
Journal of Agricultural Science; Vol. 11, No. 18; 2019 
ISSN 1916-9752   E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

105 

Climatic and Anthropic Influence on the Geodiversity of the Maranhão 
Amazon Floodplain 

V. A. R. Silva1, L. B. Portela2, J. L. Almeida3, C. H. L. Silva Junior4, J. S. dos Santos3, J. R. N. Santos3,  
M. L. S. de Araújo5, F. E. C. S. Feitosa3, C. W. B. Bezerra2 & F. B. Silva3 

1 Instituto Federal do Maranhão, Pinheiro, Maranhão, Brazil 
2 Universidade Federal do Maranhão, São Luís, Maranhão, Brazil 
3 Universidade Ceuma, São Luís, Maranhão, Brazil 
4 Tropical Ecosystems and Environmental Sciences Laboratory, Remote Sensing Division, National Institute for 
Space Research, São José dos Campos, Brazil 
5 Universidade Federal de Campina Grande, Campina Grande, Paraíba, Brazil 

Correspondence: V. A. R. Silva, Instituto Federal do Maranhão, Campus Pinheiro, Rodovia MA-006, s/n, Pinheiro, 
Maranhão 65200-000, Brazil. Tel: 98-981-381-465. E-mail: vilenaribeirosilva@gmail.com 

 

Received: June 23, 2019      Accepted: September 19, 2019      Online Published: November 15, 2019 

doi:10.5539/jas.v11n18p105          URL: https://doi.org/10.5539/jas.v11n18p105 

 

Abstract 
The Maranhense Amazon floodplain shelters a Ramsar site established by the United Nations for the protection 
of wetland biodiversity. Despite its protected ecological status, the impacts from deforestation, burning, the 
agricultural and livestock industries, are on the rise. Knowledge of the spatial distribution and temporal 
dynamics of these impacts are important to improve the understanding of how this region is affected. Data on 
increasing deforestation and hot pixels were used to evaluate the anthropogenic pressure under the geodiversity 
of the region, relating them to the environmental variables (rainfall, Normalized Difference Vegetation Index and 
Deforestation annual deforestation rate) measured through the rainfall data and the Normalized Difference 
Vegetation Index (NDVI). In this study, the potential of remote sensing and geographic information system. The 
time series were used from 2001 to 2016 for all variables. We observed a strong negative and significant 
correlation between hot pixels and NDVI, while hot pixels increase, the vegetation indexes tend to decrease. In 
2006 an abrupt fall in the NDVI occurred due to the marked increase in the deforested area. In 2010, the NDVI 
reached its highest levels, because the vegetation responded to the highest rainfall observed in the period in 2009. 
Unit 4 presented the highest pixels number in the period evaluated (2,978 pixels; 55% of the total). There is a 
significant correlation between NDVI and rainfall. 

Keywords: deforestation, fires, NDVI, Pinheiro, Ramsar, remote sensing 

1. Introduction 
The loss of natural habitats due to anthropic interference greatly impacts the Amazonian biome. The Maranhense 
Floodplain region, also known as “Baixada Maranhense” (in Portuguese), located in the Maranhense Amazon, is 
recognized internationally as one of the 25 Ramsar Sites in Brazil (Convention on Wetlands of International 
Importance), which host some of the most biologically diverse environments on the planet (Farias Filho, 2013). 
This region also constitutes a State Environmental Protection Area, established by the Decree 11.900 of November 
6, 1991. 

Even with this recognized ecological status, there are several environmental impacts resulting from anthropic 
pressures in the region, where deforestation and fires are the most relevant contributors to biodiversity loss. 
Between 2008 and 2012, this Environmental Protection Area was among the three state conservation units that had 
the most burnt spots in the state. During this period, 19,048 hot pixels were registered in the state Conservation 
Units, which corresponded to 19.5% of all the hot pixels identified in this period for Maranhão (Silva et al., 2016). 

The changes in the vegetation structure may be directly reflected in the biodiversity loss due to a reduction in the 
percentage of forest cover, lower habitat heterogeneity, and consequently a reduction of the communities; thus, 
irreversibly altering the ecological balance of the biome (Vieira et al., 2005; Muniz, 2006; Cardozo et al., 2014). 
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Accurate and up to date information on the location and extension of the impacts from deforestation and fire in this 
region are critical to assessing landscape change and its ecological effects, resulting economic losses, changes in 
land use and cover and how these impacts interfere with biodiversity loss. Through remote sensing data, it is 
possible to obtain a wide view on the deforestation in a region, the space-time distribution of burnt fields, as well as 
the responses of the vegetation to such impacts, being possible to evaluate their interactions and consequences 
(Piromal et al., 2008). 

In complex environments such as the Amazonian Floodplains, the use of the spatial concept of geodiversity favors 
an integrated understanding of the environment, as it can reveal the mineral resources, geology, and natural 
landscapes inherent to a specific region composed by specific types of rocks, relief, soils, and climate (Gray, 2004; 
Silva, 2008). The geodiversity assessment is considered a potentially effective tool to support decision-making 
processes, management, and conservation of natural areas or regions at both local or supra-regional scales (Serrano 
& Ruiz-Flaño, 2007).  

The ecological importance of this region is the marked presence of floodplains that are submerged during the rainy 
season (December to June), forming one of the largest lake systems in Brazil. The rivers and lakes formed in the 
fluvial plains during the rainy season assume great socioeconomic importance as the economic activities of the 
region are intrinsically linked to these environments (Carvalho Neta et al., 2015).  

In this sense, the anthropic activities maintain a close relationship with the flood and drought courses of the lakes, 
due to the climatic characteristics (hot and humid climate with rainfall range of 2000 mm per year). This climatic 
characteristic associated with the geomorphological, geological, and pedological characteristics favors the 
development of fishing, agriculture, and livestock rearing (Farias Filho, 2013).  

The lowland agriculture stands out in the Baixada Maranhense for its particularly fertile soils. Furthermore, its 
products, especially rice, are introduced in the market in periods of low supply (Farias Filho & Ferraz Jr., 2009). 
The exploitation of lakes, floodplain soils and vegetation occurred irregularly, causing several environmental 
changes in the region that compromised the balance of fragile ecosystems. Especially since the 1960s, with the 
construction of the state highway MA 014 and with the significant increase of the population of the region and its 
consequent urbanization (Carvalho Neta et al., 2015).  

The study area presents a warm and humid climate, with two well-defined climatic seasons: the dry season 
between July and November and the wet season, from December to June (Viegas Carvalho et al., 2011). The 
vegetation reveals the nature of the transition between the semi-arid climate of the northeast and the humid and 
sub-humid climates of the north region. The region presents a high phytophysiognomy diversity with areas of 
dense and open ombrophilous forest, cerrado, mangroves, and flood fields (Carvalho Neta et al., 2015).  

Thus, this work focusses on answering the following questions: 1) Do the burns occur randomly in the floodplains 
of the Baixada Maranhense, or is there a well-defined space-time pattern? 2) Are the studied areas being affected 
homogeneously? 3) Is the studied area affected by climate or anthropogenic actions? Therefore, this study aimed to 
determine the space-time distribution of deforestation and burning and their relation to climatic variables in the 
different geological-environmental units (Units) of the floodplains of Maranhense Amazon.  

2. Methods 
2.1 Study Area 

The municipality of Pinheiro was chosen as the sample unit of the floodplain region of Maranhense Amazon 
(Figure 1). Pinheiro is part of the Maranhense Northern Mesoregion and the Baixada Maranhense microregion 
with an area of 1,552.95 km², between 02º31′17″S and 45º06′57″W.  
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classes (yellow spots) were observed only in 2005 and in 2013 in the northern part of the study area corresponding 
to Unit 1 

The Kernel method allows observing the density of heat sources, not the presence or absence of them in a region. 
We verified that in the time series studied, the heat sources were distributed in all the Units of the region, but with 
a concentration in Unit 4, being more evident this occurrence in the years of 2007, 2008 and 2015. 

Regarding the number of hot pixels by Unit (Figure 4a), we found that Unit 4 presented the highest number in the 
period evaluated (2,978 pixels; 55% of the total). Unit 1 concentrated 23% of the burnt spots in the period (1,256 
spots). Unit 2 presented 13% of the spots in the evaluated period (715 spots). Unit 3 presented 9% of the values of 
hot pixels (518 spots).  

Although the floodplain environment presented a natural restriction to the fires, spot occurrence was observed in 
the two Unit (2 and 3) that flooded during part of the year, being 22% of the total (Figure 4a). When comparing the 
area of each Unit with the average number of spots per thousand hectares (Figure 4b), we verified that Unit 2 had 
the highest number of spots, although it was the smallest area. 

 

    
Figure 4. Hot pixels by Unit (a) time series of the number of spots by Unit (b) comparison between the area versus 

the number of hot pixels in each Unit 

 
3.3 Seasonal Variation of Rainfall, Deforestation, Hot Pixels and NDVI 

The results presented in Figure 5 show the seasonal variation of rainfall, deforestation, hot pixels and NDVI in the 
time series evaluated. 

 

 

Figure 5. Annual time series from 2001 to 2016: (a) average rainfall (mm); (b) deforested area (km²); (c) Number 
of hot pixels and (d) NDVI 
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3.4 Relation Between Deforestation, Fires, Rainfall, and NDVI 

From the Spearman correlation analysis (Table 2), we verified significant relationships between the spots and the 
rainfall, spots and NDVI and rainfall and NDVI.  

 

Table 2. Spearman correlation coefficient values (p < 0.05), calculated for number of hot pixels; Rainfall, NDVI 
(Normalized Difference Vegetation Index) and Deforestation (annual deforestation rate) 

Variables Hot Pixel Rainfall NDVI 

Rainfall 
-0.58 

p = 0.02   

NDVI 
-0.64 

p = 0.01 

0.53 

p = 0.04  

Deforestation 
0.08 

p = 0.78 

-0.30 

p = 0.26 

-0.43 

p = 0.09 

 

In relation to the Spearman correlation analysis, we present the analysis of the same variables in Figure 6 (a, b, c, d, 
e, and f). 

 

 
Figure 6. Time series of correlations evaluated; (a) rainfall and hot pixels, (b) hot pixels, and NDVI (c) hot pixels 

and deforestation, (d) rainfall and NDVI, (e) rainfall and deforestation, (f) deforestation and NDVI 

 

The hot pixels increased significantly during drought periods and decreased during the rainy season (Figure 7a). 
Rainfall exerted a greater influence on the number of spots from 2012 (Figure 7b). 
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Figure 7. (a) Annual distribution of burnt spots and rainfall; (b) Time series of hot pixels and rainfall 

 

4. Discussion 
The criteria used by the CPRM to establish the domains and the Geological-Environmental Units our Units, sought 
to group stratigraphic sets of similar behavior regarding use and occupation. The main objective of this 
compartmentalization was to meet a wide range of uses and users interested in knowing the environmental 
implications resulting from the geological foundation (Ramos et al., 2006; Serrano & Ruiz-Flaño, 2007; Silva et al., 
2013). The pattern of grouped distribution of fires may be related to the use of fire as a management practice and 
soil use conditions, which favor the occurrence of aggregate and specific regions (Trauernicht & Lucas, 2016; 
Pereira et al., 2013). The spatial distribution of fires will hardly be completely random because their occurrence in 
specific areas depends on a series of factors related to the type of protection, prevention practices, characteristics of 
the region and forest management (Fuentes-Santos et al., 2013; Pereira et al., 2013). 

Regarding the number of hot pixels by Unit (Figure 4a), we found that Unit 4 presented the highest number in the 
period evaluated. It can be justified by the use of burning during land preparation, considering that it was the Unit 
with the greatest aptitude for agricultural activities where the soils were more fertile, deep, and non-floodable. In 
the Unit 4, we find that land is used mostly for agricultural activities, where very deep soils are developed, well 
drained and differentiated from Unit 4 by the low natural fertility and high leaching. Because they are slightly 
above the average level of rivers, the regions forming Unit 2, their soils were rich in organic matter. Even being 
flooded part of the period, it was exploited with crops of a short cycle such as the lowland agriculture. 

In the Unit 3, there were large lakes, with fluvial and pluvial influence, which could extend far beyond the 
riverbanks. Here we also found soils that in the dry period presented aptitude for plantations of short cycle, for 
silviculture and/or natural pasture. In relation to the presence of burnings observed in the Unit that are flooded 
seasonally, we verified that this is a cultural practice of the region. The lowland agriculture in the Baixada 
Maranhense was generally developed where arboreal vegetation was non-existent, i.e., in the wetland areas. 
However, products such as maize and watermelon (consorted with rice) were cultivated in the highest areas, where 
riparian vegetation was established.  

It resulted in deforestation and burning of vegetation (Farias Filho & Ferraz Jr., 2009) and may explain the 
presence of hot pixels in the floodable Units. This riparian zone had great ecological importance as it was the 
transition area between aquatic and terrestrial ecosystems. Furthermore, it was characterized by high biodiversity 
and provided several important ecosystem services, including water storage and purification and provision of 
spawning habitats for fish (Garssen et al., 2017). 

In this way, we verified that there was a space-time pattern for the hot pixels and that the Units were affected in 
different ways. Throughout the time-series, it was observed that the areas with the highest soil and relief conditions 
suitable for agriculture presented a greater number of spots (Units 1 and 4). However, floodable Units 2 and 3 were 
the most vulnerable to anthropic impacts, as they presented the highest number of spots per hectare. Furthermore, 
it compromised the riparian vegetation, resulting in network consequences for the local ecosystem. 

The annual rainfall presented a decreasing trend, reaching the maximum in 2009 with 2.209 mm and the minimum 
in 2012 with 1.268 mm (Figure 5a). Silva Junior et al. (2016), observed three years of significant rainfall anomaly 
in the Baixada Maranhense region during 2010, 2012 and 2013 and reported that the 2010 drought affected this 
area of study. Silva et al. (2016) verified that a change occurred in the hydrological cycle in the last ten years, with 
the reduction of rainfall during the dry period (Silva et al., 2016). 

During the period evaluated, we observed that the rate of deforestation was increasing until 24.7 km² in the period, 
with the largest increases occurring in 2006 and 2007 (6.6 and 4.1 km², respectively) (Figure 5b). Regarding the 
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hot pixels, 5.467 spots were detected in the period, with the highest number of spots occurring in 2012, 2015 and 
2016, with 575, 808, and 743 spots, respectively (Figure 5c). 

Data from satellites such as the Vegetation Indexes, provide the representation of vegetation strength, as well as 
allow the phenological monitoring favoring the understanding of vegetation response to environmental and 
anthropic pressures. The Normalized Difference Vegetation Index (NDVI) is one of the most widely used remote 
sensing tool used for vegetation monitoring. In 2006 an abrupt fall in the NDVI occurred due to the marked 
increase in the deforested area (Figure 5d). In 2010, the NDVI reached its highest levels, probably because the 
vegetation responded to the highest rainfall observed in the period in 2009 (2.209 mm). 

No significant relationships were observed between deforestation and spots, deforestation and rainfall, and 
deforestation and NDVI. This may be due to the increase in deforestation that occurred in 2006 and 2007. 
Nevertheless, it may indicate synergy between them. Therefore, a moderate correlation in events with many 
variables should be considered. 

In this study, an inverse and significant correlation was observed between hot pixel and rainfall (Table 2). 
Regarding the annual average data (Figure 6 a) we observed that there was no modulated behavior between rainfall 
and hot pixels until the year 2012. This inverse correlation becomes more evident in 2012, when an increase in the 
number of hot pixel was noticed in years with smaller rainfall values, and vice versa. To complement this analysis, 
we found it necessary to evaluate this relation with the dry and rainy periods (Figures 7a and 7b). 

This analysis showed that the rainfall may interfere, but it was not what determined the number of spots in the 
region. Mainly from 2012, there was an increase in burning that could not be justified by this climate change. It 
demonstrated that the relation between hot pixels and rainfall was more qualitative than quantitative. It means that 
the presence of burn was more related to the season (dry or rainy) but the spot quantity may be more related to 
anthropic factors.  

The presence of hot pixels was strongly associated with the land use. This practice was used to manage pasture and 
to prepare the soil for agriculture, mainly for short-cycle food crops (Muniz, 2006). Silva Junior et al. (2016) 
observed in the Baixada Maranhense that the main hot pixels originated from the preparation of the land for the 
so-called “roça de toco” by small rural producers. It consists on an ancient agricultural technique, passed through 
generations, that uses burning as a technique of cleaning and preparing the soil for planting. 

We observed a strong negative and significant correlation between hot pixels and NDVI (Table 2). Furthermore, 
they showed an inverse proportional relation where, hot pixels increase, the vegetation indexes tend to decrease 
(Figure 6b). NDVI is an appropriate index for the study of vegetation, ideal for estimating quantity, quality, and 
humidity, as well as monitoring these characteristics over time. The index presents good results in the 
identification of burnt areas (Coutinho et al., 2016). In this study, NDVI values increased in function of the amount 
of plant material preserved. The highest indexes were observed in years with few hot pixels. This was a 
quantitative analysis, but the NDVI was already efficient in the identification of scars, even under different levels 
of vegetation regeneration. The NDVI Data were useful for the verification of recent and old burnt areas (Borini et 
al., 2015). 

There is broad evidence of a relationship between burning and deforestation within the context of land use change 
and land cover in the Amazon. Nevertheless, there are few studies on spatial distribution and association between 
these events. We verified that the correlation is practically non-existent between deforestation and hot pixels 
(Table 2). However, some correlations may be masked by events that conform to the pattern of the rest of the series. 
This is the case of deforestation that had the highest increase between 2006 and 2007, and the hot pixels presented 
the highest numbers in 2015 and 2016. 

We observed that there is no pattern of association between deforestation and burning in the analyzed period 
(Figure 6c), where there was a greater increase in deforestation (2006 and 2007) but there was no significant 
increase in hot pixels. Similarly, in the years in which the greatest hot pixels occurred (2015 and 2016), there was 
no significant increase in deforestation. Therefore, it demonstrated that this association may be more related to old 
deforested areas, since secondary vegetation is more susceptible to forest fires than primary forest. 

According to Lima et al. (2012), there is a correlation between deforestation and burning, in both recently 
deforested areas and areas deforested several years ago. Nevertheless, much of the burning process is related to 
recent deforestation events for the conversion of mature forest to agricultural land. The association between 
burning and old deforested areas is based on two hypotheses: a) the use of burning for the renovation of existing 
pasture areas (for weed removal and remineralization of dead biomass) and/or b) the removal of regenerating 
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vegetation to new crops or pastures (Aragão & Shimabukuro, 2010). All these situations emphasize the influence 
of anthropogenic factors in the process and confirm these hypotheses for our area of study. 

There is a significant correlation between NDVI and rainfall (table 2). It was possible to observe a climatic 
modulation on the vegetation, except in the years of 2006 and 2007 (Figure 6d), because non-standard 
deforestation increase occurred compared to the rest of the time series. This modulation may have occurred 
because climatic seasonality, particularly rainfall, influences vegetation seasonality when the annual vegetation 
growth cycle (identified according to vegetation phenology parameters) is directly related to annual climate 
seasonality (Bustamante et al., 2012).  

In this study, we did not find a significant correlation between deforestation and rainfall because we did not have 
access to monthly deforestation data, which could demarcate this correlation with the dry and rainy season. Here, 
an annual series of both variables were used, and it was not possible to observe an association between them 
(Figure 6e). However, Aragão et al. (2008) verified the relationship between rainfall, deforestation and hot pixels 
in Amazon. They demonstrate that deforestation reaches its highest annual values approximately three months 
after the rainy season peak. In this case, there is prognostic action in relation to the dry season peak, allowing time 
for the fallen wood to dry until the driest month. Then, during the dry season peak (minimum rainfall values), 
farmers set fire to the dry material on the ground and the hot pixel values reach their maximum. 

On broader scales, another relation between rainfall and deforestation were observed. The withdrawal of the forest 
on a large scale added to the smoke from the fires could promote a reduction in the rainfall over these areas. This 
chain of events generates a positive feedback loop that increases the vulnerability of the Amazon to climate change 
(Aragão et al., 2008).  

We observed the antagonistic behavior between the deforestation increase and the monthly NDVI average, 
especially in 2006, when there was an abrupt fall in the NDVI and a marked increase in the deforested area increase 
(Figure 6f). The development of vegetation indexes, to explore the spectral properties of the vegetation, allowed 
the inference of biophysical parameters referred to the vegetation of extensive areas of the Earth surface, as well as 
their responses to the action of geophysical phenomena and to the anthropic influence. Through the NDVI and EVI 
(Enhanced Vegetation Index) time series, it is possible to show if the changes occurred due to the climatic 
seasonality caused by the change in the rainfall regime or due to changes in land use such as deforestation and/or 
burning (Bayma & Sano, 2015). Therefore, vegetation indexes (EVI and NDVI) are increasingly being used as a 
large-scale monitoring tool for the changes that have occurred in several ecosystems. Furthermore, they are of 
great value for the fast detection of recent deforestation due to their high spatial resolution (250 meters), time (1-2 
days) and wide range of imaging (2330 km) (Bayma & Sano, 2015). 

The results obtained in this study allow better knowledge of the geodiversity of the Maranhense Amazon 
floodplain, the anthropic impacts, and their relationship with the environmental variables. The framing of the 
concept of geodiversity in this context is of special interest because it reflects the understanding of natural diversity 
and links the concept to the development of policies for conservation and management of protected natural areas. 

From the methods used, it was possible to identify the most critical regions, that is, with a higher density of burn 
occurrence, besides distinguishing the most susceptible and vulnerable Units from the study area. Therefore, it is 
possible to direct the policies of prevention and combat to forest fires in these specific areas. We verified that there 
is a space-time pattern for hot pixels and those Units were affected in different ways. Areas with an aptitude for 
agriculture, presented a greater number of spots (Units 1 and 4). However, floodplain Unit (2 and 3) can be 
considered more vulnerable to anthropic impacts, by presenting the highest number of spots per hectare, as well as 
compromising riparian vegetation, bringing net consequences for the local ecosystem. 

From the correlations between the environmental and anthropic variables, we verified that rainfall can influence 
the presence of hot pixels (especially during the drought period). However, spot quantity can be more related to 
anthropic factors due to the cutting and burning practice for land management. We did not find significant 
correlations between rainfall and deforestation because we did not have access to monthly deforestation data. 

As for NDVI, the highest vegetation indexes were observed in years with few hot pixels. Inversely, in years with 
the highest rates of deforestation, we found the lowest NDVI. This shows that burning and deforestation directly 
affect the quantity of vegetation and consequently the forest's environmental diversity. These results show that 
burning and deforestation are more associated with anthropic factors than to environmental factors within the 
context of land use change and land cover in Amazon. These anthropic actions imply network consequences with 
interactions as complex as those governing the biotic and abiotic environments, where the impacts trigger more 
impacts on a web of variables with spatial and temporal succession.  
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Thus, strategies to reduce and control deforestation should include appreciation of the forest for the maintenance of 
biodiversity, as well as monitoring and inspection policies for the prevention of irregular deforestation and burning 
practices. 
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