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Abstract 
In field experiment carried out in the 2018 growing season we tried to show the inverse relation between the 
efficacy of fusarium head blight (FHB) chemical control and the deoxynivalenol (DON) concentration in 
harvested kernels. The wheat cultivar Tbio Mestre was established under no-till in soybean residues and in 
winter rotation with black oats. The leaf rust and yellow spot control was performed during the vegetative stage 
by spraying the whole experimental area with three applications of epoxiconazole + krezoxim methyl (0.7 L/ha). 
The most potent fungicides metconazole + pyraclostrobin (1.0 L/ha) + mancozeb (2.0 kg/ha), prothioconazole + 
trifloxystrobin (0.4 L/ha) and pydiflumetofen (1.0 L/ha) were compared to control FHB. Disease incidence in 
spikes, incidence in spikelets, or spikes severity, grain weight and yield were evaluated. DON concentration was. 
Using the most efficient technology available for FHB control, the hypothesis of the inverse relationship 
between disease intensity occurring naturally in spikes, and deoxinivalenol (DON) concentration in the harvested 
grains was confirmed. DON concentration in unsprayed grains was 3,675 and in the best treatments 821 to 1,067 
ppb.  

Keywords: Fusarium graminearum, fungicide, Gibberela zeae, mycotoxin, Triticum aestivum 

1. Introduction 
In the 2018 year the wheat (Triticum aestivum L.) Brazilian consumption was 11 million tons and the national 
production only 4,3 million tons. The difference between demand and production shows the great challenge of 
making the country self-sufficient (CONAB, 2018).  

Producing wheat where environmental adversities are constant, as in South of Brazil, is not an easy task. The 
constraints are directly related to the excess of rains after flowering to cereal ripening. Wheat crop requires 
approximately 312-550 mm rain distributed throughout its cycle. South of the 24oS parallel, the normal from 
June to November is 944 mm, therefore, much higher than the crop requirements (Westphalen, 1982). 

Due to cultivars susceptibility and favorable environment some diseases limit the amount and quality of wheat 
production. Among them, fusarium head blight (FHB), caused mainly by Gibberella zeae (Schwein.) Petch., 
Anamorph Fusarium graminearum Schwab (Reunião de Pesquisa de Soja da Região Sul, 2016). FHB was first 
described by Smith in 1841, in the United States (Arthur, 1891), in Argentina in 1927, and in Brazil, in 1942 
(Costa Neto, 1947). 

Quantitative damages caused by FHB, after no-till has been widely used by growers can be as high as 39.8% 
(Casa et al., 2004, 2011). In addition to the quantitative damage, the qualitative due to the grains contamination 
by mycotoxins is equally important (Paul et al., 2007, 2018). There are reports showing that the reduction of 
mycotoxin content related to FHB chemical control, i.e., as control increases deoxynivalenol (DON) 
contamination decreases (Haidukowsky et al., 2016). 

Gibberella zeae infective period, and its reflection on the FHB intensity, considering that inoculum is always 
available, is direct related to anthers continuous wetting period duration (Andersen, 1948; Brustolin et al., 2013; 
Reis & Carmona, 2013). Thus, the predisposition period extends from the anthesis beginning (GS 60) to ripening 
(GS 87) (26). 
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Work carried out in the field showed that the environmental conditions which determined the lowest heads 
incidence were 53.5 h of wetness and 16.9 oC mean air temperature in this period. These conditions resulted in a 
3.7% heads incidence. However, in the 22 to 27 oC thermal range and with 45 hours of continuous wetting 
resulted in 60% infected spikelets. This long head wetting period showed that the disease depends on 
post-anthesis rains and not dew (Brustolin et al., 2013). Moreover, the longer the post-infection wetting period, 
the greater the DON contamination (Cowger et al., 2009).  

Report suggests that if weather conditions do not favor infection at early anthesis, then it is justified to delay 
spraying until rain is forecasted. In Southern Brazil, inoculum as ascospores are always present in the air all year 
around thus head wetting is determinant for infection (Reis, 1988). We have long known that weather (heads 
wetting duration) is the main factor determining infection. Without rain occurrence post-anthesis onset, which 
provides the duration of required wetting infection, disease does not occur. Without sufficient duration of wetting 
period there is no infection. Therefore, the best indicator to time the first fungicide spraying aiming at the FHB 
control is the rainfall forecast (Brustolin et al., 2013; Reis et al., 2013).  

In recent years, fungicides have become an important component of FHB management strategies. The research 
identified potent fungicides (metconazole, prothioconazole), spray nozzles (Defy 3D) and spraying speed (8.5 
km/h) that result in the best fungicide deposition on the heads sides (anthers), and especially the time of 
application after anthesis onset and before forecasted rain occurrence (Nicholson et al., 1999; Reis et al., 2013). 

According to the Food and Agriculture Organization (FAO), it is estimated that 25% of food in the world is 
contaminated with mycotoxins. The National Sanitary Surveillance Agency (Anvisa, 2019) has established the 
maximum tolerated limits of mycotoxins, with increasingly restrictive levels. The DON, or vomitoxin, limit in 
wheat grains was 2,000 parts per billion (ppb). But, from 2019 on, for whole wheat and wheat bran, the 
permitted concentration was reduced from 1,250 ppb to 1,000 ppb (Anvisa, 2019).  

In the current control situation, the best tactic to reduce DON below the tolerable concentration is to concentrate 
efforts in improving the effectiveness of the control with fungicides. Reports indicated that efficient fungicide 
spraying significantly reduces FHB intensity and DON levels and increased both yield and thousand kernel 
weight, when compared to untreated controls (Nicholson et al., 199). As shown, DON contamination in grains is 
directly related to FHB intensity (Blandino et al., 2006; Haidukowsky et al., 2005; Paul et al., 2018).  

Great efforts have been made on the genetic improvement aiming at resistance to FHB, however, little progress 
has been achieved. Over the years of research aimed at improving chemical control, more potent fungicides, 
application technology aiming to improve the deposition on heads sides and the precise time of the first 
application showed that control of the incidence in ears of up to 80% were achieved (Reis & Carmona, 2013). 

FHB chemical control generally has poor efficacy and mostly susceptible cultivars are grown, under this 
condition, therefore, the toxin risk is high. Therefore, a feasible strategy for DON reduction in wheat grains is to 
focus on the improvement of the disease chemical control efficacy in commercial field crops (Nicholson et al., 
1999; Paul et al., 2007).  

The hypothesis formulated in our work is that the more efficient the control resulting from the application of 
fungicides, the lower the DON content in the harvested kernels. 

Using the best available technology for FHB control, the objective of this work was to confirm the relationship 
between FHB intensity and the DON content in the harvested grains. 

2. Method 

2.1 Experimental Site 

Experiment was carried out at Fazenda Carvalho, Passo da Areia district, Km 169, 324 RS road, Passo Fundo, 
RS state, latitude 28°12′18″S, longitude 52°29′45″W and altitude 660 m a.s.l. during June to November, 2018.  

2.2 Wheat Cultivar and Cropping System 

Wheat Tbio Mestre cultivar was sown on July 13th, 2018 in soybean residues and under no till seeding 320 viable 
seed/m2, and in winter rotation with black oats (Avena strigosa Schreb.). 

Field was managed in terms of fertilizer application, and pest management according to Zadoks et al. (1974) 
throughout the experimental area, including the control plots, and independently of FHB control. The first 
application was performed when the economic damage threshold reached 6% LI (leaves incidence), with the 
coformulation epoxiconazole (127 g/L) + kresoxim methyl (125 g/L) (0.7 L/ha). A second and third sprayings 
were performed at 15 days intervals.  
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2.3 Fungicides and Rates for FHB Control 

(a) Metconazole (80 g/L) + pyraclostrobin (130 g/L) 1.0. + mancozeb (750g/L) 2.0 kg/ha, (b) prothioconazole 
(175 g/L) trifloxystrobin (150 g/L) – 0.4 L/ha, and (c) pydiflumetofen (200 g/L) – 1.0 L/ha, totalizing five 
treatments by the addition of one unsprayed.  

2.4 Adjuvant 

A silicone spreader (Silwet) 0.04 L/ha was used to improve heads coverage.  

2.5 Time of First Spraying for FHB Control 

The fungicide application was performed when, after the anthesis beginning and before occurrence of a predicted 
rainfall during the crop predisposition period. Rainfall forecast were daily followed according CPTC/INPE 
reports. When there was rain forecast for the next 24-72 hours, the fungicides were sprayed before the event 
onset. A second spraying, considering a 11-days protection period, was performed before new forecasted rain.  
2.6 Disease Assessment 

The treatments effects on FHB intensity, were evaluated (GS 26) collecting all heads in a 5.0 m long row, in the 
center of each plot, and in the laboratory, the spike incidence and severity (spikelet incidence) were determined. 
It was considered infected the spike that had, at least, a white spikelet with white creepy awns. Control was 
calculated relating heads incidence, severity and FHB index (FHBI) in each treatment with the intensity in 
non-sprayed treatment. To appraise the overall disease intensity, heads incidence and head severity were 
integralized as follow: FHBI = (HI × SS)/100, where, HI = head incidence and SS = spikelet severity.  

2.7 Grain Yield 

At the physiological maturation (GS 94), 14.4 m2 plots were harvested with a research machine, grains cleaned, 
weighed and yield estimated in kg/ha.  

2.8 DON Contamination 

A 200g kernels sample, from each plot, was sent to Instituto Samitec (www.samitec.com.br) laboratory Faxinal 
da Palma, Santa Maria, RS for DON quantification. 

2.9 Experimental Design and Statistical Analysis 

Experimental design was a complete random blocks. Data were submitted to ANOVA, and means compared by 
Tukey teste, and regression. 

3. Results and Discussion 
The wheat cultivar Tbio Mestre is susceptible to leaf rust, to yellow spot and to scab. The favorable environment, 
with frequent rains and temperature of 20-25 °C, resulted in the development of diseases natural epidemics 
(Sutton, 1982; Brustolin et al., 2013).  

Control of leaf diseases was independent of FHB and performed in the whole experimental area including the 
control plots. Thus, during the vegetative phase three fungicide applications were done at GS 25, 31, and 49. 

Since the presence of DON is a limiting factor in the wheat industrialization, the most feasible measure for its 
reduction below the tolerable concentration is to improve the chemical control. In this sense, there has been 
progress in application technology such as identification of potent fungicides (metconazole and prothioconazole), 
Defy 3D nozzles, equipment speed 8.5 km/h and, mainly, the time of application: after the onset of anthesis and 
before the occurrence of predicted rainfall. 

The first spraying for FHB control was performed on October 06th, 2018, with 20% anthesis (GS 61) and 
predicted rain came on October 7th, 2018, resulting in spikes continuous wetting for seven days totalizing 91,4 
mm rain. Second spraying was performed 11 days later on October 17th, 2018 at GS 68. Predicted rain started on 
October 18th lasting two days totalizing 52.5 mm. This timing criterion has been practical and accurate based on 
the rain forecast reports available in the media for wheat growers. However, a limiting factor is the operational 
capacity available at the farm to spray the entire area before rainfall occurs. 

The interaction between temperature and duration of heads wetting with direct effect on infection, resulted in a 
higher natural occurrence of spike incidence, and severity in non-sprayed plots.  

There were statistically differences among treatments for both head and spikelet incidence highlighting the 
pydiflumetofen fungitoxicity. The FHB ears incidence was 4.14 times higher than in spikelets (Figure 1).  
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It was accepted the hypothesis that contamination of DON in wheat grains is inversely proportional to the 
efficacy of FHB control confirming previous reports. Best treatments did not eliminate DON but reduced to 
values below the maximum tolerated level (Anvisa, 2019). Research should therefore be concentrated on further 
improving the efficacy of FHB control.  

Beside fungicide efficacy (potent fungicides, spraying technology and timing for first spraying), varietal 
resistance is also an important component of efficient control of FHB in the field. High susceptible cultivars 
should be withdrawn from the wheat technical recommendations (Snijders, 1990).  

Our results are in agreement with other works carried out on a large number of uniform fungicide studies in the 
field proving the effectiveness of some triazole-fungicides, including prothioconazole, for FHB and DON control 
in wheat (Paul et al., 2007, 2008). Our data also agree with recent investigations regarding the relationship 
between FHB disease and yield, showing a negative correlation between these two parameters (Nicholson et al, 
1999; Paul et al., 2007, 2008). 

Therefore, metconazole and prothioconazole treatments, alone or in combination with QoI, and mancozeb, and 
tolerant cultivars, are a useful tool for farmers to minimize Fusarium infection and to reduce DON levels in 
harvested grains, ensuring at the same time higher yields and grain quality compared to other fungicides 
treatments (Wegulo et al., 1982).  

Our results provide useful information for wheat protection programs against toxigenic fungi responsible for 
FHB disease and the consequent DON accumulation in grains, particularly in those seasons in which 
environmental conditions could be favorable to cause FHB severe epidemics such as in Southern Brazil.  
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