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Abstract

In the manuscript, using C−class function, a concept of a mixed monotone mapping is acquainted
and a coupled fixed point theorems is substantiated for such nonlinear shrinkage mappings in
partially ordered exact rectangular metric spaces. We enlarge and universalize the conclusions of
[9].
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1 Introduction

Stefan Banach is a Polish mathematician, who described a benchmark fixed point theorem familiar
with the Banach Shrinkage Principle (BSP). The BSP has been universalized in many different
subjects. Many researcher enlarged to the situation of nonlinear shrinkage mappings. The presence
of a fixed point studied in many metric spaces and imagined in many research paper and applied
to many subjects that is, mathematics, engineering and economy.

In [1], some fixed point theorems were proved on complete and compact metric spaces and also
given some examples. Fixed points of a generalised weakly contractive map was established the
existence in T− orbitally in completed metric spaces with respect to boundary spaces.

Some existence theorems of the couple fixed point were presented for both continuous and discontinuous
operators so some application to the initial value problems of ordinary differential equations with
discontinuous right-hand sides were investigated in [2].

In [3], using a weak contractivity type of supposition, a fixed point theorem is verified for mixed
monotone mapping in a metric space endowed with partial order. For a periodic boundary value
problem, the existence and uniqueness of solution is studied.

The f is continuous function of C− class, which is described in [4], and also some theorems,
consequences and examples are given. A common fixed point theorem was testified for multi-valued
and single- valued mappings in a dislocated metric spaces verifying a weak contractive condition
with function of C with respect to F − ϕ−weak contractively condition in [5].

A investigation of fixed point results was given in generalized metric spaces with respect to a fixed
point theorem of Banach-Caccipoli type on a class of generalized metric spaces without Hausdorff
in [6].

In [7], some couple fixed point results are verified under c− distance satisfying certain contractive
condition in cone metric space and their results are generalized the conclusion fixed point theorems
of single value mapping for c− distance in cone metric space and also an example is given there.

Some fixed point theorems were introduced for cyclic admissible generalized contractions involving
C−class functions and admissible mappings in metric-like spaces. The results which extended and
improved many recent results in the literature. They also presented some examples and applications
to functional equations arising in dynamic programming in [8].

The presence of a coupled fixed point theorem is proved for a mixed monotone mapping T : X×X →
X under a universalized contraction and build the exclusiveness under a supplementary assumption
on partially ordered complete rectangular metric space in [9].

In this article using C−class function, we prove a coupled fixed point theorem for mixed monotone
mapping F − ψ−of C− class function in partial ordered rectangular quasi metric space. The
proffered theorem extend and unify various known fixed point conclusion.
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2 Mathematical Preliminaries

We state primary definitions and notations to be used throughout the article, where N is the
non-negative set of integers. Rectangular quasi metric spaces are the following designated.

Definition 2.1. Assume X is not a null set and d : X×X → [0,∞] satisfy the following conditions
for all x, y ∈ X and all distinct u, v ∈ X each of which is dissimilar from x and y.

(RqM1) d(x, y) = 0⇔ x = y,

(RqM2) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

At that time the map d is named a rectangular quasi metric on X (rq−metric) and the pair (X, d)
is named a rectangular quasi metric spaces (RqMS).

Definition 2.2. A sequence {xn} in rq−metric space (rectangular quasi-metric space) (X, d) is
named Cauchy if given ε > 0, n0 ∈ N with for all n,m ≥ n0, implies d(xn, xm) < ε or d(xm, xn) < ε,
namely min{d(xn, xm), d(xm, xn)} < ε in [9].

In this instance x is named the rq limit of {xn}.

Definition 2.3. A rq−metric space space (X, d) is named complete if every Cauchy sequence in it
is rq convergent in [9].

Lemma 2.1. Assume (X, d) is a rq−metric space. If f : X →X is a contraction map, at the time
{fn(x0)} is a Cauchy sequence for each x0 ∈ X in [9].

Definition 2.4. Assume (X,�) is a partially ordered set and (X, d) Hausdorff and completed
RqMS. Let T : X × X → X. If T possesses the mixed monotone property, then for any x, y ∈
X,T (x, y) is monotone non-decreasing with respect to x, and also it is monotone nonincreasing
with respect to y for all x, y ∈ X such that

x1, x2, y ∈ X,x1 � x2 =⇒ T (x1, y) � T (x2, y)

and
y1, y2, x ∈ X, y1 � y2 =⇒ T (x, y1) � T (x, y2)

in [9].

Definition 2.5. If T (x, y) = x and T (y, x) = y then a member (x, y) ∈ X ×X is named a coupled
fixed point of the mapping T in [9].

For any (x, y), (u, v) ∈ X ×X, the multiply space X ×X is equipped with the metric ρ described
by

ρ((x, y), (u, v)) =
d(x, u) + d(y, v)

2

So ρ is a rq−metric.

Theorem 2.2. Assume (X, d) is a complete rq−metric space and f : X → X is a continuous
contraction map. In this case f possesses an individual fixed point in [9].

The concept of C−class functions (see Definition 2.6) was introduced by H. Ansari in [4] and is
important, for example (1),( 2),(9) and (15) from Example 2.3. Also see [5], [10] and [8].
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Definition 2.6. [4] A continuous function F : [0,∞)2 → R is called C−function if for any s, t ∈
[0,∞), the following conditions hold:

(1) F (s, t) ≤ s;
(2) F (s, t) = s implies that either s = 0 or t = 0.

An extra condition on F that F (0, 0) = 0 could be imposed in some cases if required. The letter C
will denote the class of all C− functions.

Example 2.3. [4] Following examples show that the class C is nonempty:

1. F (s, t) = s− t.

2. F (s, t) = ms, 0 < m < 1

3. F (s, t) = s
(1+t)r

for some r ∈ (0,∞).

4. F (s, t) = log(t+ as)/(1 + t), for some a > 1.

5. F (s, t) = ln(1 + as)/2, for a > e. Indeed F (s, 1) = s implies that s = 0.

6. F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, for r ∈ (0,∞).

7. F (s, t) = s logt+a a, for a > 1.

8. F (s, t) = s− ( 1+s
2+s

)( t
1+t

).

9. F (s, t) = sβ(s), where β : [0,∞)→ [0, 1).

10. F (s, t) = s− t
k+t

.

11. F (s, t) = s − ϕ(s), where ϕ : [0,∞) → [0,∞) is a continuous function such that ϕ(t) = 0 if
and only if t = 0.

12. F (s, t) = sh(s, t), where h : [0,∞) × [0,∞) → [0,∞) is a continuous function such that
h(t, s) < 1 for all t, s > 0.

13. F (s, t) = s− ( 2+t
1+t

)t.

14. F (s, t) = n
√

ln(1 + sn).

15. F (s, t) = φ(s), where φ : [0,∞) → [0,∞) is a upper semicontinuous function such that
φ(0) = 0 and φ(t) < t for t > 0.

16. F (s, t) = s
(1+s)r

; r ∈ (0,∞).

Definition 2.7. A function ψ : [0,∞) → [0,∞) is called an altering distance function if the
following properties are satisfied:

(i) ψ is non-decreasing and continuous,
(ii) ψ (t) = 0 if and only if t = 0 in [1].

Remark 2.1. We denote altering distance function as Ψ.

Definition 2.8. An ϕ ultra altering distance function is a continuous, nondecreasing mapping
ϕ : [0,∞)→ [0,∞) such that ϕ(t) > 0 , t > 0 and ϕ(0) ≥ 0 in [4].

Remark 2.2. We denote ultra altering distance function as Φu.

Lemma 2.4. Suppose (X, d) is a rectangular metric space. Let {xn} be a sequence in X such
that d(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy sequence then there exist an ε > 0 and
sequences of positive integers {m(k)} and {n(k)} with
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m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε and
(i) lim

k→∞
d(xm(k)−1, xn(k)+1) = ε;

(ii) lim
k→∞

d(xm(k), xn(k)) = ε;

(iii) lim
k→∞

d(xm(k)−1, xn(k)) = ε

in [[9]].

Remark 2.3. We note that also can see lim
k→∞

d(xm(k)+1, xn(k)+1) = ε and

lim
k→∞

d(xm(k), xn(k)−1) = ε.

3 Main Consequences

In next section, we give a universalization in Theorem 2.1 of [9] for a mixed monotone mappings.
We verify a coupled fixed point theorem in exact partially ordered rectangular quasi metric spaces.
Now the main conclusion is certified.

Theorem 3.1. Supposing (X,�) is partially ordered set and (X, d) Hausdorff and exact partially
ordered rectangular quasi metric spaces. Suppose there subsist a function ψ, φ : [0,∞)→ [0,∞) with
ψ(t) < t, φ(t) < t and for each t > 0 lim

r→t+
ψ(r) < t, lim

r→t+
φ(r) < t and also the mixed monotone

property on X is verified by T : X ×X → X be a continuous mapping and

d(T (x, y), T (u, v)) ≤ F (ψ(ρ((x, y), (u, v))), φ(ρ((x, y), (u, v)))) (3.1)

for all x, y, u, v ∈ X for which x � u, y � v There subsist (x0, y0) ∈ X × X with x0 ≺ T (x0, y0),
y0 � T (y0, x0). So T has got an individual coupled fixed point.

Proof. Suppose x0, y0 ∈ X is with x0 ≺ T (x0, y0), y0 � T (y0, x0). Let x1 = T (x0, y0), y1 =
T (y0, x0). Then x0 ≺ x1, y0 � y1. Again, let x2 = T (x1, y1), y2 = T (y1, x1). The mixed monotone
property is verified by T, obtaining x1 ≺ x2, y1 � y2. To continue to do so through, two sequences
{xn}, {yn} are built in X with xn+1 = T (xn, yn), yn+1 = T (yn, xn),

x0 ≺ x1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · (3.2)

and,

y0 � y1 � y2 � · · · � yn � yn+1 � · · · . (3.3)

Denote

δn = ρ((xn, yn), (xn+1, yn+1)) =
d(xn, xn+1) + d(yn, yn+1)

2
. (3.4)

We expose that δn < δn−1. Now, enforcing if the inequality (3.1) is implemented with (x, y) =
(xn, yn), (u, v) = (xn−1, yn−1), for all n ≥ 0. Utilizing properties of ψ, we get

d(xn+1, xn) = d(T (xn, yn), T (xn−1, yn−1))

≤ F (ψ(ρ((xn, yn), (xn−1, yn−1))), φ(ρ((xn, yn), (xn+1, yn+1))))

≤ ψ(ρ((xn, yn), (xn−1, yn−1)))

< ρ((xn, yn), (xn−1, yn−1)). (3.5)

Similarly, we can obtain

d(yn+1, yn) < ρ((xn, yn), (xn−1, yn−1). (3.6)
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Thus we acquire

d(xn+1, xn) + d(yn+1, yn)

2
< ρ((xn, yn), (xn−1, yn−1).

That is δn < δn−1. Thus {δn} is monotone decreasing bounded to the bottom. Hereby, there subsist
a δ ≥ 0 with

lim
n→∞

δn = δ.

Demonstrating δ = 0. Supposing the contrary δ > 0. At the time from (3.1) obtaining

d(xn+1, xn) = d(T (xn, yn), T (xn−1, yn−1))

≤ F (ψ(ρ((xn, yn), (xn−1, yn−1))), φ(ρ((xn, yn), (xn+1, yn+1))))

≤ ψ(ρ((xn, yn), (xn−1, yn−1))). (3.7)

Similarly, we can obtain

d(yn+1, yn) < ψ(ρ((xn, yn), (xn−1, yn−1))). (3.8)

Thus we get

d(xn+1, xn) + d(yn+1, yn)

2
< ρ((xn, yn), (xn−1, yn−1). (3.9)

While n→∞ in (3.9), getting

δ = lim
n→∞

δn < lim
n→∞

δn−1 = δ.

So the incompatibility is obtained. Hence δ = 0. Namely

lim
n→∞

ρ((xn, yn), (xn+1, yn+1)) = lim
n→∞

d(xn+1, xn) + d(yn+1, yn)

2
= 0.

Thus

lim
n→∞

d(xn, xn+1) = 0 and lim
n→∞

d(yn, yn+1) = 0. (3.10)

Evidencing {xn}, {yn} are partially ordered rectangular quasi metric spaces Cauchy sequences.
To accept the opposite that at least one of {xn} or {yn} is not a partially ordered rectangular
quasi metric spaces Cauchy sequences. At the time there subsist an ε > 0 when obtaining two
subsequences {(xn(i)} and {(xm(i)} of {xn} with n(i) is the smallest index where

n(i) > m(i) > i, d(xm(i), xn(i)) + d(ym(i), yn(i)) ≥ ε. (3.11)

This means that

d(xm(i), xn(i)−1) + d(ym(i), yn(i)−1) < ε. (3.12)

By (rectangular quasi metric space 2), we obtain

d(xm(i), xn(i)) ≤ d(xm(i), xm(i)−1) + d(xm(i)−1, xn(i)−1)

+d(xn(i)−1, xn(i)). (3.13)

Similarly from (rectangular quasi metric space 2), we can obtain

d(ym(i), yn(i)) ≤ d(ym(i), ym(i)−1) + d(ym(i)−1, yn(i)−1)

+d(yn(i)−1, yn(i)). (3.14)
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By adding (3.13) and (3.14), from (3.10), (3.11) and (3.12)

d(xm(i), xn(i)) + d(ym(i), yn(i)) ≤ [d(xm(i), xm(i)−1) + d(ym(i), ym(i)−1)]

+[d(xm(i)−1, xn(i)−1) + d(ym(i)−1, yn(i)−1)]

+[d(xn(i)−1, xn(i))

+d(yn(i)−1, yn(i))]. (3.15)

Getting the limit as i→∞ in (3.15), obtaining by (3.10), (3.11)

ε ≤ lim
i→∞

[d(xm(i), xn(i)) + d(ym(i), yn(i))] ≤ lim
i→∞

[d(xm(i)−1, xn(i)−1)

+d(ym(i)−1, yn(i)−1)]. (3.16)

Similarly from (rectangular quasi metric space 2), we can obtain

d(xm(i)−1, xn(i)−1) + d(ym(i)−1, yn(i)−1) ≤ [d(xm(i)−1, xm(i))

+d(ym(i)−1, ym(i))]

+[d(xm(i), xn(i)) + d(ym(i), yn(i))]

+[d(xn(i), xn(i)−1)

+d(yn(i), yn(i)−1)]. (3.17)

Having the limit as i→∞ in (3.17), we get by (3.10), (3.11), (3.16)

lim
i→∞

[d(xm(i), xn(i)) + d(ym(i), yn(i))] = lim
i→∞

[d(xm(i)−1, xn(i)−1)

+d(ym(i)−1, yn(i)−1)]. (3.18)

Applying inequality (3.1) with
(x, y) = (xm(i)−1, ym(i)−1), (u, v) = (xn(i)−1, yn(i)−1),

d(xm(i), xn(i)) = d(T (xm(i)−1, ym(i)−1), T (xn(i)−1, yn(i)−1))

≤ ϕ(ρ((xm(i)−1, ym(i)−1), (xn(i)−1, yn(i)−1)))

< ρ((xm(i)−1, ym(i)−1), (xn(i)−1, yn(i)−1)). (3.19)

Similarly we get

d(ym(i), yn(i)) < ρ((xm(i)−1, ym(i)−1), (xn(i)−1, yn(i)−1)). (3.20)

Before by adding (3.19) and (3.20) and after taking the limit as i→∞, we get

lim
i→∞

[d(xm(i), xn(i)) + d(ym(i), yn(i))] < lim
i→∞

[d(xm(i)−1, xn(i)−1)

+d(ym(i)−1, yn(i)−1)].

From (3.18), this is a contradiction. Then {xn}, {yn} are Cauchy sequences in rectangular quasi
metric space. Because (X, d) is exact there subsist x, y ∈ X with

lim
n→∞

xn = x and lim
n→∞

yn = y. (3.21)

From continuity of T and since X is Hausdorff, obtaining

x = lim
n→∞

xn+1 = lim
n→∞

T (xn, yn) = T (x, y),

and

y = lim
n→∞

yn+1 = lim
n→∞

T (yn, xn) = T (y, x).
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Corollary 3.2. Supposing (X,�) is a partially ordered set and (X, d) Hausdorff and exact rectangular
quasi metric space. Assuming there is ϕ : [0,∞)→ [0,∞) a continuous function such that ϕ(0) = 0
and φ(t) < t for t > 0 and also assume T : X × X → X is a continuous mapping possessing the
mixed monotone property on X,

d(T (x, y), T (u, v)) ≤ ϕ(ρ((x, y), (u, v))),

for all x, y, u, v ∈ X for which x � u, y � v. If there exists (x0, y0) ∈ X ×X with x0 ≺ T (x0, y0),
y0 � T (y0, x0), at the time T possesses an individual coupled fixed point.

Theorem 3.3. Suppose (X,�) is partially ordered set and (X, d) Hausdorff and exact rectangular
quasi metric space. Assume T : X × X → X is a mapping possessing mixed monotone property.
Supposing there is a function ψ, φ as in Theorem 3.1 and ψ(t) = 0 ⇒ t = 0. Assuming X has
property as below:

(a) for all n, if a non-decreasing sequence {xn} → x, at the time xn � x,

(b) for all n, if a non-increasing sequence {yn} → y, at the time yn � y.

If there subsist x0, y0 ∈ X with x0 ≺ T (x0, y0) and y0 � T (y0, x0), at the time there subsist x, y ∈ X
with

x = T (x, y), y = T (y, x),
namely T has got an individual coupled fixed point.

Proof. Coming after the proof of Theorem 3.1, constructing a non-decreasing sequence {xn} in X
and a non-increasing sequence {yn} in X with xn+1 = T (xn, yn) and yn+1 = T (yn, xn) for all n ≥ 0
and verifying (3.21).

Thence by properties of X, obtaining xn � u and yn � v for all n ≥ 0. By (3.1), having

d(xn+1, T (x, y)) = d(T (xn, yn), T (x, y)) ≤ F (ψ(ρ((xn, yn), (x, y)))

ψ(ρ((xn, yn), (x, y))))

≤ ψ(ρ((xn, yn), (x, y))).

On letting n→∞, using (3.21) and properties of ϕ, we get that

lim
n→∞

d(xn+1, T (x, y)) = 0. (3.22)

Conversely, from (regular quasi metric spaces 2) getting

d(x, T (x, y)) ≤ d(x, xn+2) + d(xn+2, xn+1) + d(xn+1, T (x, y)).

While n→∞ in the foregoing imparity, utilizing (3.21), (3.10) and (3.22), having d(x, T (x, y)) = 0
namely x = T (x, y). Analogous, displaying y = T (y, x).

4 Conclusion

We have used C−Class function on couple fixed point theorems for mixed monotone mappings
in exact partially ordered rectangular quasi metric spaces. It is interesting that each fixed point
theorems are verifying in the theory.
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