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Abstract

There are two basic problems in the qualitative theory of planar nonlinear differential equations, namely
the center focus and the limit cycle. The decision problem of the center focus is also the premise and
foundation of the study on the limit cycle. Therefore, the study of the center focus and the limit cycle
constitutes an independent branch of mathematics.

So far, many methods have been tried to settle the problems of the center focus of the polynomial system.
However, the center focus problem of high degree polynomial systems has not been completely solved. In
this paper, we use the Poincaré method to study the center focus problem of the five periodic differential
equation. Then we use the Alwash-Lloyd method [1,2,3] to derive the center conditions for this
differential system.
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LEMMA |2]. Consider the Abel differential equation [4]

dx 2 3
— =Alt)x" +Blt)x’,
i) + 50 N
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Where, A(t + a)) = A(t ) and B (t + a)) =B (l‘ ) , (@ 1is a positive constant). The origin is a center for the two-
dimensional system if and only if all solutions of the Abel equation starting near the origin are periodic with

period 277 . In this case, we say that X =0 is a center for the Abel equation. The origin is a center when the
coefficients satisfy the following condition

Al) = u' () 4, (u(t)),

' @
B(t) = u'() B, (u(?)),

Where u(t) is a periodic function of period 277 , 4, B, are continuous functions. This condition is called
the composition condition [5-8].

Consider the fifth polynomial system

{x =—y+x(R(x,y)+ P,(x.»))

. 3)
¥ =x+y(B(x,y)+P(x,y)),

with P (x, y)= Z Px'y’,p, are real constants. In this paper, we give a short proof to the following result of

[1,9]. o
3Py + P, +3F, =0 4)
(P’ =Py NPy = Py )= PRy By (R + Py ) =0 )
P104P04 + R)14P40 - PloE)l(Ploan + P(nzP31 _EORanz) =0 (6)

Proof. The system (3) in polar coordinates » and € becomes

7 =r"P(cosd,sin @)+ 7’ P,(cos O,sin 6),
0=1,
With,

B (cosb,sind) =B, cosd+ F, sin b,

P,(cos8,sin @) = P, cos* @+ P, cos’ @sin @+ P, cos” @sin’ @+ P, cos@sin’ O+ B, sin” 6.
The origin is a center for (3) if and only if the polynomial differential equation

% =r’P(cos 8,sin ) + r° P,(cos 0,sin 0), ™)

have 27 - periodic solution in a neighborhood of 7 = 0.

Let I’(@, c) be solution of (7) with 7(0,¢) = c(0 < |c| << 1) .We write
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r(0,c) = i a,(@)c" ,

Where, a, (0) =1and a, (0) =0,n22.

The origin is a center for (5) if and only if @,(27)=lLa,(27)=0,n>2,neZ".

Substituting (8) into (7)

ac+a,ct +tac' +-=Plac+a,ct ++a,c' +) +P(ac+a,c’ 4

Equating the coefficients of € yield

a,=Pp Zaiaj +P, Zaiajaka,am,an(O):O,nZ2,neZ+.

i+ j=n i+ j+k+l+m=n

Solving (9) gives
al Zl,aQ :ﬁlsa3 = ﬁlz,a4 = ﬁ]3’a5 = ﬁ]4 +ﬁ4:a6 = ES +2ﬁ1ﬁ4 +3ﬁ’
a,=F’ +3B P, +6B PP, +6F P,
a,=F +4B'P,+9F P, +12R P, +10F P,

And

a, =P +5P'P,+12P° PP, +18P*P’P, +20P PP, +%1342 +15P"P,.

We know a,(277) = a,(277) = a,(27) = a,(27) = a,(27) = 0.

A bar over a function denotes its indefinite integral.

The three necessary conditions for a center are dj (27)=0, a, (27)=0 and a, (27[) =0.

. 27 27 — 27 —4
Be equivalent to L P,d6 =0, L B Pdo= 0’.‘-0 B Pdo=0.
We have
condition ( 1): 3P, + P, +3F,, =0,
condition (11): (By” = By )(Poy = P) = BoPyy (P + Pyy) =0,
and

condition (I): By* By, + By, ' Py — Py By (Py’ By + By," By — By Py, Py) = 0.

®)

n

+a.c

n

+)

9
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We prove that three conditions are also sufficient. Suppose these conditions hold: P, = B, (i,l?} + 131?} 3)

2 2
P, = Pl(icos3 0+ P“)RI;ZP‘”P‘“’cos2 fsing+ 10 T2~ P'OPO13P31 0 P o5 psin® 0
10 10 P)IO
FITRRN 0),
01
If and only if
3R By + Bk Py~ B'Pyy =44 B Ry + 3R Ry + 3R R, (10)
Eotho _Eozpzz +EOR)1P3| _E)lzBm = 3233053)1 _133033)13 (1 1)
_EOZEM _E)12Blo +Bb\ B, = _ﬂSEOSE)l + 31’33033)13 (12)

4 25 2 3 4
'3Plo P40+P10 Po1 Pzz _P10P01 P31+P01 Rto

Solving (10) and (11) gives A, = 3PP _pop
10 fo1r 410 Lot

b

2 2 2
:PIO Py —Ro Py + BBy B — Ry P40.

A
’ 3R,’R, ~R,’'R,’

Substituting ﬂ.l and 23 into (12), we have
r‘'P,+P,PP,-2P, P P, —4P,'P,°P,,—P,P,’P, +P, ‘P, =0
10 Lag t 5y Lo — 245y Loy Loy =4y Loy Lyg —Lgloy L3 T Ly £ =
It is known from condition ( IT') and condition (1) that the above equation is constant .
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