1 217.6 379.0 556.6
2 152.2 176.6 317.9 356.4
3 122.4 196.1 388.9 469.3
4 95.0 205.1 307.3 405.1
5 168.8 196.6 340.4 507.3
6 85.0 225.1 289.0 317.9
7 129.8 274.7 340.3 507.2
8 157.0 202.5 307.2 320.1
9 129.7 205.8 419.1 421.2
10 156.9 225.0 372.6 379.2

C 1 108.0 186.2 213.8 379.1
2 129.6 196.6 397.1 500.0
3 65.0 191.3 274.6 405.0
4 52.9 129.6 303.5 415.0
5 147.0 420.0 653.4 806.4
6 115.2 32.0 3.2 1.4
7 55.0 55.0 118.8 118.3
8 156.8 84.7 291.5 400.0
9 44.6 258.8 405.0 372.6
10 118.3 176.4 340.2 361.0

In the present study a new data is created by removing some values from the original data and
replacing them with outliers as described in the following. The tumor size of 95 mm3 is replaced
with tumor size of 1789.9mm3 for mouse 4 in group A on day 11. A tumor size of 258.8 mm3 is
replaced with 1550mm3 on day 13 for mouse 9 in group C. Mouse 2 in group A whose tumor size
was 317.9mm3 is replaced with 1770.2 mm3 on day 15. In group C on day 17, mouse 1 with tumor
sizes 379.1mm3 is replaced with 1250 mm3.

With these outliers, one should not think that the size or value of the test for H0 for the original data
will be extremely different from that of the outliers data, such that they will lead to inconsistent
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decision and conclusion. We therefore need a test that is robust in the sense that the size of its
actual significance level (original data) is quite close to the nominal significance level (outliers data).
The test is executed in section 5.

3 Rank Based Test

3.1 Rank tests

Let Yj represent the combined ordered sample of the two samples at the jth time point in section
2 and let f(.) be the probability density function of F (.). Next, let Rk denote the rank of Yjk

(k = 1, .., n2) in the combined sample of such that 1 ≤ Rk ≤ n. Let u = Rk
n+1

be Y ′
jks rank

normalized in the combined sample, where u ∈ (0, 1). Hàjek and Šidak [3] showed that, in general,
the asymptotically most powerful rank test Su directly depends on the inverse of the cumulative
distribution function( c.d.f) F−1(.). In that sense Su is given by

Su =

n∑
k=1

a(Rk) (3.1)

where a(Rk) is a scoring function which is defined by

a(Rk) = −f ′[F−1(u)]

f [F−1(u)]
(3.2)

The scoring function maximizes the information in the ranks. Hence, for any distribution of interest,
the most powerful rank test can be obtained by equations 3.1 and 3.2. Asymptotically, as n1, n2 →
∞, Su ∼ N(0, 1). Below are examples of rank tests for the two-sample location problem (for
derivation of these examples see [4],[5],[6]).

1. The normal score test denoted Snor which is considered to be the most powerful rank test
when the distribution of the data is normal with the test defined by;

Snor =

n2∑
k=1

Φ−1

(
Rk

n+ 1

)
(3.3)

where Φ is the c.d.f of the standard normal distribution with mean and variance of the normal

score test defined as E(Snor) = 0 and V ar(Snor) =
n2n1

n(n−1)

∑n
j=1

[
Φ−1( j

n+1
)
]2
.

2. The Wilcoxon-Mann-Whitney(WMW) test is regarded the most powerful rank test once the
data is known to have been drawn from a logistic distribution, with the test statistic given
by;

Slog =
2n2

n+ 1

n2∑
k=1

Rk − n2 (3.4)

with the linear transformation of equation (3.4) given by SWMW =
∑n2

k=1 Rk. The mean and
variance are respectively given as E[SWMW ] = 1

2
n2(n+1) and V ar[SWMW ] = 1

12
n2n1(n+1).

3. The median test which is considered the most powerful test when the data is deemed to have
been derived from a Laplace (double exponential) distribution, has test statistic defined as;

Slap =

n2∑
k=1

sign

(
Rk − k + 1

2

)
(3.5)

where

sign(x) =


1, if x > 0

0, if x = 0

−1, if x < 0
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Equation (3.5) is practically the same as the test that counts the number of Y ′
j s above the

median of the combined sample and increases by 1
2
when the median falls in the sample of

Y ′
ks [5]. Thus

Smedian =

n2∑
k=1

1

2

[
sign

(
Rk − n+ 1

2

)
+ 1

]
=

1

2
Slap + n2

with the mean and variance of the median test given as E[Smedian] =
n2
2

and V ar[Smedian] =
n2n1

4(n−1)
if n is even, and V ar[Smedian] =

n2n1
4n

if n is odd [5].

3.2 Adaptive test

In this paper we follow the notion of the two-sample adaptive test proposed by Hogg, Fisher and
Randles (HFR) [2]. However, see [6, 7, 8, 9] for other proposals for adaptive two-sample location
problem. The HFR test procedure initially classifies the unknown distribution function of the
combined data from the two samples (i.e. treatment groups) under four rank scores. Secondly, a
selector statistic based on measures for skewness (Q1) and tail-weight (Q2) is used to select the
most effective rank score to execute the test. See [2] for computational details of these measures.
Here, we incorporate nine winsorized scores and extend the HFR test to the context of longitudinal
data.

In the following, Büning’s lemma [10] is considered in the arena of longitudinal data. It is shown
that the HFR test maintains its level of significance for all continuous distribution functions at each
time point of the longitudinal trajectory. We state a lemma similar to (Büning, 2009)

3.3 Lemma

i Let F denote the class of continuous distribution functions under consideration. Suppose
that each of m tests at each time point t based on the statistics T1, T2, . . . , Tm is distribution
free over the class F i.e PHo(Th ∈ Ch/F) = α for each F ∈ F.

ii Let Sj be some statistic at time t that is statistically independent of T1, T2, . . . , Tm under
Ho; for each F ∈ F. Suppose that Sj is used to decide which test Th to conduct. Sj is
defined as the selector statistic at each time point tj and Qs denotes the set of all values of
Sj with the following composition;

Qs = A1 ∪ A2 ∪ . . . ∪ Am; such that Ah ∩ Ak = ∅ for all h ̸= k, and the A′
is are mutually

exclusive and exhaustive.

PHo(reject Ho/F) = PHo

(
m∪

h=1

(Sj ∈ Ah ∧ Th ∈ Ch/F)

)

=

m∑
h=1

PHo(Sj ∈ Ah ∧ Th ∈ Ch/F)

=

m∑
h=1

PHo(Sj ∈ Ah/F) · PHo(Th ∈ Ch/F)

= α ·
m∑

h=1

PHo(Sj ∈ Ah/F)

= α · 1
= α
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Since F is a class of all continuous distribution functions F and T1, T2, . . . , Tm are linear rank
statistics at each of the j time points, by Basu’s theorem which states that “any boundedly complete
sufficient statistic is independent of an ancillary statistic”. Then Sj being a function of the order
statistics of the combined sample at the jth time point under H0 are the complete sufficient statistics
for the common but unknown F and consequently independent of any statistic whose distribution
is free of F .

3.3.1 Selector statistics

The selector statics will aid in selecting a score function, Sj = (Q1j , Q2j), where Q1j and Q2j are
the respective measures of skewness and tail weight at the jth time point. Thus Sj is independent
of the linear rank statistics T1, T2, . . . , Tm at each time point under the null hypothesis Ho. We now
apply the lemma on our problem.
Let

w(λ1, λ2) =
1

l

n−b2∑
k=b1+1

Y(k) (3.6)

where λ1 and λ2 are some fractions to be trimmed from the combined ordered data and Y
′s
(k) are the

ordered statistic of the combined sample at each time point of the longitudinal data. Let b1 = [nλ1],
b2 = [nλ2], and assume [x] denotes the smallest integer greater than x and l = n − b1 − b2. As a
selector statistic S we choose Sj = {Q∗

1j , Q
∗
2j} such that

Q∗
1j =

w(0.95, 0)− w(0.25, 0.25)

w(0.25, 0.25)− w(0, 0.95)

and

Q∗
2j =

(w(0.95, 0)− w(0, 0.95))

(w(0.5, 0)− w(0, 0.25))

where Q∗
1j and Q∗

2j are measures of skewness and tail-weight respectively. Under H0 model (2.1)
becomes Yijk = ϵijk and measures of skewness and tail weight are obtained from ϵijk for simulations
and Yijk for real life problems. At this point, two important issues arise: firstly, the cutoff values
or bounds for measures of skewness and tail-weight.

Al-shomrani [11] proposed the following methods for cutoff values. These depend on the sample
size n, however, as n → ∞, the measures converges to those proposed by Hogg, [6]. For Q∗

1, the

lower cutoff = 0.36 +
0.68

n

upper cutoff = 2.73− 3.72

n
and for Q∗

2, when the sample size is less than 25

lower cutoff = 2.17− 3.01

n

upper cutoff = 2.63− 3.94

n
however, when the sample size is at least 25, then the lower and upper cutoff are respectively defined
as;

lower cutoff = 2.24− 4.68

n
and

upper cutoff = 2.63− 9.37

n
.

The second issue is about the appropriate number m of categories A1, A2, ..., Am. Four categories
are common in literature, thus three for symmetric distributions (short, medium, long tails) and
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one for right skewed distributions. However, for our two-sample location problem the following nine
categories are utilized.

For these categories, we consider a family of Winsorized scores as the most appropriate set of rank
scores for testing the hypothesis in section 2 with bench marks proposed by [11]. For these scores,
as shown in Fig. 1, 1-3 represent scores for skewed Left: Light-tailed (LL), Moderate-tailed (LM)
and Heavy-tailed (LH). Also, 4-6 are scores for Symmetric: SL, SM, and SH. Finally, 7-9 defines
scores for skewed Right: RL, RM and RH, see [12], [13] for score functions and parameters. Figure
2 shows the adaptive scheme for the test of hypothesis formulated in section 2.

Fig. 1. Plots of the nine winsorised scores

3.3.2 Combined adaptive test

To obtain the test for the hypothesis after selecting the appropriate score, we developed the
test statistic for the j time points. Under H0, we assumed that the errors in equation 2.1 are
exchangeable, thus the order statistics of the combined sample at each time point are sufficient and
complete [13]. Suppose φkj is the score selected at the jth time point for region h, then the test
statistic for that time point is

Sφhj =

n2∑
k=1

ah(R(Y
(j)
k )) (3.7)

where Sφkj has mean,
E(Sφhj ) = 0

and variance,

var(Sφhj ) =
n1n2

n− 1

n∑
l=1

a2
h(l)

see [13] for details. The test

Z =
Sφhj√

var(Sφhj )
(3.8)
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is asymptotically standard normal and distribution free. We therefore pool the test statistic over
time points. Thus under Ho, the overall test statistics S is;

S =

m∑
h=1

Sφhj =

m∑
h=1

n2∑
k=1

ah(R(Y
(j)
k )) (3.9)

with an asymptotic distribution, N(0,m). Hence for the hypothesis H0 : λ1 = λ2 versus H0 : λ1 ̸=
λ2, reject H0 in favour of H1 if |S| =

∣∣∣∑m
h=1 Zh√

m

∣∣∣ > Zα/2. This overall test statistics combines all

the test statistics at each of the time points. This is defined as:

Z =

∑m
h=1 Zh√
m

. (3.10)

Under H0, Z is asymptotically normal with mean 0 and variance 1, see [13]. It is worth noting
that in addition to adapting on combine sample at each time point, an adaptation is done on the
combined sample from all time points and results are compared with adaptation on time points.

Fig. 2. Adaptive Scheme

4 Simulation Studies

In this section simulation studies are conducted for the adaptive test and the ANOVA-F test. The
adaptive test is compared with the parametric ANOVA F-test under distinct scenarios. Simulation
results for normal, double exponential, contaminated normal and the truncated logistic distributions
for a balanced longitudinal study are considered. In the simulation of the longitudinal data, three
time points with two treatment groups were considered. Equal sample sizes were generated for
each treatment group at each of the time points. The intraclass correlation coefficient was however
considered to be ρ =0, 0.2, 0.5 and 0.7. Under H0, at each time point, data were generated from
the model in Equation 2.1.

4.1 Simulation results for normally distributed errors

Using the normal distribution, under H0, 10,000 simulations were carried out for sample sizes 10,
12, 15, 18 and 20 subjects each, assigned to two groups: placebo and treatment groups at each time
point of the longitudinal trajectory with correlation coefficient ρ being 0, 0.2, 0.5 and 0.7.

9
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Results from Table 3 depicts the structure of the underlying distribution at each of the time points
for the various sample sizes. The values in brackets indicate the structure of the score function: see
figure 1. The distributions of sample sizes 10, 15 and 20 for each group at time t1 are symmetric
and heavy-tailed whiles the distribution of sample sizes 12 and 18 are symmetric with light-tails and
symmetric with moderate-tails respectively. At time point t2, the same distributions, symmetric
with moderate tails were realized for sample sizes 10, 12, 18 and 20 whiles the distribution of the
sample size of 15 was symmetric and heavy-tailed. For time point t3 however, the structure of
the underlying distribution of all the sample sizes ranging from 12 to 20 were observed as being
symmetric with moderate tails except for sample size 10 which was observed as belonging to class
of symmetric and heavy-tailed distribution. This is an indication that as the sample size increases,
the scores are classified under the class of Winsorized scores (SM(5)).

Table 3. Adaptive Test for normally distributed errors

Sample size τ or σ Test Statistic Distribution(Scores)

(n1, n2) t1 t2 t3 t1 t2 t3 t1 t2 t3
(10,10) 0.975 1.293 1.384 0.129 0.529 0.695 SH(6) SM(5) SH(6)
(12,12) 0.850 0.872 1.236 0.742 1.443 0.231 SL(4) SM(5) SM(5)
(15,15) 0.791 1.116 0.100 2.132 0.901 1.182 SH(6) SH(6) SM(5)
(18,18) 0.991 0.938 0.993 0.569 0.475 1.645 SM(5) SM(5) SM(5)
(20,20) 1.046 0.972 1.263 0.563 0.784 1.001 SH(6) SM(5) SM(5)

Results of the final test of the adaptive scheme is compared with the ANOVA F test for the normal
distributed errors as shown in Table 4. Both tests reveals that there is no group and time interaction
or that the mean profiles over time are parallel because the p-values for both test were greater than
0.05. A measure of efficiency is the efficacy or standard deviation defined as σ for the ANOVA
F-test and the scale parameter (τ) for the adaptive test. As displayed in Table 4, the efficacy of
the ANOVA F-test is relatively larger compared with the adaptive test for the normally distributed
errors as the sample size increases. Thus based on the values obtained for the efficacy of both tests
in Table 4, it is evident that the parametric ANOVA F-test is relatively more efficient than the
adaptive test for normally distributed errors. Therefore the F-test is considered the optimal test
when observations are drawn from a normal distribution.

4.2 Simulation results for the contaminated normal errors

This subsection contains the results of a simulation study based on contaminated normally distributed
random error terms generated at each time point.

Table 5 depicts the values obtained for the scale parameter(τ or σ) and test statistic as well as the
underlying distribution at each of the time points for the contaminated normal errors. As displayed
in Table 5, the structure of the underlying distribution at each of the time points for the sample sizes
are symmetric with heavy and moderate tails except for time points t3 and t2 where the structure
of the underlying distribution for the data with sample sizes 12 and 15 for each treatment group
revealed that the data at these time points are right skewed with heavy tails.

Table 6 also indicates that there is no group and time interaction effect. Both test fail to reject H0

and thus conclude that the group and time interaction effect is not significant or that the test of
parallelism hypothesis is reasonable. The standard deviations and the test statistic of the adaptive
scheme and ANOVA F-test for each of the tests are also shown in Table 6. Based on the standard
deviation(τ or σ) of the two tests (AD(S, φk)) and F , it is evident that the standard deviation
for the adaptive test(AD(S, φk)) are relatively smaller than that of the F-test. An indication that
the adaptive test is more efficient when the error terms are drawn from the contaminated normal
distribution.
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Table 4. Results of Adaptive Test and F-statistic for normal distributed errors

(n1,n2) Correlation Test Test Statistic τ or σ Efficacy Interaction

(10,10)

0.0
AD(S, φk) 0.78 1.22 0.82 NO

F 0.14 0.13 7.69 NO

0.2
AD(S, φk) 0.96 2.13 0.47 NO

F 0.75 1.05 0.95 NO

0.5
AD(S, φk) 1.03 3.21 0.31 NO

F 1.45 1.11 0.90 NO

0.7
AD(S, φk) 0.92 2.47 0.41 NO

F 0.79 0.99 1.01 NO

(12,12)

0.0
AD(S, φk) 1.40 0.99 1.01 NO

F 0.09 0.15 6.67 NO

0.2
AD(S, φk) 1.03 2.99 0.33 NO

F 1.11 1.13 0.89 NO

0.5
AD(S, φk) 1.14 3.10 0.33 NO

F 0.85 1.26 0.79 NO

0.7
AD(S, φk) 1.08 2.87 0.35 NO

F 0.02 0.75 1.33 NO

(15,15)

0.0
AD(S, φk) 2.43 0.97 1.03 NO

F 0.24 0.26 3.85 NO

0.2
AD(S, φk) 0.99 2.84 0.35 NO

F 1.67 0.95 1.05 NO

0.5
AD(S, φk) 1.21 2.93 0.34 NO

F 0.71 1.03 0.97 NO

0.7
AD(S, φk) 1.06 2.13 0.47 NO

F 0.77 1.26 0.79 NO

(18,18)

0.0
AD(S, φk) 1.55 0.97 1.03 NO

F 0.31 0.29 3.45 NO

0.2
AD(S, φk) 1.14 3.13 0.32 NO

F 0.43 0.90 1.11 NO

0.5
AD(S, φk) 1.07 2.94 0.34 NO

F 1.10 0.79 1.27 NO

0.7
AD(S, φk) 0.98 2.77 0.36 NO

F 0.45 0.88 1.14 NO

(20,20)

0.0
AD(S, φk) 1.36 1.09 0.92 NO

F 0.23 0.22 4.55 NO

0.2
AD(S, φk) 1.32 2.11 0.47 NO

F 0.29 1.04 0.96 NO

0.5
AD(S, φk) 0.98 2.46 0.41 NO

F 0.29 1.07 0.94 NO

0.7
AD(S, φk) 1.01 2.47 0.40 NO

F 0.08 1.01 0.99 NO

Table 5. Adaptive Test for contaminated normal errors with ϵ = 0.5

Sample size τ or σ Test Statistic Distribution(Scores)

(n1, n2) t1 t2 t3 t1 t2 t3 t1 t2 t3
(10,10) 1.505 2.456 1.643 1.159 1.391 0.232 SH(6) SH(6) SH(6)
(12,12) 1.399 2.8032 1.356 1.168 0.989 0.207 SH(6) SH(6) RH(9)
(15,15) 3.957 1.850 1.552 0.643 0.130 0.973 SM(5) RH(9) SH(6)
(18,18) 2.597 3.814 3.197 0.011 0.190 1.008 SH(6) SM(5) SH(6)
(20,20) 3.418 1.703 2.374 0.657 0.216 0.379 SH(6) SH(6) SM(5)
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Table 6. Adaptive test and F-statistic for contaminated normal errors

(n1,n2) correlation Test Test Statistic τ or σ Efficacy Interaction

(10,10)

0.0
AD(S, φk) 1.61 1.87 0.53 NO

F 1.37 2.94 0.34 NO

0.2
AD(S, φk) 0.92 4.13 0.24 NO

F 1.62 7.03 0.14 NO

0.5
AD(S, φk) 1.11 5.21 0.19 NO

F 0.98 8.34 0.12 NO

0.7
AD(S, φk) 0.89 3.12 0.32 NO

F 1.22 11.21 0.09 NO

(12,12)

0.0
AD(S, φk) 1.37 1.85 0.54 NO

F 1.33 3.02 0.33 NO

0.2
AD(S, φk) 1.01 4.01 0.25 NO

F 0.97 6.21 0.16 NO

0.5
AD(S, φk) 1.32 5.05 0.20 NO

F 1.03 7.96 0.13 NO

0.7
AD(S, φk) 0.92 2.16 0.46 NO

F 1.06 10.67 0.09 NO

(15,15)

0.0
AD(S, φk) 1.01 2.45 0.41 NO

F 0.98 2.51 0.40 NO

0.2
AD(S, φk) 1.13 3.21 0.31 NO

F 1.11 4.32 0.23 NO

0.5
AD(S, φk) 1.09 4.57 0.22 NO

F 1.16 11.21 0.09 NO

0.7
AD(S, φk) 1.26 4.32 0.23 NO

F 2.13 15.62 0.06 NO

(18,18)

0.0
AD(S, φk) 0.70 2.42 0.41 NO

F 0.44 3.26 0.31 NO

0.2
AD(S, φk) 1.24 3.01 0.33 NO

F 1.39 5.11 0.20 NO

0.5
AD(S, φk) 1.16 4.42 0.23 NO

F 0.99 9.23 0.11 NO

0.7
AD(S, φk) 1.13 3.96 0.25 NO

F 1.37 13.22 0.08 NO

(20,20)

0.0
AD(S, φk) 0.72 2.50 0.40 NO

F 0.32 3.64 0.27 NO

0.2
AD(S, φk) 1.09 3.21 0.31 NO

F 1.25 8.79 0.11 NO

0.5
AD(S, φk) 1.47 4.19 0.24 NO

F 1.97 15.35 0.07 NO

0.7
AD(S, φk) 0.93 3.71 0.27 NO

F 1.05 9.39 0.11 NO

4.3 Simulation results for the Laplace Distribution

Here data was simulated from the model in equation 2.1 based on Laplace distributed errors.

From Table 7, the adaptive scheme revealed that the distribution of the data is symmetric with
heavy tail weight for all the sample sizes at each of the time points except for time point t1 with
sample size 10 for both group and time point t3 with sample size 20 for each group where the
distribution of the data is left skewed with heavy tail weight and symmetric with moderate tails
respectively.

Table 8 represents the overall test statistic of the adaptive and the ANOVA F-test for the error
terms generated from the double exponential(Laplace) distribution. Both test indicates that there
is no group and time interaction or that the mean profiles are parallel for both groups across time.
The values obtained for the efficacy of the adaptive test is larger than the ANOVA F-test as shown
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on Table 8. Hence the adaptive test is more efficient than the ANOVA F-test for double exponential
or Laplace distributed samples.

Table 7. Adaptive Test for Laplace distribution, µ = 0 and β = 3

Sample size τ or σ Test Statistic Distribution(Scores)

(n1, n2) t1 t2 t3 t1 t2 t3 t1 t2 t3
(10,10) 0.427 0.553 0.243 0.744 0.644 0.773 LH(3) SH(6) SH(6)
(12,12) 0.685 0.409 0.412 0.396 0.851 0.257 SH(6) SH(6) SH(6)
(15,15) 0.276 0.359 0.204 0.329 0.715 0.658 SH(6) SH(6) SH(6)
(18,18) 0.389 0.415 0.301 0.351 1.413 0.833 SH(6) SH(6) SH(6)
(20,20) 0.347 0.386 0.501 0.451 0.441 1.353 SH(6) SH(6) SM(5)

Table 8. Adaptive Test and F-statistic for the error terms generated from the
Laplace distribution

(n1,n2) Correlation Test Test Statistic τ or σ Efficacy Interaction

(10,10)

0.0
AD(S, φk) 1.25 0.41 2.44 NO

F 0.80 1.37 0.73 NO

0.2
AD(S, φk) 1.13 7.10 0.14 NO

F 2.10 12.87 0.08 NO

0.5
AD(S, φk) 1.19 6.11 0.16 NO

F 1.04 11.23 0.09 NO

0.7
AD(S, φk) 1.11 10.12 0.10 NO

F 1.27 17.35 0.06 NO

(12,12)

0.0
AD(S, φk) 0.87 0.50 2.00 NO

F 1.06 0.91 1.10 NO

0.2
AD(S, φk) 1.31 6.12 0.16 NO

F 1.05 13.12 0.08 NO

0.5
AD(S, φk) 1.02 6.98 0.14 NO

F 1.34 12.07 0.08 NO

0.7
AD(S, φk) 0.98 0.99 1.01 NO

F 1.05 18.01 0.06 NO

(15,15)

0.0
AD(S, φk) 0.98 0.28 3.57 NO

F 0.78 0.31 3.23 NO

0.2
AD(S, φk) 0.99 7.06 0.14 NO

F 1.16 10.54 0.09 NO

0.5
AD(S, φk) 1.42 7.43 0.13 NO

F 0.97 10.94 0.09 NO

0.7
AD(S, φk) 1.36 11.62 0.09 NO

F 1.45 20.23 0.05 NO

(18,18)

0.0
AD(S, φk) 1.50 0.37 2.70 NO

F 1.71 1.15 0.87 NO

0.2
AD(S, φk) 1.06 6.82 0.15 NO

F 0.78 11.74 0.09 NO

0.5
AD(S, φk) 1.35 6.78 0.15 NO

F 1.33 9.97 0.10 NO

0.7
AD(S, φk) 1.44 10.98 0.09 NO

F 1.42 19.89 0.05 NO

(20,20)

0.0
AD(S, φk) 1.30 0.41 2.44 NO

F 1.38 0.76 1.32 NO

0.2
AD(S, φk) 1.01 7.34 0.14 NO

F 0.94 10.57 0.09 NO

0.5
AD(S, φk) 1.18 6.16 0.16 NO

F 1.29 11.23 0.09 NO

0.7
AD(S, φk) 1.01 13.45 0.07 NO

F 1.09 24.32 0.04 NO
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4.4 Simulation results for the truncated logistic distribution

The simulation results of equation 2.1 based on truncated logistic error distributions are presented.

Results for the adaptive scheme using the truncated logistic distribution as an example are displayed
in Table 9. Monte Carlo simulations (10,000 simulations) were run for each sample size. From the
adaptive scheme, the underlying structure of the unknown distribution at time point 1 for sample
sizes 10,12 and 20 for each treatment group are right skewed with moderate tails whiles the structure
of the unknown distribution at the same time point for sample sizes 15 and 18 for each of the
treatment groups are skewed right but with heavy tails. At time point 2 of our longitudinal data
however, for sample sizes 10,12 and 15 for each of the treatment groups, whereas the structure of the
unknown distribution is right skewed with heavy tails, the underlying distribution for sample sizes
18 and 20 for each of the treatment groups are right skewed with moderate tails and symmetric with
light tails respectively. Finally the structure of the unknown underlying distribution at time point
3 for sample sizes 10,15 and 18 for each of the treatment groups are right skewed with moderate
tails whiles the distribution of the data with sample sizes 12 and 20 are both skewed right but with
light tails and heavy tails respectively.

Table 10 compares the overall adaptive test to the ANOVA F-test for the error terms generated from
the truncated logistic distribution. Table 10 indicates that the test of parallelism is reasonable for
the tests since the p-values obtained for both test were greater than the α value of 0.05. However,
for all the correlation values, the adaptive test has relatively larger efficacies across sample sizes
than the ANOVA F-test. Hence it is statistically more efficient than the ANOVA F-test when the
error terms are drawn from the truncated logistic distribution.

Table 11 summarises the asymptotic relative efficiency of the adaptive test compared to the F-test
obtained for the error terms generated from the normal, contaminated normal, double exponential
and truncated logistic distributions when the correlation ρ = 0. The simulation results for the
contaminated error terms generated at each time point of the longitudinal data indicates that the
adaptive test is more efficient than the ANOVA F-test. It is 102% as efficient as the ANOVA F-test
for the sample size of 15 and as high as 163% efficiency for the sample size of 12. Finally results
obtained for the asymptotic relative efficiency of the error terms generated from the Laplace and
truncated logistic distributions gives a clear indication that the adaptive test is relatively more
efficient than the ANOVA F-tests as shown in Table 11. It is about 378% efficient as the ANOVA
F-test when the sample size is 18 at each time point for the error terms generated from the truncated
logistic distribution.

Table 9. Adaptive Test for Truncated logistic Distribution

Sample size τ or σ Test Statistic Distribution(Scores)

(n1, n2) t1 t2 t3 t1 t2 t3 t1 t2 t3
(10,10) 1.578 0.933 0.865 0.416 1.624 3.012 RM(8) RH(9) RM(8)
(12,12) 0.735 0.972 1.204 0.159 1.602 1.212 RM(8) RH(9) RL(7)
(15,15) 0.720 0.761 1.279 0.946 0.204 2.228 RH(9) RH(9) RM(8)
(18,18) 0.647 0.681 1.107 0.877 1.806 0.259 RH(9) RM(8) RM(8)
(20,20) 1.199 1.052 1.046 1.667 0.577 1.573 RM(8) SL(4) RH(9)
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Table 10. Adaptive Test and F-statistic for Truncated logistic distribution

(n1,n2) Correlation Test Test Statistic τ or σ Efficacy Interaction

(10,10)

0.0
AD(S, φk) 2.92 1.13 0.88 NO

F 2.36 2.63 0.38 NO

0.2
AD(S, φk) 1.03 3.13 0.32 NO

F 0.99 6.56 0.15 NO

0.5
AD(S, φk) 1.04 5.64 0.18 NO

F 0.99 12.08 0.08 NO

0.7
AD(S, φk) 0.89 5.12 0.20 NO

F 1.04 12.38 0.08 NO

(12,12)

0.0
AD(S, φk) 1.72 0.97 1.03 NO

F 1.24 1.73 0.58 NO

0.2
AD(S, φk) 1.07 4.67 0.21 NO

F 1.33 7.45 0.13 NO

0.5
AD(S, φk) 0.98 4.98 0.20 NO

F 1.08 9.01 0.11 NO

0.7
AD(S, φk) 1.11 5.02 0.20 NO

F 1.37 14.16 0.07 NO

(15,15)

0.0
AD(S, φk) 1.95 0.92 1.09 NO

F 3.16 2.96 0.34 NO

0.2
AD(S, φk) 1.00 3.98 0.25 NO

F 0.94 8.01 0.12 NO

0.5
AD(S, φk) 1.07 5.04 0.20 NO

F 1.09 11.28 0.09 NO

0.7
AD(S, φk) 0.98 4.56 0.22 NO

F 1.53 11.67 0.09 NO

(18,18)

0.0
AD(S, φk) 1.70 0.81 1.23 NO

F 2.94 3.07 0.33 NO

0.2
AD(S, φk) 0.99 3.79 0.26 NO

F 1.48 8.32 0.12 NO

0.5
AD(S, φk) 0.96 5.72 0.17 NO

F 1.09 14.32 0.07 NO

0.7
AD(S, φk) 1.05 5.03 0.20 NO

F 0.99 13.05 0.08 NO

(20,20)

0.0
AD(S, φk) 2.20 1.10 0.91 NO

F 3.33 3.75 0.27 NO

0.2
AD(S, φk) 0.78 4.67 0.21 NO

F 1.02 8.88 0.11 NO

0.5
AD(S, φk) 1.19 4.94 0.20 NO

F 1.05 13.96 0.07 NO

0.7
AD(S, φk) 0.79 6.45 0.16 NO

F 0.89 14.21 0.07 NO

4.5 Asymptotic Relative Efficiency (A.R.E)

Table 11. A.R.E for the error terms based on 10,000 simulations when ρ = 0

Errors

(n1,n2) Tests CN Laplace Truncated Logistic

(10,10) AD2(S, φk), F 1.5733 1.9681 2.3333
(12,12) AD2(S, φk), F 1.6292 1.8167 1.7848
(15,15) AD2(S, φk), F 1.0224 1.0964 3.2217
(18,18) AD2(S, φk), F 1.3445 3.1332 3.7845
(20,20) AD2(S, φk), F 1.4564 1.8540 3.4095
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5 Analysis of data example

In section 2 data example on tumor sizes in mice was introduced. The present section presents
results and analysis of the data. The question is what is the robust test for H0 considering this
data? Is it the the traditional ANOVA F test or the adaptive scheme.

Results from the adaptive scheme and ANOVA F-test for the original data and the data with outliers
are displayed on Tables 12 and 13 respectively. The adaptive scheme shows that the structure of the
underlying distribution for responses on day 11 is symmetric light tailed, and days 13, 15 and 17 are
symmetric with heavy tail-weight. Moreover, the scheme indicates that the underlying distribution
of the data with outliers is right skewed with heavy tails on days 11,13, and 15. Day 17 is symmetric
and heavy tailed, and right skewed and heavy tailed for the original and outliers data respectively.

Tables 12 and 13 present the results on the test of parallelism for both the original and outliers data.
The adaptive test on the original data suggests that the test is not significant (test statistic=0.0586
; p-value= 0.4766) at 0.05 level. Similar, the F-test on the original data gives evidence of non
significance (test statistic=0.0125; p-value=0.998). Thus, both tests lead to the non-rejection of
H0, meaning the mean response profiles are parallel.

The test statistic and p-value of the ANOVA F-test for the outliers data suggest that the mean
response profiles are not parallel and that there is group and time interaction, contradicting the
initial results. Thus there is a substantial change in the test statistic and the p-value for this test
owing to the presence of outliers. The adaptive test however, irrespective of the existence of outliers
changed slightly and still shows that the mean response profiles across the time points are parallel.
That is using the adaptive test, the test of parallelism is still reasonable with the outliers introduced
but this is not the case for the ANOVA F-test as shown in Table 1. This indicates that the adaptive
test is robust for size in the presence of outliers.

Table 12. Results of the tumor size data in mice

Method Test Statistic τ or σ P-value Distribution(scores)

AD-test (time points) 0.05860 54.241 0.4766 SL(4) SH(6) SH(6)SH(6)

F-test 0.0125 112.243 0.998 Normal(not applicable)

Table 13. Results of the tumor size data in mice with outliers

Method Test Statistic τ or σ P-value Distribution(scores)

AD-test(time points) 0.0320 73.156 0.4872 RH(9) RH(9) RH(9)SH(9)

F-test 3.0328 429.3588 0.03469 * Normal(not applicable)

6 Conclusion

In the present paper the two sample location problem has been studied and considered in the
setting of longitudinal data to construct adaptive test for testing group and time interaction in
profile analysis. We focused on the two dimensional selector statistic S = {Q∗

1, Q
∗
2}, where Q∗

1 and
Q∗

2 are respective measures for skewness and tail-weight of the unknown distribution function. The
pioneering work of adaptive test based on only the aforementioned measures was done by Hogg,
Fisher and Randles [1]. See [2] for detailed description of their method. See also [10] for a recent
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proposed adaptive test for the c sample location problem based on the two dimensional selector
statistic. Hogg [6] and Büning, [10] on the other hand, used a three dimensional selector statistic.
Thus, they introduced a measure for peakedness in their proposed method for adaptive test. We
used the two dimensional scale measure because there is no notable gain in power of the adaptive test
by adding the peakedness measure, see Büning, [10]. Furthermore, we considered nine winsorized
scores as the most appropriate set of rank scores for testing group and time interaction. We could
have limited the number of scores to four, thus three for symmetric distributions (short, medium,
long tails) and one for right skewed distributions as it appears in most studies on this subject. We
however, propose to use nine scores to accommodate a wide range of distributions which are either
symmetric, left-skewed or right-skewed with tail weights that vary from light-tail to heavy-tail.
The adaptive test appear to be more efficient than the traditional ANOVA-F test for a class of
distributions such as contaminated normal, truncated logistic and double exponential. The study
has shown that the adaptive test is robust for size in data sets with outliers. Our study and that
of Büning, [10] among others though consistently demonstrate the advantage of adaptive tests over
the traditional parametric tests nevertheless, adaptive tests are not frequently used compared to
the parametric ones. We therefore agree with Büning, [10] on the thought that adaptive procedures
should be embedded in common statistical software packages.
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