
 

British Journal of Mathematics & Computer Science 
  

19(3): 1-14, 2016; Article no.BJMCS.28927 
 

ISSN: 2231-0851 
 

SCIENCEDOMAIN international 
www.sciencedomain.org   

 

_____________________________________ 

*Corresponding author: E-mail: srsinghssm@gmail.com; 
  
 

Coincidence Points & Common Fixed Points for Multiplicative 
Expansive Type Mappings  

 
Sukh Raj Singh1*, Manoj Ughade2, R. D. Daheriya1, Rashmi Jain1  

and Suraj Shrivastava3 

 
1Department of Mathematics, J H Government Post Graduate College, Betul, India. 

2Department of Mathematics, Sarvepalli Radhakrishnan University, Bhopal, India. 
3Department of Mathematics, Swami Vivekanand College of Science and Technology, Bhopal, India. 

 
Authors’ contributions  

 
All authors contributed equally and significantly to writing this paper. All authors read and approved the 

final manuscript. 
 

Article Information 
 

DOI: 10.9734/BJMCS/2016/28927 
Editor(s): 

(1) Andrej V. Plotnikov, Department of Applied and Calculus Mathematics and CAD, Odessa State Academy of Civil Engineering and 
Architecture, Ukraine. 

(2) Tian-Xiao He, Department of Mathematics and Computer Science, Illinois Wesleyan University, USA. 
Reviewers: 

(1) Yusuf Ibrahim Suleiman, Kano University of Science and Technology, Wudil, Nigeria. 
(2) Jianhua Chen, Central South University, Changsha, Hunan, China. 

(3) Asha Rani, SRM University Haryana, India. 
(4) Anonymous, Adıyaman University, Turkey. 

(5) Neetu Sharma, Maulana Azad National Institute of Technology, Bhopal (M. P.), India. 
Complete Peer review History: http://www.sciencedomain.org/review-history/16659 

 
 
 

Received: 13th August 2016 
Accepted: 18th October 2016 

Published: 25th October 2016 
_______________________________________________________________________________ 
 

Abstract 
 

In this paper, we prove some coincidence point and common fixed point results for various multiplicative 
expansive type mappings in the context of multiplicative metric spaces. We give some examples to 

demonstrate the validity of the results. Our results improve and supplement some recent results in the 
literature.  
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1 Introduction and Preliminaries 
 
One of the simplest and most useful results in fixed point theory is the Banach-Caccioppoli Contraction 
mapping principle, a powerful tool in analysis for establishing existence and uniqueness of solution of 
problems in different fields. Over the years, this principle has been generalized in numerous directions in 
different spaces. These generalizations have been obtained either by extending the domain of the mapping or 
by considering a more general contractive condition on the mappings. In 1984, Wang et al. [1] introduced 
the concept of expansive mapping and established some fixed point theorems in complete metric spaces. In 
1992, Daffer and Kaneko [2] proved some common fixed point theorems for two expansive mappings in 
complete metric spaces. For more results related to expansive mapping, see [3-4]. 
 
Bashirov et al. [5] studied the concept of multiplicative calculus and proved the fundamental theorem of 
multiplicative calculus. Florack and Assen [6] displayed the use of the concept of multiplicative calculus in 
biomedical image analysis. Bashirov et al. [7] exploit the efficiency of multiplicative calculus over the 
Newtonian calculus. They demonstrated that the multiplicative differential equations are more suitable than 
the ordinary differential equations in investigating some problems in various fields. Furthermore, Bashirov    
et al. [5] illustrated the usefulness of multiplicative calculus with some interesting applications. With the 
help of multiplicative absolute value function, they defined the multiplicative distance between two 
nonnegative real numbers as well as between two positive square matrices. This provides the basis for 
multiplicative metric spaces.  
 
Definition 1.1 (see [8]) The multiplicative absolute value function |�| ∶ ℝ� → ℝ�(where letter ℝ� denote 
the set of all nonnegative real numbers) is defined as 
 

|�| = �
�, � ≥ 1;
1

�
� < 1.

� 

 
Definition 1.2 (see [5]) Let � be a nonempty set. A function �: � × � → ℝ� is said to be a multiplicative 
metric on � if for any �, �, � ∈ �, the following conditions hold: 
 

(m1). �(�, �) ≥ 1; 
(m2). �(�, �) = 1 if and only if � = �; 
(m3). �(�, �) = �(�, �); 
(m4). �(�, �) ≤ �(�, �). �(�, �). 

 
The pair (�, �) is called a multiplicative metric space. 
 
Example 1.3 (see [8]) Let � = ℝ�

� be the collection of all �-tuples of positive real numbers. Then �(�, �) =

�
��

��
� �
��

��
� �
��

��
� … �

��

��
� defines a multiplicative metric on �. 

 
Example 1.4 Let �: [0, +∞) × [0, +∞) → [1, +∞)  be defined as �(�, �) = �|���| , where�, � ∈ [0, +∞) . 
Then � is a multiplicative metric and ([0, +∞), �) is a multiplicative metric space. 
 
Remark 1.5 We note that the Example 1.3 is valid for positive real numbers and Example 1.4 is valid for all 
real numbers. 
 
Example 1.6 (see [8]) Let (�, �) be a metric space. Define a mapping ��  on � by  

 

��(�, �) = �
1, � = �
�, � ≠ �

� 
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where �, � ∈ �  and � > 1 . Then ��  is a multiplicative metric and (�, ��)  is known as the discrete 
multiplicative metric space. 
 
Example 1.7 (see [9]) Let � = �∗[�, �] be the collection of all real valued multiplicative continuous 
functions over [�, �]⊆ ℝ� . Then (�, �)  is a multiplicative metric space with � defined by �(�, �) =

sup�∈[�,�] �
�(�)

�(�)
� for arbitrary �, � ∈ �. 

 
Definition 1.8 (see [8]) Let (�, �) be a multiplicative metric space. 
 

(1). A sequence {��} in � is said to be multiplicative Cauchy sequence if for any �> 1, there exists 
� ∈ ℕ  such that �(��, �� ) ≤ � for all � , � > � . 

(2). A multiplicative metric space (�, �) is said to be complete if every Cauchy sequence {��}  in � is 
multiplicative convergent to a point � ∈ �. 

 
A sequence {��} in � is multiplicative Cauchy if and only if �(��, �� ) → 1 as �, � → ∞. 
 
M. Sarwar and Badshah-e-Rome [10] discussed some unique fixed point theorems in multiplicative metric 
spaces. The established results carry some well known results from the literature to multiplicative metric 
spaces. 
 
Definition 1.9 (see [11]) Let � be a mapping of a multiplicative metric space (�, �) into itself. Then � is 
said to be a multiplicative expansive mapping if there exists a constant � > 1  such that �(��, ��) ≥
��(�, �) for all �, � ∈ �. 
 
For more details of multiplicative metric space and related results, see [12-15]. 
 
Recently, Abodayeh et al. [16] and Agarwal et al. [17] studied the relationship between the multiplicative 
metric space and the standard metric space. 
 
Definition 1.10 (see [18]) Let �, �: � → � be maps. A point � ∈ � is called 
 

(a) Fixed point of � if �� = �; 
(b) Coincidence point of the pair (�, �) if �� = ��; 
(c) Common fixed point of the pair (�, �)  if � = �� = ��. 

 
The sets of all fixed points of �, coincidence points of the pair (�, �), and all common fixed points of the 
pair (�, �) are denoted by ℱ(�), �(�, � ), and  ℱ (�, �), respectively. 
 

2 Main Results 
 
In this section, we will prove the existence of coincidence points and common fixed points of generalized 
multiplicative expansive mappings in the framework of multiplicative metric spaces. 
 
We begin with a simple but a useful lemma.  
 
Lemma 2.1 Let {��} be a sequence in a multiplicative metric space � such that 
 

�(��, ����) ≤ ��(����, ��)                                                                                                           (2.1)   
 
where � ∈ [0�, 1)� and  � =  1, 2, . . .. Then {��} is a Cauchy sequence in � . 
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Proof By induction, we have 
 

�(��, ����) ≤ ��
�
(��, ��)                

 

Let � > � ≥ 1. From (m4), we have 
 

�(��, �� ) ≤ �(��, ����). �(����, ����) … . �(�� ��, �� )                                                             (2.2)          
                       

                         ≤ ��
�
(��, ��). �

����(��, ��). … . ��
� ��

(��, ��) 
 

                         = ��
������������⋯ .��� ��

(��, ��) 
 

                                ≤ �
�
��

���
�
 (��, ��)                                                                          

 
Assume that �(��, ��) > 1 . Since � < 1 , by taking limit as � , � → +∞  in above inequality we obtain 
����,� →∞ �(��, �� ) = 1 . Also, if �(��, ��) = 1,  then �(��, �� ) = 1  for all � > � . Hence {��} is a 
multiplicative Cauchy sequence in �. 
 
Now, we establish the following result of existence of common fixed points. 
 
Theorem 2.2 Let  (�, �) be a multiplicative metric space. Let �, �: � → � be surjective mappings satisfying 
 

�(��, ��) ≥
��(�,�).��(�,��).��(�,��)

[�(�,��).�(�,��)]�
                                                                                                (2.3) 

 
for all �, � ∈ �, � ≠ �,  where �, �, �, � ≥ 0 with � < 1 + �, �< 1 + �, � > 1 + 2�. Then �  and �  have a 
unique common fixed point in �. 

 
Proof Let �� ∈ �  be an initial element and set ��� = ������, ����� = ������, � = 0, 1, 2, … .  . Put 

� =
�����

�����
. Since � + � + �> 1 + 2�, from (2.3), we have 

 
 �(������, ������). �

�(�����, ������). �
�(�����, ������) 

 
≥ ��(�����, �����). �

�(�����, ������). �
�(�����, ������)  

 
which implies 
 

�(���, �����). �
�(�����, ���) ≥ ����(�����, �����). �

�(�����, ���)                     
                    
Since �(�����, ���) ≤ �(�����, �����). �(�����, ���), the last inequality gives us 
 

 �(�����, �����) ≤ ��
�����

�����
�(���, �����) 

 

                                          = ��(���, �����) 
 
Similarly, we obtain 
 

 �(�����, �����) ≤ ��(�����, �����) 
 
In general, we have 
 

�(����, ����) ≤ ��(��, ����)                                                                                                       (2.4)                             
 



 
 
 

Singh et al.; BJMCS, 19(3): 1-14, 2016; Article no.BJMCS.28927 
 
 
 

5 
 
 

and by Lemma 2.1, we deduce that {��}  is a multiplicative Cauchy sequence in �. Since (�, � ) is complete, 
there exists �⋆ ∈ � such that �� → �⋆as � → ∞. Therefore ����� → �⋆ and ����� → �⋆as � → ∞. Since � 
and  � are surjective mappings, there exist �, � ∈ � such that 
 
              �� = �⋆ and �� = �⋆.                                                                                                                    (2.5) 
 
Applying (2.3) with � = ����� and � = �, we have 
 

 �(������, ��). �
�(�����, ��). �

�(�, ������) 
 
 ≥ ��(�����, �). �

�(�����, ������). �
�(�, ��) 

 
which implies that 
 

�(���, �
⋆). ��(�����, �

⋆). ��(�, ���)                                                                                             (2.6)      
                                 
 ≥ ��(�����, �). �

�(�����, ���). �
�(�, �⋆) 

 
Since 1 + 2� < � + � + �< � + 1 + � + �,  therefore  � < � + �, on making limit as � → ∞ in the above 
inequality and simplification leads to ������(�, �⋆) ≤ 1, which entails �(�, �⋆) = 1; that is, � = �⋆.  
 
Again applying (2.3) with � = � and � = �����, we have 
 

 �(��, ������). �
�(�, ������). �

�(�����, ��) 
 
 ≥ ��(�, �����). �

�(�, ��). ��(�����, ������) 
 
this implies that 
 

�(�⋆, �����). �
�(�, �����). �

�(�����, �
⋆)                                                                                     (2.7)                            

 
 ≥ ��(�, �����). �

�(�, ��). ��(�����, �����) 
 
Again since 1 + 2� < � + � + �< � + � + 1 + �, thus � < � + �. On making limit as � → ∞ in (2.7), we 
obtain that ������(�, �⋆) ≤ 1,  which entails �(�, �⋆) = 1 . Hence � = �⋆ . The fact (2.5) along with 
� = �⋆ = � shows that �⋆ ∈ ℱ(�, �). 
 
We are left to prove the uniqueness of the common fixed point �⋆; that is, ℱ(�, �) = {�⋆}. Let � ′ ∈ ℱ(�, �) 
with �⋆ ≠ � ′. By (2.3), we have 
 

 �(��⋆, �� ′). ��(�⋆, �� ′). ��(� ′, ��⋆) ≥ ��(�⋆, � ′). ��(�⋆, ��⋆). ��(� ′, �� ′) 
 
which on simplification leads to 
 

 �����(�⋆, � ′) ≥ ��(�⋆, � ′) 
 
Since 1 + 2� < �,  we get �������(�⋆, � ′) ≤ 1 , which deduces �(�⋆, � ′) = 1 . This contradicts (m2). 
Therefore  �⋆ = � ′ and so ℱ(�, �) = {�⋆}. The proof is completed.  
 
If in the above theorem 2.2 we take � = �= � = 0 and � = �, then we have the following corollary. 
 
Corollary 2.3 (see [11], Theorem 2.1) Let (�, �)  be a multiplicative metric space. Let �: � → �  be a 
surjective mapping satisfying 
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  �(��, ��) ≥ ��(�, �)                                                                                                                   (2.8) 
 
for all �, � ∈ �, � ≠ �, where  � > 1. Then � has a unique fixed point in �. 
 
If in the Theorem 2.2 we take � = 0 and � = �, then we have the following corollary. 
 
Corollary 2.4 (see [10], Theorem 2.8) Let (�, �)  be a multiplicative metric space. Let �: � → �  be a 
surjective mapping satisfying 
 

�(��, ��) ≥ ��(�, �). ��(�, ��). ��(�, ��)                                                                                  (2.9)      
 
for all �, � ∈ �, � ≠ �, where  � + � + �> 1, � > 1 and � < 1. Then � has a unique fixed point in �. 
 
If in the above corollary we take � = �, then we have the following corollary. 
 
Corollary 2.5 (see [10], Corollary 2.8) Let (�, �) be a multiplicative metric space. Let �: � → �  be a 
surjective mapping satisfying 
 

 �(��, ��) ≥ ��(�, �). ��(�, ��). ��(�, ��)                                                                               (2.10) 
 
for all �, � ∈ �, � ≠ �, where  � + 2� > 1, � > 1 and � < 1. Then � has a unique fixed point in �. 
 
If we take � = �= � = 0 in Theorem 2.2, then we have the following corollary. 
 
Corollary 2.6 Let  (�, �) be a multiplicative metric space. Let �, �: � → � be surjective mappings satisfying 
 

�(��, ��) ≥ ��(�, �)                                                                                                                   (2.11) 
   
for all �, � ∈ �, � ≠ �, where � > 1. Then � and � have a unique common fixed point in �. 
 
If we take � = 0 in Theorem 2.2, then we have the following corollary. 
 
Corollary 2.7 Let  (�, �) be a multiplicative metric space. Let �, �: � → � be surjective mappings satisfying 
 

�(��, ��) ≥ ��(�, �). ��(�, ��). ��(�, ��)                                                                                (2.12) 
     
for all �, � ∈ �, � ≠ �,  where �, �, �≥ 0 with � + � + � > 1, � < 1, � > 1 . Then �  and �  have a unique 
common fixed point in �. 

 
If we take � = � in the Corollary 2.7 , then we have the following corollary. 
 
Corollary 2.8 Let (�, �) be a multiplicative metric space. Let �, �: � → � be surjective mappings satisfying 
 

 �(��, ��) ≥ ��(�, �). ��(�, ��). ��(�, ��)                                                                               (2.13) 
     
for all �, � ∈ �, � ≠ �, where � + 2� > 1, � > 1  and � < 1. Then �  and �  have a unique common fixed 
point in �. 
 
Next, we prove the following result. 
 
Theorem 2.9 Let �, �: � → �  be two surjective mappings of a complete multiplicative metric space �. 
Suppose that � and � satisfying the following inequalities 
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�(���, ��) ≥
��(��,�)

��(���,�)
                                                                                                                 (2.14) 

                    

�(���, ��) ≥
��(��,�)

��(���,�)
                                                                                                                 (2.15) 

                    
for all � ∈ � and some nonnegative real numbers �, � and � with � > 1 + 2� and � > 1 + 2�. If � or � is 
continuous. Then � and � have a common fixed point. 
 
Proof Let �� be an arbitrary point in � and set ��� = ������, ����� = ������, � = 0, 1, 2, … . From (2.14), 
we have 
 

 �(�������, ������). �
�(�������, �����) ≥ ��(������, �����) 

 
which implies  
 

�(���, �����). �
�(���, �����) ≥ ��(�����, �����)            

                             
Since �(���, �����) ≤  �(���, �����). �(�����, �����), the last inequality gives us 
 

�(�����, �����) ≤ ��
���

���
�(���, �����)                                                                                         (2.16) 

                
On other hand, from (2.15) we have 
 

  �(�������, ������). �
�(�������, �����) ≥ ��(������, �����) 

 
That is,  
 

 �(�����, ���). �
�(�����, ���� �̀) ≥ ��(���, �����) 

 
Since  �(�����, ���� �̀) ≤  �(�����, ���). �(���, �����), then from above inequality, we get 
 

  �(���, �����) ≤ ��
���

���
�(�����, ���)                                                                                          (2.17) 

                                              
By combining (2.16) and (2.17), we obtain  
 

�(��, ����) ≤ ��(����, ��)                 
                                     

for all �,  where � = ��� �
���

���
,
���

���
�. By Lemma 2.1, we deduce that {��} is a multiplicative Cauchy 

sequence in �. Since � is complete, there exists �⋆ ∈ � such that �� → �⋆as � → ∞. Therefore ����� → �⋆ 
and ����� → �⋆as � → ∞. Without loss of generality, we may assume that � is continuous, then ������ →
��⋆ as � → ∞ . But ������ = ��� → �⋆ as � → ∞. Thus, we have ��⋆ = �⋆. Since �  is surjective, there 
exists � ∈ � such that �� = �⋆. Now, applying (2.14), we have 
 

 �(���, ��) ≥
��(��, �)

��(���, �)
 

 
implies that 
 

��(�⋆, �) ≥ ��(�⋆, �). 
 
The last inequality gives us  
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����(�⋆, �) ≤ 1                                                                                                                            (2.18) 
                                               
Since  � − � > 1 + � , we infer from (2.18) that  �(�⋆, �) = 1  and consequently, �⋆ = � . Hence �⋆ ∈
ℱ(�, �).  
 
By taking � = � in above Theorem 2.9, we have the following result. 
 
Corollary 2.10 Let �, �: � → � be two surjective mappings of a complete multiplicative metric space �. 
Suppose that � and � satisfying the following inequalities 
 

�(���, ��) ≥
��(��,�)

��(���,�)
                                                                                                                 (2.19) 

                   

  �(���, ��) ≥
��(��,�)

��(���,�)
                                                                                                                  (2.20) 

                            
for all � ∈ � and some nonnegative real numbers � and � with � > 1 + 2�. If � or � is continuous. Then � 
and � have a common fixed point. 
 
If we take � = � in Corollary 2.10 we get the following corollary. 
 
Corollary 2.11 Let �: � → � be a surjective mapping of a complete multiplicative metric space (�, � ). 
Suppose that � satisfies the following inequality: 
 

�(���, ��) ≥
��(��,�)

��(���,�)
                                                                                                                  (2.21) 

 
for all � ∈ � and some nonnegative real numbers � and � with � > 1 + 2�. If � is continuous. Then � has a 
fixed point. 
 
If in the above Corollary 2.11, we take � = 0, then we have the following corollary. 
 
Corollary 2.12 (see [10], Theorem 2.9) Let �:� → � be a surjective mapping of a complete multiplicative 
metric space �. Suppose that � satisfies the following inequality: 
 

�(���, ��) ≥ ��(��, �)                                                                                                               (2.22) 
                                 
for all � ∈ �, where � > 1. If � is continuous. Then � has a fixed point. 
 
Next, we give a result of existence of coincidence point.   
 
Theorem 2.13 Let (�, �) be a multiplicative metric space. Let �, �: � → � be mappings satisfying 
 

�(��, ��) ≥ ��(��, ��). ��(��, ��). ��(��, ��)                                                                       (2.23) 
                  
for all �, � ∈ �, where  �, �, � ≥ 0 with � + � + �> 1. Suppose the following  hypotheses:  
 

1) � < 1 or �< 1; 
2) �� ⊆ ��;  
3) �� is a complete subspace of �. 

 
Then � and � have a coincidence point. 
 
Proof Let �� ∈ �. Since �� ⊆ ��, we choose �� ∈ � such that ��� = ��� . Again we can choose �� ∈ � 
such that ��� = ���. Continuing in the same way, we construct a sequence {��} in � such that ����� =
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���, ∀ � ∈ ℕ . If ��� �� = ���  for � ∈ ℕ , then ��� = ��� . Thus ��  is a coincidence point of � and �. 

Now, assume that ����� ≠ ��� for all �. Set λ = max �
���

���
,
���

���
�. We have the following two cases: 

 
Case 1. Suppose � < 1. Applying (2.23), we have 
             

�(�����, ���) = �(���, �����)    
 
                                        ≥ ��(���, �����). �

�(���, ���). �
�(�����, �����) 

 
                                        = ��(���, �����). �

�(���, �����). �
�(�����, ���)                                          

 
The last inequality gives us 
 

  �(���, �����) ≤ ��
���

���
�(�����, ���)                                                                                       (2.24) 

 
Case 2. Suppose c< 1. From (2.23) again, we have 
 

 �(���, �����) = �(�����, ���) 
 
                                       ≥ ��(�����, ���). �

�(�����, �����). �
�(���, ���)                   

              
                                       = ��(�����, ���). �

�(�����, ���). �
�(���, �����) 

 
This implies that 
 

   �(���, �����) ≤ ��
���

���
�(�����, ���)                                                                                      (2.25) 

 
Combining (2.24) and (2.25), we get 
 

�(���, �����) ≤ �λ(�����, ���)                                                                                               (2.26) 
                               
By induction on �, we obtain 
 

�(���, �����) ≤ �λ�(���, ���)                                                                                                  (2.27) 
                                 
Thus for � > �, �, � ∈ ℕ  and since  � < 1, we have  
 

  �(���, ��� ) ≤ �(���, �����). �(�����, �����) … . �(��� ��, ��� )                                     (2.28) 
 

                                     ≤ ��
�
(���, ���). �

����(���, ���). … . ��
� ��

(���, ���) 
 

                                    = ��
������������⋯ .��� ��

(���, ���) 
 

                                    ≤ �
�
��

���
�
 (���, ���)          

                                                       
Assume that �(���, ���) > 1 . By taking limit as � , � → +∞  in inequality (2.28), we have                                   
����,� →� �(���, ��� ) = 1 . Also, if (���, ���) = 1,  then �(���, ��� ) = 1  for all � > � . Therefore 
{���}= {���}  is a multiplicative Cauchy sequence in ��. Since �� is a complete subspace of �, there is 
�⋆ ∈ � such that  {���} converges  ��⋆ as � → ∞ . Hence {���} converges to ��⋆ as � → ∞ . Since � + � +
�> 1, we have �, � and � are not all 0. So we have the following cases. 
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Case 1 If � ≠ 0, then from (2.23), we have 
 
              �(���, ��

⋆) ≥ ��(���, ��
⋆). ��(���, ���). �

�(��⋆, ��⋆) 
 
                                   ≥ ��(���, ��

⋆) 
 
On letting limit as � → ∞  in above inequality, we have       
 

              lim�→� �(���, ��
⋆)  ≤ lim�→� �

�

�(���, ��
⋆) = 1 

 
Thus lim�→� �(���, ��

⋆) = 1  and consequently ��� → ��⋆ as � → ∞ . By uniqueness of limit, we 
have ��⋆ = ��⋆. Therefore � and � have a coincidence point. 
 
Case 2 If � ≠ 0, from (2.23), we have      
      
              �(��⋆, ���) ≥ ��(���, ��

⋆). ��(��⋆, ��⋆). ��(���, ���) 
 
                                   ≥ ��(��⋆, ��⋆) 
 
On letting limit as � → ∞  in above inequality, we have  
      

              �(��⋆, ��⋆) ≤ lim�→� �
�

�(��⋆, ���) = 1 
 
Hence �(��⋆, ��⋆) = 1 and consequently, ��⋆ = ��⋆.  
 
Case 3 If �≠ 0, again from (2.23), we have    
 
              �(���, ��

⋆) ≥ ��(���, ��
⋆). ��(���, ���). �

�(��⋆, ��⋆) 
 
                                   ≥ ��(��⋆, ��⋆) 
 
On letting limit as � → ∞  in above inequality, we have       
 

              �(��⋆, ��⋆)  ≤ lim�→� �
�

�(���, ��
⋆) = 1 

 
Hence �(��⋆, ��⋆) = 1 and consequently, ��⋆ = ��⋆. Therefore  � and � have a coincidence point. 
 
Setting �= 0 in Theorem 2.13, we can obtain the following result. 
 
Corollary 2.14 Let  (�, �) be a multiplicative metric space. Let �, �: � → � be mappings satisfying 
 

�(��, ��) ≥ ��(��, ��). ��(��, ��)                                                                                          (2.29) 
                             
for all �, � ∈ �, where �, � ≥ 0 with � + � > 1. Suppose the following hypotheses:  
 

1) � < 1; 
2) �� ⊆ ��;  
3) �� is a complete subspace of �. 

 
Then � and � have a coincidence point. 
 
Setting � = �= 0 in Theorem 2.13, we can obtain the following corollary. 
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Corollary 2.15 Let  (�, �) be a multiplicative metric space. Let �, �: � → � be mappings satisfying 
 

�(��, ��) ≥ ��(��, ��)                                                                                                               (2.30) 
                                       
for all �, � ∈ �, where � > 1. Suppose the following hypotheses:  

 
1) �� ⊆ ��;  
2) �� is a complete subspace of �. 

 
Then � and � have a coincidence point. 
 
Setting � = � (Identity map) in Theorem 2.13, we have the following corollary. 
 
Corollary 2.16 Let  (�, �) be a complete multiplicative metric space. Let �: � → � be mapping satisfying 
 

�(��, ��) ≥ ��(�, �). ��(�, ��). ��(�, ��)                                                                                (2.31) 
                   
for all �, � ∈ �, where �, �, �≥ 0 with � + � + �> 1. Suppose � < 1 or �< 1. Then � has a fixed point. 
 
Setting � = �= 0 in Corollary 2.16, we can obtain the following corollary. 
 
Corollary 2.17 Let  (�, �) be a complete multiplicative metric space. Let �: � → � be mapping satisfying 
 

 �(��, ��) ≥ ��(�, �)                                                                                                                 (2.32) 
                                     
for all �, � ∈ �, where � > 1. Then � has a fixed point. 
 
Setting �= 0 in Corollary 2.16, we can obtain the following corollary. 
 
Corollary 2.18 Let  (�, �) be a complete multiplicative metric space. Let �: � → � be mapping satisfying 
 

 �(��, ��) ≥ ��(�, �). ��(�, ��)                                                                                                 (2.33) 
                             
for all �, � ∈ �, where �, � ≥ 0 with � + � > 1. Suppose � < 1. Then � has a fixed point. 
 

3 Examples 
 
In this section, we give some examples in support of results. 
 

Example 3.1 Let � = ℝ� and define a mapping �: � × � → ℝ by �(�, �) = �
�

�
� for all �, � ∈ �. Then (�, �) 

is a complete multiplicative metric space. Define �: � → � by �� = �� for all � ∈ �. Then � is a surjection 
and continuous on �. Note that  
 

 �(���, ��). �
�

�(���, �) = �
��

��
� . �

��

�
�

�

�
 

 

                                                     = |�|
��

�  
 

                                                     ≥ �
��

�
�

�

�
 

 

                                                    = �
�

�(��, �) 



 
 
 

Singh et al.; BJMCS, 19(3): 1-14, 2016; Article no.BJMCS.28927 
 
 
 

12 
 
 

where � =
�

�
 and � =

�

�
. Clearly 

�

�
= � > 1 + 2� =

�

�
. Therefore, Corollary 2.12 is applicable to �  and 

�⋆ = 0 ∈ � is a fixed point of �. 
 
Example 3.2 Let � = [0, ∞ )  be the usual metric space and define a mapping � ∶  � ×  � →  ℝ  by 

�(�, �) = �|���| for all �, � ∈  �. Then (�, �) is a complete multiplicative metric space. Define �: � → � 
by �� = 2� for all � ∈ �. Then � is a surjection on �. Note that 
 

 �(���, ��). �(���, �) = �|�����|. �|����| 
 

                                                   = �|��|. �|��| 
 

                                                   ≥ ��|�|�
�
= ��|����|�

�
 

 
                                                   = ��(��, �) 
 
where � = 1 and � = 5. Clearly 5 = � > 1 + 2� = 3. Then (2.22) is satisfied. Therefore, Corollary 2.12 is 
applicable to � and �⋆ = 0 ∈ ℱ(�). Also Theorem 2.1 of [10] is applicable �. 
 
Finally, we present an example to support the validity of Corollary 2.15. 
 
Example 3.3 Let � = [0, ∞ )  be the usual metric space and define a mapping � ∶  � ×  � →  ℝ  by 

�(�, �) = �|���| for all �, � ∈  �. Define �, �: � → � by �� =
�

�
 and �� =

�

��
 for all � ∈ �. Then � and � 

are surjection on �. Then �� ⊆ �� and �� is complete. Note that 
 

 �(��, ��) = �|�����| 
 

                               = ��
�

�
�
�

�
� 

 

                               = ���
�

��
�
�

��
� 

 

                               ≥ ��|�����| 
 
                               = ��(��, ��) 
 
for all �, � ∈ �, where � = 3 > 1. Thus, Corollary 2.15 is applicable to � and �. Here 0 ∈ �(�, �). 
 

4 Conclusion 
 
In this article, we established some coincidence point and common fixed point theorems for various 
multiplicative expansive-type mappings in the context of multiplicative metric spaces. The presented 
theorems extend, generalize and improve many existing results in the literature. Our results may be the 
motivation to other authors for extending and improving these results to be suitable tools for their 
applications.   
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