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Abstract: Nonlinear initial value problems are somewhat difficult to solve analytically as well as numerically
related to linear initial value problems as their variety of natures. Because of this, so many scientists still
searching for new methods to solve such nonlinear initial value problems. However there are many methods
to solve it. In this article we have discussed about the approximate solution of nonlinear first order ordinary
differential equation using ZZ decomposition method. This method is a combination of the natural transform
method and Adomian decomposition method.
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1. Introduction

I n the literature there are numerous integral transforms [1] that are widely used in physics, astronomy as
well as in engineering. In order to solve the differential equations, the integral transform was extensively

used and thus there are several works on the theory and application of integral transform such as the Laplace,
Fourier, Mellin, Hankel, Fourier Transform, Sumudu Transform, Elzaki Transform and Aboodh Transform.
Aboodh Transform [2,3] was introduced by Khalid Aboodh in 2013, to facilitate the process of solving ordinary
and partial differential equations in the time domain. This transformation has deeper connection with the
Laplace and Elzaki Transform [4–6]. New integral transform, named as ZZ Transformation [7–10] introduce by
Zain Ul Abadin Zafar. ZZ transform was successfully applied to integral equations and ordinary differential
equations. The main objective of this article is to solve nonlinear ordinary differential equation using ZZ
transform.

2. ZZ transform

Let f (t) be a function defined for all t ≥ 0. The ZZ transform of f (t) is the function Z(u, s) defined by

Z (u, s) = H { f (t)} = s
∫ ∞

0
f (ut) e−stdt, (1)

or Equation (1) equivalent to

Z (u, s) = H { f (t)} = s
u

∫ ∞

0
f (t) e

−s
u tdt. (2)

2.1. The ZZ decomposition method

Consider the general nonlinear ordinary differential equation of the form:

Lv + Rv + Nv = g (t) , (3)

with initial condition
v (0) = f (t) , (4)
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Table 1. ZZ transform of some functions

f (t) H { f (t)} = Z(u, s)
1 1
t u

s
t2 2!u2

s2

tn n!un

sn

eat s
s−au

cos(at) s2

s2+α2u2

sin(at) aus
s2+(au)2

where v is the unknown function, L is the linear differential operator of highest derivative, R is the reminder
of the differential operator, g(t) is nonhomogeneous term and N(v) is the nonlinear term.

Suppose L is a differential operator of the first order, then by taking the ZZ transform of Equation (3), we
have

s
u

V (u, s)− s
u

V (0) + H [Rv] + H [Nv] = H [g (t)] . (5)

Substituting the given initial condition from Equation (4), we get

s
u

V ( u, s)− s
u

f (t) + H [Rv] + H [Nv] = H [g (t)] ,

or equivalent to

V (u, s) = f (t) +
u
s

H [Rv]− u
s

H [Rv + Nv] . (6)

Since, the solution can be written in the form of v(t) and also V(u, s) is the ZZ transform of v(t). Therefore,
Taking the inverse ZZ transform of Equation (6) to obtain the solution in the form of v(t).

v (t) = G (t)− H−1
[u

s
H [Rv + Nv]

]
. (7)

We now assume an infinite series solution of the unknown function v(t) of the form

v (t) =
∞

∑
n=0

vn (t). (8)

The nonlinear operator Nv = Ψ(v) is decomposed as

Nv =
∞

∑
n=0

An (t),

where, An is called Adomian’s polynomials. This can be calculated for various classes of nonlinearity
according to

An =
1
n!

dn

dλn [Ψ

(
n

∑
i=0

λivi

)
]λ=0.

By using Equation (8), the Equation (7), can be rewritten as;

∞

∑
n=0

vn (t) = G (t)− H−1

[
u
s

H

[
R

∞

∑
n=0

vn (t) +
∞

∑
n=0

An (t)

]]
. (9)

Now, if we compare both sides of Equation (9), we can get the following recurrence relation

v0 = G(t),

v1 = −H−1
[u

s
H [Rv0(t) + A0(t)]

]
,

v2 = −H−1
[u

s
H [Rv1(t) + A1(t)]

]
,
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v3 = −H−1
[u

s
H [Rv2(t) + A2(t)]

]
.

Finally, we have the following general recurrence relation;

vn+1 = −H−1
[u

s
H [Rvn(t) + An(t)]

]
, n ≥ 0. (10)

Therefore, the exact or approximate solution is given by

v (t) =
∞

∑
n=0

vn (t). (11)

Example 1. Consider the non-linear system of initial value problems given by

y′ = [y(t)]2, y (0) = 1, (12)

with exact solution y (t) = 1
1−t . Applying ZZ Transform of Equation (12), we have

s
u

Y (u, s)− s
u

y (0) = H
[
y2
]

. (13)

Substitute the given initial from Equation (13)

s
u

Y (u, s)− s
u
= H

[
y2
]

. (14)

After simple calculation from Equation (14), we have

Y (u, s) = 1 +
u
s

H
[
y2
]

. (15)

By taking the inverse ZZ transform of Equation (15), we have

y (t) = 1 + H−1
[u

s
H
[
y2
] ]

. (16)

We now assume an infinite series solution of the unknown function y (t) of the form

y (t) =
∞

∑
n=0

yn(t). (17)

By using Equation (17), we can write Equation (16) in the form

∞

∑
n=0

yn (t) = 1 + H−1

[
u
s

[
H

∞

∑
n=0

An(t)

]]
, (18)

where, An is called Adomian’s polynomials of the nonlinear term y2(t). Now, by comparing both sides of
Equation (18), we can get the following recurrence relation;

y0 (t) = 1,

y1(t) = H−1
[u

s
H [A0(t)]

]
,

y2(t) = H−1
[u

s
H [A1(t)]

]
,

y3(t) = H−1
[u

s
H [A2(t)]

]
.

Finally, we have the following general recurrence relation;

yn+1 (t) = H−1
[u

s
H [An (t)]

]
, n ≥ 0. (19)
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Now, by using the recursive relation in Equation (19), we can easily compute the remaining components
of the unknown function y (t) in the following manner

y1(t) = H−1
[u

s
H [A0(t)]

]
= H−1

[u
s

H
[
y0

2(t)
]]

= H−1
[

u
s + u

H(1)2
]

,

y1(t) = H−1
[u

s
× 1
]
= H−1

[ s
s

]
= t.

y2 (t) = H−1
[u

s
H [A1 (t)]

]
= H−1

[u
s

H [2y0 (t) y1 (t)]
]
= H−1

[u
s

H (2t)
]
= 2H−1

[
u2

s2

]
= t2.

Similarly, we can find y3 (t)

y3 (t) = H−1
[u

s
H [A2 (t)]

]
= H−1

[u
s

H [2y0 (t) y2 (t)] + (y1 (t))
2
]

.

After some calculation, we obtain t3 and so on. Hence, the approximate solution is given by;

y (t) =
∞

∑
n=0

yn (t) = y0 (t) + y1 (t) + y2 (t) + y3 (t) + · · · = 1 + t + t2 + t3 + · · · = 1
1− t

.

The Octave Code is;

� t = [0 : 0.05 : 0.9] ;

� f =
1

1− t
;

� g = 1 + t + t ∧ 2 + t ∧ 3 + t ∧ 5 + t ∧ 6 + t ∧ 7 + . . . ;

� plot(t, f ,′ r′, t, g,′ o′);

� ylabel(′y(t)′);

� xlabel(′t = 0 : 0.9′);

� legend(‘Exact′, ‘Approximate′).

Hence, the exact solution is in closed agreement with the result obtained by ZZ decomposition

Example 2. Consider the non-linear system of initial value problems given by

x′ = 1− [x(t)]2, x (0) = 0. (20)

Using the method of separation of variables, the exact solution is x (t) = e2t−1
e2t+1 . Applying ZZ Transform of

Equation (20), we have
s
u

X (u, s)− s
u

x (0) = 1− H
[

x2
]

. (21)

Substitute the given initial condition from Equation (21), we have

s
u

X (u, s) = 1− H
[

x2
]

. (22)

After simple calculation from Equation (22), we have

X (u, s) =
u
s
− u

s
H
[

x2
]

. (23)

By taking the inverse ZZ transform of Equation (23), we have

x (t) = t− H−1
(u

s
H
[

x2
])

. (24)

We now assume an infinite series solution of the unknown function x (t) of the form

x (t) =
∞

∑
n=0

xn(t). (25)
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By using Equation (25), we can write Equation (24) in the form

∞

∑
n=0

xn (t) = t− H−1

[
u
s

[
H

∞

∑
n=0

An(t)

]]
, (26)

where, An is called Adomian’s polynomials of the nonlinear term x2(t). Now, by comparing both sides of
Equation (26), we can get the following recurrence relation:

x0 (t) = t,

x1 (t) = −H−1
[u

s
H [A0(t)]

]
,

x2 (t) = −H−1
[u

s
H [A1(t)]

]
,

x3(t) = −H−1
[u

s
H [A2(t)]

]
.

Finally, we have the following general recurrence relation

xn+1 (t) = −H−1
[u

s
H [An (t)]

]
, n ≥ 0. (27)

Then by using the recursive relation in Equation (27), we can easily compute the remaining components
of the unknown function x (t) in the following manner

x1(t) = −H−1
[u

s
H [A0(t)]

]
= −H−1

[u
s

H[x0(t)]
2
]
= −H−1

[
u

s + u
H(t)2

]
= −H−1

[
u
s
× 2!

u2

s2

]
= −2!H−1

[
u3

s3

]
= − t3

3
,

x2 (t) = −H−1
[u

s
H [A1 (t)]

]
= −H−1

[u
s

H [2y0 (t) y1 (t)]
]
= −H−1

[
u
s

H
(

2t×− t3

3

)]
= −H−1

[
u
s

H
(
−2
3

t4
)]

= −H−1
[
−2
3

u
s

H
(

t4
)]

=
2
3

H−1
[

4!
u5

s5

]
=

2
3
× 4! H−1

[
u5

s5

]
=

2
3
× 4!

t5

5!
=

2
15

t5.

Similarly, we can find x3 (t)

x3 (t) = −H−1
[u

s
H [A2 (t)]

]
= −H−1

[u
s

H [2x0 (t) x2 (t)] + (x1 (t))
2
]

.

After, some calculation step, we obtain x3 (t) = −17
315 t7 and so on. Hence, the approximate solution is given

by;

x (t) =
∞

∑
n=0

xn (t) = x0 (t) + x1 (t) + x2 (t) + x3 (t) + · · · = t− t3

3
+

2
15

t5 − 17
315

t7 + . . . .

We obtain the following graph, that is the comparison of approximate and exact solution of the given
differential equation depend on the order of expansion using Octave. The line (graph) in the red color indicates
the actual solution, while the ring line (o) indicates the approximate solution.

Example 3. Solve
dv
dt

+

(
dv
dt

)2
= 4v (t) , v (0) = 1. (28)

Applying ZZ Transform of Equation (28), we have

s
u

V (u, s)− s
u

v (0) + H

[(
dv
dt

)2
]
= 4V (u, s) . (29)
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Substitute the given initial condition from Equation (29), we have

s
u

V (u, s)− s
u
= 4V (u, s)− H

[(
dv
dt

)2
]

. (30)

After simple calculation from Equation (30), we have

V (u, s) =
s

s− 4u
− u

s− 4u
H

[(
dv
dt

)2
]

. (31)

By taking the inverse ZZ transform of Equation (31), we have

v (t) = e4t − u
s− 4u

H

[(
dv
dt

)2
]

. (32)

We now assume an infinite series solution of the unknown function v (t) of the form

v (t) =
∞

∑
n=0

vn(t). (33)

By using Equation (33), we can write Equation (32) in the form

∞

∑
n=0

xn (t) = e4t − H−1

[
u

s− 4u

[
H

∞

∑
n=0

An(t)

]]
, (34)

where, An is called Adomian’s polynomials of the nonlinear term
(

dv
dt

)2
. Now, by comparing both sides of

Equation (34), we can get the following recurrence relation:

v0 (t) = e4t,

v1 (t) = −H−1
[

u
s− 4u

H [A0(t)]
]

,

v2 (t) = −H−1
[

u
s− 4u

H [A1(t)]
]

,

v3(t) = −H−1
[

u
s− 4u

H [A2(t)]
]

.

Finally, we have the following general recurrence relation

vn+1 (t) = −H−1
[

u
s− 4u

H [An (t)]
]

, n ≥ 0. (35)

Then by using the recursive relation in Equation (35), we can easily compute the remaining components
of the unknown function v (t) in the following manner

v1(t) = −H−1
[

u
s− 4u

H [A0(t)]
]
= −H−1

[
u

s− 4u
H[v′0]

2
]
= −H−1

[
u

s− 4u
H
[(

e4t
)′]2

]

= −4H−1
[

u
s− 4u

× 4s
s− 8u

]
= −4H−1

[
s

s− 4u
− s

s− 8u

]
= −4e4t + 4e8t,

v2 (t) = −H−1
[

u
s− 4u

H [A1 (t)]
]
= −H−1

[
u

s− 4u
H [2v0 (t) y1 (t)]

]
= −H−1

[
u

s− 4u
H
(
−8e8t + 8e12t

)]
= −H−1

[
−8us

(s− 4u)(s− 8u)
+

8us
(s− 4u)(s− 12u)

]
= −H−1

[
−2
(

s
s− 8u

− s
s− 4u

)
+

s
s− 12u

− s
s− 4u

]
= 2e8t − e4t − e12t.



Open J. Math. Sci. 2020, 4, 448-455 454

Similarly, we can find v3 (t) as;

v3 (t) = −H−1
[

u
s− 4u

H [A2 (t)]
]
= −H−1

[
u

s− 4u
H [2v0 (t) v2 (t)] + (v1 (t))

2
]

.

After, some calculation step, we obtain

v3 (t) = −H−1
[

u
s− 4u

H
[
14e8t − 28e12t + 14e16t

]]
= −H−1

[
u

s− 4u
H
[

14s
s− 8u

− 28s
s− 12u

+
14s

s− 16u

]]
= −7

2
H−1

[
s

s− 8u
− s

s− 4u

]
− 7

2
H−1

[
s

s− 4u
− s

s− 12u

]
− 7

6
H−1

[
s

s− 16u
− s

s− 4u

]
= −7

2
e8t +

7
2

e12t − 7
6

e16t +
7
6

e4t.

Hence, the approximate solution is given by;

v (t) =
∞

∑
n=0

vn (t) = v0 (t) + v1 (t) + v2 (t) + v3 (t) + · · · = −
17
6

e4t +
5
2

e8t − 5
2

e12t − 7
6

e16t + . . . .

3. Conclusion

In this paper, the ZZ decomposition method has been successfully applied to find approximate solution of
the first order initial value problems of nonlinear ordinary differential equations. If the approximate solution
of the given problems is compared with their analytical solutions, the ZZ decomposition is very effective
and convergence are quite close. It may be concluded that ZZ decomposition method is very powerful and
efficient in finding analytical as well as numerical solutions for wide classes of nonlinear ordinary differential
equations.
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