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Abstract 
 

In this paper we define a new class of operators in Hilbert space called square-normal operator and we 
give an example to show that the square-normal operator is not normal operator. We also consider the 
conditions on any operator to be a square-normal operator. Then we give a condition in order to get a 
normal operator from a square-normal operator. 
 

 
Keywords: Normal operators; numerical range of operators; self-adjoint operators; square-normal 

operators. 
 

1 Introduction 
 
In this paper A, A1 , A2, N, M and E  represent continuous linear operators on Hilbert space H. If A is an 
operator on H, then we denote W(A) for the numerical range of A, A* denotes the adjoint of  A, σ (A) 
denotes the spectrum of A, A  is said to be normal if AA*=A*A, it is called self-adjoint if  A=A* and unitary 

if AA*=A*A = I where I is the identity operator. The real part of A is denoted by ��	� = 	
���∗

�
 and 
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imaginary part of A is denoted by 	� = 	
���∗

��
 . Some of the standard textbooks on bounded operator theory 

are ([1], [2] and [3].  
 

For a bounded linear operator A on H, the numerical range W(A) is the image of the unit sphere of H under 
the quadratic form  �	 →	< 	��, � >  associated with the operator. More precisely,  
 

�(�) = {< 	��, � >	∶ � ∈ �	, �|�|� = 1}. 
 
The following special notations will be used throughout this paper: B= A2 (A*)2 and C = (A*)2 A2, where B 
and C  are nonnegative definite. 
 

In [4] author's results provide canonical matrices of linear operators A: U → U such that A2 is a normal 
operator and U is a unitary or Euclidean space since changes of the basis transform the matrix of A by 
unitary or, respectively, orthogonal similarity. In this paper we will study the square-normal operator and its 
properties. 
 

2 Square-Normal Operator and Some Properties 
 
We now define the following operator: 
 
Definition 1. An operator A is said to be square-normal operator if A2(A∗)2 = (A∗)2A2. 

 
Proposition 1. If A is a normal operator then A is a square-normal operator. 
  
Proof. A is normal operator then 
 

A2(A∗)2 = AAA∗A∗ = AA∗AA∗ = A∗AA∗A = A∗A∗AA = (A∗)2A2. 
 
So A is a square-normal operator. 
 

The converse is not true. We give an example of a square-normal operator which is not normal: 
 

Example 1. 
 

� =	
� 0
� −�

							,									�∗ = 	
−� −�
0 �

 

 

Since  �� = 	
−1 0
0 −1

   and       (�∗)� =
−1 0
0 −1

					, 

 

��(�∗)� = 	
−1 0
0 −1

     and       (�∗)��� =
−1 0
0 −1		

.    So A is a square-normal operator. 

 

But     ��∗ = 	
1 1
1 2

       and      �∗� = 	
2 −1
−1 1

   .   So A is not normal. 

 
Proposition 2.  A is a square-normal operator if and only if A2 is normal. 
 
 Proof : Let A be a square-normal operator, so 
 

A2(A∗)2 = (A∗)2A2 
 

⇐⇒ A2(A2)∗ = (A2)∗A2 
 

⇐⇒ A2   is normal 
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Theorem 1. (Fuglede-Putnam [5, 6]). If A, N and M are bounded operators such that M and N are normal, 
then 
 

AN = MA ⇒ AN∗ = M∗A, 
 
and if N and M are unbounded, then ” = ” is replaced by ” ⊂ ” in the last displayed equation. 
 
Now we state Embry’s Theorem and some of its corollaries which we will use to prove our results. This 
Theorem and corollaries are stated in [7]: 
 
Theorem 2. If N and M are commuting normal operators and AN = MA, where 0 is not in the numerical 
range of A, then N=M. 
 
Corollary 1. If A is an operator such that either σ (A) ∩ σ (−A) = ϕ or   0 ∉  W(A) and �	� = 	−�	� , where 
either  A  or  E  is normal, then E=0. 
 
Corollary 2. If �� is normal and 0 ∉ W(A), then A is normal. 
 

3 The Main Results  
 
Theorem 3. The following are equivalent 
 

i.  A is a square-normal.  
 
ii. Each of B and C commute with Re A2.  
 
 iii B commutes with  Re A2  and  C commutes with Im A2. 

 
Proof: (i)                  (ii) 
 

B	(Re	A�) 	= 	B		 �
�� + (�∗)�

2
� = 	

�	�� + �(�∗)�

2
 

= 	
��(�∗)��� +	��(�∗)�(�∗)�

2
 

= 	
����(�∗)� +	 (�∗)���(�∗)�

2
 

= 	
��	� + (�∗)�	�

2
= 	�

�� + (�∗)�

2
� 	� = (��	��)	� 

 

�	(��	��) 	= 	�		 �
�� + (�∗)�

2
� = 	

�	�� + �(�∗)�

2
 

= 	
(�∗)����� +	 (�∗)���(�∗)�

2
 

= 	
��(�∗)��� + (�∗)�(�∗)���

2
 

= 	
��	� + (�∗)�	�

2
= 	�

�� + (�∗)�

2
� 	� = (��	��)	� 

Conversely, let H = Re A2 and K = Im A2. 

 
�	�� = ��(�∗)�	�� = 	��	�																																																																																																																						(1) 
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also we have 
 

	(�∗)�� = (�∗)�	��(�∗)� = 	�	(�∗)�.																																																																																																									(2) 
 
If  

�	� = �	�										���											�	� = �	�	 
 
Then  
 

B		 �
�� + (�∗)�

2
� = 	�

�� + (�∗)�

2
� 	� 

 
�	�� + 		�	(�∗)� = ��	� +	(�∗)�	�. 

 
This equivalent to 
 

�	(�∗)� −	 (�∗)�	� = 	��	� − �	��	. 
 
Hence by (1) and (2) we have: 
 

(	� − �	)	(�∗)� = 	��	(	� − �	)																																																																																																																(3) 
 
And similarly 
 

(	� − �	)	�� = 	 (�∗)�	(	� − �	)																																																																																																																(4) 
 
Multiplying (3) on the left by (�∗)� and multiplying (4) on the right by(�∗)�, we get: 
 

(	� − �	)��	(�∗)� = 	 (�∗)�	��	(	� − �	) 
 

(	� − �	)� = �	(	� − �	)																																																																																																																														(	5	) 
 

Multiplying (3) on the right by A2 and multiplying (4) on the left by A2, we get: 
 

(	� − �	)(�∗)�	�� = 	��	(�∗)�	(	� − �	) 
 

(	� − �	)� = �	(	� − �	)																																																																																																																														(	6	) 
 
Subtract (6) from (5), will give 
 

(	� − �	)� = 	−	(� − �)� 
 
(B −C)2 = 0 implies B −C = 0 since B and C are self-adjoint operators, and so is B –C. 
 
So A is square-normal operator. 
 
(ii)              (iii) 
 
B(ReA2 ) = ( ReA2) B is clear. 
 
From (ii)              (i) we have A is a square-normal operator so we have 
 

��	� = �	��													&													(�∗)�	� = �	(�∗)�																																																																																						(	7	) 
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So by (7) we have 
 

�	(	��	��) = C	 �
�� − (�∗)�

2�
� = 	

�	�� − �(�∗)�

2�
 

 

= 		
��	�	 − (�∗)�	�

2�
 

= 	�
�� − (�∗)�

2�
� 	� = (	��	��)	� 

 
(iii)                 (i)  
 

                    �	� = �	� 
 

�
�� − (�∗)�

2�
� 	� = 	C	 �

�� − (�∗)�

2�
� 

 
(�� − (�∗)�)� = �	(	�� − (�∗)�) 

 
��	�	 −	 (�∗)�	�	 = �	�� − �	(�∗)� 

 
�	�� − 	�	�� = 	 (�∗)�	�	 − 	 (�∗)�	� 

 
(	� − �	)	�� = 	−	(�∗)�	(	� − �	)																																																																																																														(	8	) 

 
Since because of HB = BH then (3) is satisfied. Indeed, if 
 

�	� = �	� 
 
then 
 

B		 �
�� + (�∗)�

2
� = 	�

�� + (�∗)�

2
� 	� 

 
�	�� + 		�	(�∗)� = ��	� +	(�∗)�	�. 

 
This equivalent to 
 

�	(�∗)� −	 (�∗)�	� = 	��	� − �	��	. 
 
Hence by (1) and (2), (3) is satisfied. 
 
Multiplying (8) on the left by A2 and multiplying (3) on the right by A2, we get: 
 

(	� − �	)� = 	−�	(	� − �	) 
 
�	� −	�� = �	� −	�� 

 
We get C2 = B2 and so B = C ([8], p. 262). 
 
Hence A is a square-normal operator.      
  

Theorem 4: Let S and T be two square-normal operators. For any bounded linear operator A if  
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AS� 	= 	T�A 
Then 

 
�	(�∗)� = 		 (�∗)�	� 

 
Proof. Since S and T are square-normal operators, so by Proposition 2 we see that S2 and T2 are normal 
operators. So by Fuglede-Putnam Theorem 1 we see 
 

�	(�∗)� = 		 (�∗)�	� 
 
Theorem 5: Let S and T be two square-normal operators which commute, and let A be any bounded 
operator for which 0 ∉ W(A). If AS2 = T2A then S2 = T2. 
 
Proof:  Since S and T are square-normal operators, so by Proposition 2 we see that S2 and T2 are normal, so 
Embry’s Theorem 2 is applicable, resulting in S2 = T2. 
 
Theorem 6: If A is a square-normal operator and 0 ∉ W(A) then A is normal. 
 
Proof:  If A is square-normal operator then by Proposition 2 A2 is normal. So by Corollary 2 we see that A is 
normal. 
 
Theorem 7: If B and C commute and 0 ∉ W(A2) then A is square-normal operator. 
 
Proof:  Notice that 
 

��	(	�∗)�	�� = 	��	(	�∗)�	�� 
 
��	� = �	�� 

 
Since B and C are normal even self-adjoint which commute and 0 ∉ W(A2). So Embry’s Theorem 2 is 
applicable, resulting in B = C. So A is square-normal operator. 
 
Theorem 8: Let A be any bounded operator. for any bounded operator E for which either 0 ∉ W(E) or σ (E) 
∩ 		� ( −E ) = ∅ if 
 

�� + �� = 0																																																																																																																																																				(	9	) 
and 

�� + �� = 0																																																																																																																																																		(	10	) 
 
then A is square-normal, where B = A2(	�∗)� and C = (	�∗)�A2. 
 
Proof: Subtracting (10) from (9), we see 

 
EB − EC + BE − CE = 0 
 
E(B − C) = −(B − C)E. 

 
Since 0 ∉ W(E) or �(E) ∩	 �(−E) = ∅ and B − C is normal (even self-adjoint). So by Corollary 1 we see 
 

B − C = 0             B = C. 
 
So A is a square-normal operator. 
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4 Conclusion and Future Work 
 
In this paper has presented new class of operator called square-normal operator and its properties. We see 
that every normal operator is a square-normal operator. As for future work, we plan to generalize this class 
of operators to n-normal operator and satisfy the same properties. We ask a question: Is the same results still 
true with the n-normal operator? 
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