British Journal of Mathematics & Computer Science

11(3): 1-11, 2015, Article no.BJMCS.19879 %
I SSN: 2231-0851 " <
. . 7
SCIENCEDOMAIN international &
www.sciencedomain.org SCIENCEDOMAIN

Enhanced Ray Tracing Algorithm for Depth Image Geneation

Hanan Ahmed"’, Howida A. Shedeeland Doaa Hegazy

'Department of Scientific Computing, Faculty of Computer andriwdton Systems 6,
Ain Shams University, 11566, Cairo, Egypt.

Article Information

DOI: 10.9734/BJMCS/2015/19879

Editor(s):
(1) Dariusz Jacek Jakébczak, Chair of Computer SciandeManagement in This Department, Technical Usitseof Koszalin,
Poland.
Reviewers:

(1) Anand Nayyar, KCL Institute of Management and Tedbagyy Jalandhar, Punjab, India.
(2) Anonymous, China University of Mining and Technolp@hina.

Complete Peer review Historpttp://sciencedomain.org/review-history/11188

Original Research Article Received: 01 July 2015
Accepted: 31 July 2015
Published: 31 August 2015

Abstract

Ray tracing is a method to convert 3D image to high qualityealistic image. In traditional Rétracing
technique generating an image is an expensive proced® dlve large number of transmitted rays and
the intersection tests of these rays with the scene primitieis paper introduces an enhanced |ray
tracing (Enhanced RT) algorithm. In the proposed algorithm, meogealgorithm is used to order
triangles according to the minimum x coordinate. Then Biisagrch algorithm is used to find the end
index of the first triangle that has minimum x coordinatexgethan the pixel x coordinate. This seafch
limits the subset of the triangles that may interieetray, and hence, reduces the intersection calculation
time. Experimental results show that the proposed algoridecreased the execution time by 99.8% than
the traditional ray tracing algorithm with high qualityr fthe produced depth images for a standard
Benchmark models. The implementation was done on an ordinadyvdnra@ without need to use the
highly expensive parallel architecture hardware (as GP@usters) as in the other research in the same
application. The proposed algorithm also achieved the highestssful hit rate in comparing to the mpst
recent ray tracing algorithms.

Keywords: Depth images; ray tracing, merge sort algorithinaty search algorithm.
1 Introduction

Recently, with large evolution in computer graphics andribeeasing in display resolution and quality, the
generated synthetic scenes have become more complex. Heniteagfes generated from these scenes have
become more complex. Ray tracing [1] is considered théenbst popular technigue for rendering complex
images, as it simulates the real vision process. Meme Ray Tracing is able to visualize highly realistic
graphics effects. However, the main drawback of the eyrig technique is its computational cost which is

*Corresponding author: Email: hanan.ahmed@fcis.aslu.eg, hanan.ahmed20100@cis.asu.edu.eg;

Ahmed et al.; BJMCS, 11(3): 1-11, 2015; ArticleBuMCS.19879

highly expensive. Some recent researches appearedrttext 8 enhance the computational cost of the ray
tracing or to enhance its optics performance. Most of d¢beputational cost enhancements were
concentrated on using special data structure [2,3], spesidivare [4,5] or decreasing the amount of the
rays to be transmitted [6,7,8].

This paper proposes an enhancement of the Ray grpeifiormance. The proposed method concentrates on
reducing the computational cost by reducing the ray objémtsections using merge sort and binary search
algorithms. The discussion and evaluation in this researchremteicted to the models that consist
completely of opaque surfaces. For these models, onlyfi@ysthe eye to the first surface (ray-tracing with
no secondary rays) will be considered to generate depth inElgesesultant depth images of our proposed
method have the same quality as images generated usiveynag tracing but with very low execution time.
The execution time decreased with 99.8% by implememtiagroposed algorithm on CPU.

The rest of the paper is organized as follows: SectionoZiges a brief to the previous work. Section 3
explains the proposed method. The results and conclusiobeniitl Section 4 and 5 respectively.

2 Materials and Methods

2.1 Previous Work

Ray tracing is the most popular image rendering algustiHowever, many researches appeared that aimed
to improve its computational performance.

Many of these methods used acceleration data structefere liracing the rays. Clark [9] proposed the use
of hierarchical bounding volumes to speed both clipping aniMgicalculations.

Rubin and Whitted [2] used Bounding Volume Hierarchies (BVHREn Weghorst [10] proposed the use
of different types of bounding volumes in a single hierardthe BVH has drawbacks as it depends on the
selection of suitable bounding volume shape which may differ doject to anther in the same scene. The
BVHs supposes that, the scene consists of more than one lbie€ a scene consists of single complex
object the BVHs algorithm will be inefficient and loss functionality. The efficiency of BVHSs is dependent
on how well an object fills the space of the bounding voluimesuch a way that, if the empty volume
around the object is large in proportional to the objeetkime, the complexity of the algorithm will
increase and the algorithm will be inefficient. In additidine BVHs search time depends on the scene
complexity.

Fujimoto [11] studied the problem from different approach, tieyded the space into a uniform gird.
Glassner [12] and Kaplan [13] divided their objects into octeels. Bentley [14] proposed the use of kd-
trees as acceleration data structure. The main drawdfagking spatial subdivision is that, an extremely
unbalanced tree may occur. This will increase the cexityl of searching the tree. The octree has the same
problem of BVHs that the voxels may contain a single ohjéttt inappropriate bounding shape which will
cause unnecessary intersection calculations. On the othdrkikatree requires a highly construction time
and the uniform grid may be only sparsely filled or the stsegeometry may still be clumped.

Real-time ray tracing has been a goal of the compuggrhizs community for many years. For real-time ray
tracing, the acceleration data structure must be builpdated for each frame, which impacts on the runtime
of the ray tracing. Wald [15], Lagae [16] and Kalojanov][uged grids as accelerated data structure but
Hunt [18], Shevtsov [19], Zhou [20] and Wu [21] used kddreed Wald [22,23], Lauterbach [24] and
Garanzha [25] used BVHs.

Another approach appeared based on using GPUs to acceleratsy tracing process. GPU ray tracing
offers significant performance gain over the CPU ragitrg, but it requires a customizing process for the
algorithm to be able to operate on GPUs. Scientific reseminohhis area can be classified as follows:

Ahmed et al.; BJMCS, 11(3): 1-11, 2015; ArticleBuMCS.19879

1) Parallelizing the ray tracing process itself and camphe performance with the sequential ray
tracing model as in [26,27,28].

2) Using the GPUs for parallelizing the constructioacess for the data structures that can be used in
the ray tracing. Other research work in this trend,giesl new optimized structures suitable for
GPU computing as [29,30].

However, the last approach is neglecting some rayscakdifferential method [31], pixel averaging method

[31] and advanced pixel averaging method [7] which are basesiog the upper and lower pixels to get the
color of the intermediate pixels. These methods enhatimedomputational time of the algorithm but the

image quality was going to be low. Another method is to meizegthe rays that will not intersect the

primitives and neglect them as in [6]. The main drawbackhiaf inethod is that it is complicated as it

requires performing several preprocessing steps as bullithfyand determining active rays and sample
them to calculate the cost function, the distribution ofvactays in the bounding volume, and the traversal
order of child nodes.

2.2 Ray Tracing Algorithm

Ray tracing algorithm is a well-known algorithm for renderiliy enes by modeling light reflection and
refraction. The main idea of ray tracing algorithm is trat¢heglight rays through the scene. The objective is
to determine the color of each light ray that strikesvibey window in more simple words the objective is
finding the color of each pixel.

In ray tracing algorithm as a theory, the rays wereettalsackward; they will be started from the eye
position (camera position) instead of light source to avaidetffort of tracing rays that will not reach the
eye. Any pixel its color is given by the color of fight ray that passes through that point on and reaches the
eye. So For each pixel, the ray extends from the eyectl@&d primary ray. This ray will be followed into
the scene and as it bounces off of different objectisnio the ray bounces the following approximation will
be made: every time a ray hits an object, a single ngwvilhbe followed from the point of intersection
directly towards the light source The final color of the piseiven by the colors of the objects hit by the
ray as it travels through the scene.

From practical point of view ray tracing algorithm funaentally one of those algorithms that make sure the
appropriate object is “seen” through each pixel, and that the piker is shaded based on that object’'s
material properties, the surface normal seen through thdt pine the light geometry that what is known
with basic ray tracing, naive ray tracing or traditiosal tracing [1].

To add shadow, a shadow ray will be added which igremgsmitted from the point (pixel) will be shaded to
the light source if this ray hit an object the point williheshadow and one of the shading models will be
used. The most used one is Phong shading model [32].

Finally, refraction and reflection will be added accordioghe object properties, that means if the primary
ray hits object like a mirror the ray will be reflectadd if it hits transparent object like water or glass
refraction will be applied. Both refraction and reflectiopeieds on the objects materials [32].

The Shadow, refraction and reflection rays are calledrs#ary rays which add realistic effects to the scene.
2.3 Enhanced Ray Tracing Algorithm (Enhanced RT)

The main idea of the proposed Enhanced RT algorithm rieduce the ray object intersections testing for
each primary ray and turn off the secondary ray to gatdapth images without aliasing. The secondary
rays were neglected because we test the method oly tmpalque models without environment around so,
there are no shadows, reflections and refractions.

Ahmed et al.; BJMCS, 11(3): 1-11, 2015; ArticleBuMCS.19879

In the proposed Enhanced RT, merge sort algorithm is usedi¢o triangles according to the minimum x
coordinate of each one. Then Binary Search finds the regek iof the first triangle that has minimum x
coordinate greater than the pixel x coordinate. This semnits the subset of the triangles that may intersect
the ray, and hence, reduces the intersection calculationAiftes filtering the triangles with the minimum x
coordinate of each triangle we will filter the resulting sulvgiét y coordinate to avoid calculating the ray
triangle intersection to all the previous subset, the dlgoriests whether the x and y coordinates of the
pixel within the minimum and the maximum x and y coordinatesiarfigies in the subset instead of sorting
the subset by the minimum y coordinate of each triangleusaaedinary Search to find the end index of the
first triangle that has minimum y coordinate greater ttienpixel y coordinate, The complexity of using
sorting the subset and applying binary search on it equalgrOfign) but if the linear test will be O(n).This
test causes that part of triangles will be neglectedhfcalculation without affecting the quality of the
rendered image.

The process sequence of our proposed Enhanced RT algasitxplained in (Algorithm 1) in pseudo code
form while the naive ray tracing algorithm [1] is explaimed@Algorithm 2). The main steps of our proposed
algorithm can be summarized as follows:

1) The algorithm takes the camera positey®_posand the set of triangldsas input.
2) Determines the bounding volumeBf the minimum and the maximum x and y coordinates of each
trianglet in T.
3) Triangles are sorted using Merge Sort algorithm basedeominimum x value of each triangle.
4) For each ray in R which is set of rays fromaye_posto the screen pixels, P which lies inside the
bounding volume of .
a. Initialize P depth witheo.
b. Assign the x coordinate of pixBltoV
c. Apply binary search to gegndindex. endindex is the index of the first triangle il
which its minimum x coordinate greater thén
d. For each triangle t in the subset which endsrdindex
i. Check if the x and y coordinates of P within the minimurd the maximum x and y
coordinates of.
1. If P coordinate within the triangle coordinate calculateititersection of the ray
r with trianglet to get the currendepth and update the depth of the pikein
case that thdepth is less than the current depth.

Algorithm 1

Proposed Enhanced Ray tracing Algorithm for calculatiqgtdenage. T is a set of triangles in the scene.
eye_pos is the eye position to the scene.

1. Fast_Depth_Image(eye_pos,T)

2. ForeachtriangletinT

3. Get min. and max. x and y coordinate of t vertices

4. Merge_Sort(T) // sort triangles according to their mimalues
5. Foreachray rfrom eye_pos to each pixel P

6. P. depth=o

7. V=P.x

8.

endIindex=Binary_Search(T,V) //Search triangles accorttirteir min. x value of the triangle and
get the index of triangle which his min. x value is thstfgreater than V

9. For each triangle tin T from 0 to endIndex

10. If P.x within t min. x and max. x and P.y within t minagd max. y

11. depth= GetIntersection(r,t)

12. If(depth < P.depth)

13. P.depth=depth

Ahmed et al.; BJMCS, 11(3): 1-11, 2015; ArticleBuMCS.19879

Algorithm 2

Naive ray tracing without secondary ray. T is a seti@hgles in the scene. eye_pos is the eye position to the
scene.

1. RT (eye_pos,T)

2. For eachray r from eye_pos to screen pixel P
3. P.depth=o

4. Foreachtriangletin T

5. [Ifrintersectt

6. depth= get_ray_triangle_intersection (r,t)

7. If depth < P.depth

8. P. depth=depth

Algorithm 3

Naive z-buffer without interpolation. T is a set of triangleshe scene. eye_pos is the eye position to the
scene.

1. Z_buffer (eye_pos,T)

2. For each pixel P on screen

3. P.depth=o

4. Foreachtriangletin T

5. For each pixel P ont

6. getrthe rayfrom eye_posto P

7. depth= get_ray_triangle_intersection (r,t)
8. If depth < P.depth

9. P. depth=depth

3 Results and Discussion

The experiments are designed to test the following:

1- Compare the performance of the proposed Enhanced RT witfirdluitional RT algorithms in
terms of the quality of the generated images.

2- Compare the performance of the proposed Enhanced RT ¢oediffRT algorithms in terms of the
successful hit rate which is the ration between the vigislels and total intersection tests.

The algorithms that implemented and used for performance cmmpaare: naive z-buffer without
interpolation [33] shown in (Algorithm 3), naive ray tregi 1] without secondary ray shown in Algorithm 2
and our proposed enhanced ray tracing algorithm. SHREC 2011rharciklataset [34] was used in all
experimental evaluations. SHREC is a benchmark createshége retrieval contest of Non-rigid 3D. The
benchmark consists of 600 models. Models are represastedtertight triangle meshes and the file format
is selected as the ASCII Object File Format (*.off)atdftight triangle meshes have average size 18950
triangles. We used T1.off and T6.off which are models in BERenchmark to evaluate the performance of
our Enhanced RT algorithm. The algorithm implemented otardard PC with an intel core i7-4702MQ
2.20GHz CPU and 8GB memory.

3.1 Results

We tested the proposed Enhanced RT by generating the deygedrfor two different models from SHREC
benchmark, each image of size 256x256. The quality oBthmages are compared with the quality of the
images generated for the same models using z-buffer withtarpolation and naive RT. The images

Ahmed et al.; BJMCS, 11(3): 1-11, 2015; ArticleBIMCS.19879

generated using z-buffer have many holes as the zrlndfedeal only with pixels that completely located

inside the triangle (see Figs. 1 and 2). These holes thadmages very low quality. The images generated
using naive RT shown in (Figs. 3 and 4) are smooth, without holésliasing. But the images generated
using our proposed Enhanced RT shown in (Figs. 5 and 6) haganie quality as those generated with

naive RT but with very low execution time for our progbsgethod.

(Table 1) displays the execution time of the three diffeedgorithms. As shown from the results, z-buffer
algorithm has the lowest execution time. As the sizthefmesh is less than the size of the image, which
equals the number of rays that will be transmitted in nRiveThe complexity of z-buffer is O(T) where T
is the number of triangles and naive RT is O(RT) wherse fRé number of rays so, the Naive RT has the
highest execution time. The Enhanced RT has a very lowgaedime, with decrease by 99.8% compared
to the time of the naive RT. However, the low executiore of the naive z-buffer is considered to be of less
importance compared to the quality of its generated imagéawn in (Figs. 1 and 2). The images generated
using z-buffer contain many holes as the method can dealdthlyixels that completely located inside the
triangle. For the proposed Enhanced RT algorithm, the gaheiquality of the generated images is a very
promising advantage. The proposed algorithm achieved ageexy compromise between the quality of the
generated depth images and the algorithm's execution time

Fig. 1. Depth image of T1.off with z-buffer Fig. 2. Depth image of T6.off with z-buffer

Fig. 3. Depth image of T1.off with naive RT Fig. 4. Depth image of T6.off with naive RT

Ahmed et al.; BJMCS, 11(3): 1-11, 2015; ArticleBIMCS.19879

Fig. 5. Depth image of T1.off with our Fig. 6. Depth image of T6.off with our
proposed Enhanced RT algorithm proposed Enhanced RT algorithm

Table 1. The run time of each model using Naive RT (naivay tracing), Enhanced RT (our proposed
method) and Z-buffer

Model Mesh Naive RT Enhanced RT Enhanced RT Enhanced RT Acceleration Z-buffer
name size (seconds) includes excludes excludes ratio of (seconds)
merge sort merge sort binary search enhanced RT
time (seconds) time (seconds) time (seconds) in worst case
T1l.off 18998 1716.¢ 1.66235 1.64638 1.636 99.9% 0.33
T6.off 1887¢ 1816.5¢ 1.8809: 1.85(1.8492¢ 99.896Y 0.3:

A comparison performed between our proposed algorithm andfahe most recent ray tracing algorithms,
the fast kd-tree construction for ray tracing based ditigift ray distribution [35], was down using
successful hit rate as shown in (Table 2 and Fig. 7)s(Band 9) show the high quality of the produced
depth images for the same two models used in [35]. (TAddows that our proposed algorithm, Enhanced
RT, has the highest successful hit rate which meansttismathe most efficient algorithm.

30

25
ﬁ 20
=
T
S 15 - M Enhanced RT
‘%
wv
] = Fast kd-tree
Q 10 o .
3 construction

SAH
5 I
0 -
Bunny (69,451) Dragon(871,414)
Models

Fig. 7. The successful hit rate of different algoritms for different mesh sizes

Ahmed et al.; BJMCS, 11(3): 1-11, 2015; ArticleBIMCS.19879

As a summarization Enhanced RT achieved better resultsniize RT in terms of running time which
decreased by 99.8% with the same image quality. AlsorieeltlaRT achieved better image quality than z-
buffer but z-buffer achieved better running time. In congmariwith fast kd-tree construction for ray tracing
algorithm based on efficient ray distribution [35], Enhané¥l achieved better successful rate which
indicates that Enhanced RT succeeded in decreasing theatotdject intersection.

Table 2. The comparison between our algorithms and thiast kd-tree construction for ray tracing
based on efficient ray distribution

Model Mesh size Method Used hardware Number of ray Successful
primitive hit rate
intersections

Bunny 69, 451 Enhanced RT Intel core i7-4702MQ154,409 27.5%

2.20GHz CPU and
8GB memory

Dragon 871,414 Enhanced RT Intel core i7-4702MQ 148,710 22.7%

2.20GHz CPU and
8GB memory

Bunny 69, 451 Fast kd-tree Intel i3-2100 3.00 GHz 999,885 17.68%

construction for CPU, equipped with
ray tracing based 4.0G memory and an
on efficient ray NVidia GeForce GTX
distribution [35] 450 graphics card

Dragon 871,414 Fast kd-tree Intel i3-2100 3.00 GHz 1,090,330 15.11%

construction for ~ CPU, equipped with

ray tracing based 4.0G memory and an

on efficient ray NVidia GeForce GTX

distribution [35] 450 graphics card
Bunny 69, 451 SAH [36] Undefined 1,637,046 9.89%
Dragon 871,414 SAH [36] Undefined 1,720,314 8.65%

Fig. 8. Depth image of Bunny with our
proposed Enhanced-RT algorithm

4 Conclusion

Fig. 9. Depth image of Dragon with our
proposed Enhanced-RT algorithm

In this paper we introduced an enhanced ray tracing (EntaR@¢ algorithm, and its implementation,

which used to get the depth images for retrieving ngid-8D objects based on rendering the 3D model as a
set of depth images from multiple view directions. EmeshRT is based on sorting the mesh’s triangles
according to its minimum x coordinate and get the rarigdamgles that may intersect with each ray using

Ahmed et al.; BJMCS, 11(3): 1-11, 2015; ArticleBuMCS.19879

binary search. The proposed algorithm enhanced the exetiutie of the ray tracing, with the same quality
as the naive ray tracing, by reducing the number of rayglgantersections.

The most recent researches concentrated on using adoglatata structure or implement algorithms on
GPUs. But In this work the implementation was done ororainary hardware with high quality results
which reflect the great efficiency for the proposed algoritfihe implementation was done using, Intel core
i7-4702MQ 2.20GHz CPU and 8GB memory. The proposed algoittinmeved very good run time with
excellent accuracy without using acceleration data strucnock using the simple well known helper
algorithms, merge sort and binary search, to reduce thebewumf ray triangles intersection tests.
Experimental results show that the proposed Enhanceddg®iithin decreased the execution time by 99.8%
than the execution time for the traditional ray tracilgpathm with the same quality for the produced depth
images. The proposed algorithm achieved a very good cormgedmiween the quality of generated depth
images and the algorithm's execution time. Also as showrhénekperimental result, our proposed
algorithm, Enhanced RT, has the highest successful hit raghwheans that, it is the most efficient
algorithm.

For future work we would like to implement our algorithm witicendary rays to add reflection and
refraction effects to make the scenes more realisticcampare it with other ray tracing algorithms which
used for static and dynamic scenes in terms of runimimg &nd image quality. We would like to study the
effect of increasing the scene mesh size and the numbebjetts in the scene. Also we intended to
parallelize the implementation of our proposed modehgisGPUs to achieve more performance
enhancement.

Authors’ Contributions

Author HA designed the study, performed the statisticdlaisa wrote the protocol, and wrote the first draft
of the manuscript. Author HAS managed the analyses ofttly ind manuscript revision. Author DH
managed the literature search. All authors read and appttowdidal manuscript.

Competing Interests
Authors have declared that no competing interests exist.

References

[1] Appel A. Some techniques for shading machine rendering of sdBdsing Joint Computer
Conference. Washington DC. 1968;37-45.

[2] Rubin SM, Whitted T. A 3-dimensional representationfémt rendering of complex scens. TH& 7
Annual Conference on Computer Graphics and Interactive Teclsnijeg York. 1980;110-6.

[38] Kay TL, Kajiya JT. Ray tracing complex scenes™ B&nual Conference on Computer Graphics and
Interactive Techniques. 1986;269-78.

[4] Zhu X, Deng Y. Evaluation and improvement of GPU rayitrgevith a thread migration technique.
International Journal of Signal Processing Systems. 2013;5:111

[5] Afra AT, Szirmay-Kalos L. Stackless multi-BVH travatsfor CPU, MIC and GPU ray tracing.
Computer Graphics Fourms. 2014;33:129-40.

[6] Nabata K, Iwasaki K, Dobashi Y, Nishita T. Efficiedivide and conquer ray tracing using ray
sampling. The B High-Performance Graphics Conference. 2013;129-35.

Ahmed et al.; BJMCS, 11(3): 1-11, 2015; ArticleBuMCS.19879

(7]

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(19]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

Patoliya D, Shah V, Ghodasara B. Reducing Computationalitiregy tracing. International Journal
of Advance Engineering and Research Development. 2014;1:1-5.

Stokes D. Divide and conquer G-buffer ray tracing: Easteashivigton University; 2014.

Clark JH. Hierarchical geometric models for visibleface algorithms. Communications of the
ACM. 1976;19:547-54.

Weghorst H, Hooper G, Greenberg DP. Improved computationtioae for ray tracing. ACM
Transactions on Graphics. 1984;3:52-69.

Fujimoto A, Tanaka T, lwata K. ARTS: Accelerated Ragfing System. Computer Graphics and
Applications, IEEE. 1986;6:16-26.

Glassner AS. Space subdivision for fast ray tracing. [itden Graphics and Applications, IEEE.
1984;4:15-24.

Kaplan MR. The uses of spatial coherence in ray traclieghniques for Computer Graphics.
1987;173-93.

Bentley JL. Multidimensional binary search trees used$sociative searching. Communications of
the ACM. 1975;18:509-17.

Wald |, I1ze T, Kensler A, Knoll A, Parker SG. Raydireg animated scenes using coherent grid
traversal. ACM Transactions on Graphics. 2006;25:485-93.

Lagae A, Dutré P. Compact, fast and robust grids for raging. Computer Graphics Forum.
2008;27:1235-44.

Kalojanov J, Slusallek P. A parallel algorithm for counstion of uniform grids. HPG '09 Proceedings
of the Conference on High Performance Graphics. 2009;23-8.

Hunt W, Mark WR, Stoll G. Fast kd-tree constructiorthwan adaptive error-bounded heuristic.
Interactive Ray Tracing 2006, IEEE Symposium on. Sakel City. 2006;81-8.

Shevtsov M, Soupikov A, Kapustin E. Highly parallel fasttkek construction for interactive ray
tracing of dynamic scenes. Computer Graphics Forum. 208826404.

Zhou K, Hou Q, Wang R, Guo B. Real-time kd-tree consitsuncon graphics hardware. ACM
Transactions on Graphics. Asia; 2008.

Wu Z, Zhao F, Liu X. SAH kd-tree construction on GPU. AGUSGRAPH Symposium on High
Performance Graphics. 2011;71-8.

Wald I, Boulos S, Shirley P. Ray tracing deformable ssemsing dynamic bounding volume
hierarchies. ACM Transactions on Graphics. 2007;26:2-18.

Wald 1. On fast construction of SAH-based bounding volumeahtties. Interactive Ray Tracing.
2007;33-40.

Lauterbach C, Garland M, Sengupta S, Luebke D, Manocha $.B38H construction on GPUs.
Computer Graphics Forum. 2009;28:375-84.

10

Ahmed et al.; BJMCS, 11(3): 1-11, 2015; ArticleBuMCS.19879

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Garanzha G, Pantaleoni J, McAllister D. Simpler and fakteBVH with work queues. ACM
SIGGRAPH Symposium on High Performance Graphics. 2018459

Britton AD. Full CUDA implementation of GPGPU recursive-taacing. Purdue University; 2010.

Budge BC, Anderson JC, Garth C, Joy KI. A straightfodv@JDA implementation for interactive
ray-tracing. Interactive Ray Tracing. Los Angele€EEESymposium on; 2008;178.

Segovia A, Li X, Gao G. lterative layer-based raymgcon CUDA. Performance Computing and
Communications Conference. Scottsdale; 2009.

Carr NA, Hoberock J, Crane K, Hart JC. Fast GPU raginigaof dynamic meshes using geometry
images. Graphics Interface. Toronto. 2006;203-9.

Santos AL, Teixeira JMXN, de Farias TSMC, Teichrieh Welner J. KD-Tree traversal
implementations for ray tracing on massive multiprocesssér comparative Study. Computer
Architecture and High Performance Computing. Sao Paulo. 20@9;4

Behmanesh AA, Pourbahrami S, Gholizadeh B. Reducing retimer in ray tracing by pixel
averaging. International Journal of Computer Graphicsnémation. 2012;2:15-24.

Peter S, Gleicher M, Marschner MR, Reinhard E, Sundhigmpson WB, et al. Fundametals of
Computer Graphics. Second Edition. 2005;201-237.

Joy KI. The depth buffer visible surface algorithm: One Boenputer graphics notes. University of
California; 1999. Accessed25-September-2014.
Available: http://www.idav.ucdavis.edu/education/GraphicsNat&uffer-Algorithm.pdf

NIST. SHREC 2011 - Shape Retrieval Contest of Non-@dWatertight Meshes; 2011. Accessed:
10 Jan 2015. Available: http://www.itl.nist.gov/iad/vug/sharp/cdf2831/NonRigid/data.html

Liang X, Yang H, Qian Y, Zhang Y. A Fast Kd-tree coostion for ray tracing based on efficient ray
distribution. Journal of Software. 2014;9:596-604.

Wald I, Havran V. On building fast kd-trees for rapding, and on doing that in o (n log n).
Interactive Ray Tracing. IEEE. 2006;61-9.

© 2015 Ahmed et al.; This is an Open Access ariifit¢ributed under the terms of the Creative Commatisbution License
(http://creativecommons.org/licenses/byj4 ®Which permits unrestricted use, distributiondareproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be asedsere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/11188

11

