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Abstract 
 

This paper considers the development of a 2-step four-point  continuous hybrid method for the direct 
solution of initial value problem (IVPs) of second order ordinary differential equations using the method 
of interpolation of the power series approximate solution and collocation of the differential system to 

develop our scheme. Taylor’s series approximation is used to analyze and implement n iy  1 1i n   at

 , j 0 1 2.n ix  
 
The method is found to be consistent and zero-stable.  Numerical results show a superior 

accuracy compared to existing methods. 
 

Keywords: Second order initial value problems; power series; interpolation; collocation; Taylor’s series, 
efficiency. 

 

1 Introduction 
 
The focus of this paper is based on initial value problems (IVPs) of general second order ordinary 
differential equations (ODEs) of the form: 
 

0( , , ), ( ) , ( )y f x y y y a y y a                       (1) 
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where f is a given real valued function which is continuous within the interval of integration. We assumed 

that f satisfied the Lipstich condition that guaranted the existence and the uniqueness of the solution to 

equation (1). Many of such problems in (1) may not easily be solved analytically, hence there is need to 
develop numerical  schemes to solve (1) directly. Equation (1) is often reduced to system of first order 
ordinary differential equations in which Numerical method  for  first order odes are used to solved them.  
Linear multistep method has been proposed to solve equaion (1) without reducing it to systems of first order 
ordinary differential equation, they include Awoyemi [1] and [2], Awoyemi and Kayode [3], Adesanya et al. 
[4], Badmus and Yahaya [5]. Lambert [6], also discussed an optimal two step method called the numerov’s 
method. Awoyemi [1] particularly proposed a two-step hybrid multistep method with continuous coefficients 
for the solution of (1) and Kayode [7] proposed a three-step one point hybrid method based on collocation at 
selected grid and off-grid points. All the individuals proposed methods were implemented in predictor-
correct and block method respectively and adopted Taylor series expansion to supply starting value. This 
method retaining certain characteristics of the continuous linear multistep method share with Runge-Kutta 
methods the property of utilizing data at other points, thod obtained by various authors  retained certain 
charateristics of the continuous linear multistep method shared with Runge-Kutta method the property of 

utilizing data at other points, other than the step point. , 0,1 1n jx j n   . This is useful in reducing the 

step number of a method and still remain zero stable. In this research, two–step, two point hybrid linear 
multistep method based on collocation at selected grid and off-grid point was developed for solving second 

order initial value problems of ordinary differential equation using hybrid method , 0,1 1n jx j n   with 

Taylor’s series been used as the starting value and  for implementation.  
 

2 The Derivation of the Method 
 
In this section, we apply the interpolation and collocation procedures and we chose our interpolation at the 
grid points (i) and our collocation points (c) at both grid and off-grids points. We consider a power series in 
the form: 
 

( ) 1

0

( )
i c

j
j

j

y x a x
 



                                                                                                                   (2) 

 
The first and second derivatives are 
 

( ) 1
1

1

( )
i c

j
j

j

y x ja x
 





                                 (3) 

 

 
 

2

2

1
i c

j
j

j

y j j a x






                           (4) 

 
Combining (3) and (4) generates the differential system 
 

  1
2

2

( 1) ( , , )
i c

j
j

j

y j j a x f x y y
 





                     (5) 

 

Collocating (5) at 31, 0, ,1, ,2
2 2n ix x i   and  interpolating (2) at 3, 1,

2n ix x i    result into a system 

of equation 
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( ) 1
2

2

( 1)
i c

j
j n i

j

j j a x f
 






      
1 3

0, ,1, ,2
2 2

i
 

   
                           (6) 

 
 

and 
 

 

( ) 1

0

i c
j

j n i
j

a x y
 




   
3

1,
2

i
 

   
                                       (7) 

 
where 
 

n i nx x ih    

 
As stated above, the collocation and interpolation process results into the equation stated below: 
 

2 3 4
2 3 4 5 6

2 3 4
1 2 3 1 4 1 5 1 6 1

2 2 2 2 2

2 3 4
1 2 3 1 4 1 5 1 6 1

2 3 4
3 2 3 3 4 3 5 3 6 3

2 2 2 2 2

2 2 3 2

2 6 12 20 30

2 6 12 20 30

2 6 12 20 30

2 6 12 20 30

2 6 1

n n n n

n n n n n

n n n n n

n n n n n

n n

f a a x a x a x a

f a a x a x a x a x

f a a x a x a x a x

f a a x a x a x a x

f a a x

    

    

    

 

    

    

    

    

   2 3 4
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2 3 4 5 6
1 0 1 1 2 1 3 1 4 1 5 1 6 1

2 3 4 5 6
3 0 1 3 2 3 3 3 4 3 5 3 6 3

2 2 2 2 2 2 2

2 20 30n n n

n n n n n n n

n n n n n n n

a x a x a x

y a a x a x a x a x a x a x

y a a x a x a x a x a x a x

  

      

      

 

      

      

          (8) 

 

Applying gaussian elimination method to the systems of equation (8), yields the value of a s  as follows: 
 

4 4 4 4 4

6 2 3 1
2

4 2 4 1
245 45 15 45 45

n n n nn

h h h h h
a f f f f f  
        

 

         
4 4 4 4 4
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4
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   

   

 

4 4
2 2 2

4 2 3
2
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h
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   
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4
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x x

h
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 

 
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 

 

 
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2

4
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2
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2

4
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1

4
5 2 3 3 2

2 2

33 720 1760 1440 384
2880

71 960 2240 1680 384
720

161 1440 3040 1920 384
480

477 2880 4160 2
720

nn
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             (9) 

 
2 3 4 5 6

0 1 2 3 4 5 6( ) ( ) ( ) ( ) ( ) ( )na y a x a x a x a x a x a x         

 

Substituting the values of ia  0,1 6i    into (2) results into equation of the form: 

 

   
6

1

i i
n i n

i

y x y a x x


                                 (10) 

 
Now using the transformation: 
 

nx x
t

h


   

 

1dt

dx h
   (10) becomes: 
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   

   
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 
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1
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2
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2
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n nn
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n
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t t t t t f
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

 



   
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 
 
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(11) 

 
The coefficients are put as follows: 
 

 

 

 

 

 

 

1
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1
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1
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2
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2
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t t t t t
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t t t t
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
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








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
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                                (12) 

 
The first derivatives of (12) are follows: 
 

 
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 
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2
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0
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1
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3

2
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2

2

2
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h

h
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












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 
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                (13) 

 

Evaluating equation (12) at 1t   which implies that 2nx x   gives: 
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With the order of accuracy 5 and Error constant 
7

163

5000000
c     

 

The first derivative is given by evaluating (13) at 2nx x  . 
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1
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2880
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h
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                        (15) 

 
where 
 

  31, , , 0, ,1, , 2,
2 2n i n i n i n if f x y y i   

                 (16) 

 

3 Taylor’s Series Expansion of the Method 
 
Taylor’s series expansion is also used to calculate the value of n iy   and n iy 

 , their first and second 

derivatives at nx x in equation (16) are as follows: 
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 
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 

2
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where 
 

 
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i i
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In addition, we write equation (16) in the form 
 

 , ,f f x y y                  (17) 

 

We find ,f f   and f   by the use of partial derivatives techniques as stated below: 
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4 Analysis of the Basic Properties of the Method 
 
4.1 Order and Error Constant of the Method 
 
In finding the order, we adopt the method proposed by Lambert [5], with the linear operator: 
 

2

0 0

k k

j n j j n j
j j

y h f  
 

                          (18) 

 

We associate the linear operator L with the 2-steps scheme and define as 
 

      2

0

,
k

j j
j

L y x h y x jh h y x jh 


                      (19) 

 

Where 0  and 0  are both non-zero and ( )y x  is an arbitrary function which is continuous and 

differentiable on the interval [a, b]. If we assume that ( )y x  has as many higher derivatives as we require, 

then on Taylor’s series expansion about the point ,x we obtain 
 

   0 1, ( ) ( )q qL y x h c y x chy x cqh y x                     (20) 

 

Accordingly we say that the method has order P if, 
 

0 1 1 20, 0p p pc c c c c         

 

Then, 2pc   is the error constant and 2 2
2 ( )p p

p nC h y x 


 is the principal local truncation error at the 

point nx
 

Expanding (19) and comparing coefficients, we get the following ic  values for the method 

 

 
2

2 3 1 2 3 1 1
22 2

2 19 204 14 4
960

n n n n nnn n

h
y y y f f f f f     

           

0

1

2

3

4

5

6

1 2 1 0

2 1 3 0

9 1 19 204 14 4 1
2 0

4 2 960 960 960 960 960

8 27 1 38 306 14 2
0

6 24 6 960 960 960 960

16 81 1 38 459 7 1
0

24 192 24 960 1920 960 1920

32 243 1 76 459 7 1
0

120 1920 120 2880 3840 2880 11520

64

c

c

c

c

c

c

c

   

   

        

       

       

       



7

729 1 38 1377 7 1
0

720 23640 720 2880 36720 11520 92160

128 243 1 19 41311 7 1 163

5040 35840 5040 3600 307200 57600 921600 5000000
c

      

        
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We find that 0 1 2 6c c c c     and 7 2 0pc c    which implies that the method is of order 5 and 

error constant 
2

1 6 3

5 0 0 0 0 0 0
pc     . 

 

5 Consistency of the Method 
 
For this method to be consistent, the following criteria must be satisfied 
 
Condition 1: 1p    

 
The order is 5. Therefore, condition (1) is satisfied. 
 

Condition 2: 
0

0
k

j
j




  where  0 2j     

 

0 1 1 3 2
2 2

0           

 

0 0 1 2 1 0       
 
This also satisfy condition (2) 
 

Condition 3:   0r    when 1r    

 
3

2 22r r r      

 
1

22 3 1 0r r       when 1r    

 

Condition 4:    2 !r r    when 1r    

 
1

2
3

2
2

r


      1,r   
1

2
      

 

   3 1
2 2 2

1
1 9 2 0 4 1 4 4 1

9 6 0
r r r r r        

 

1
( 1 )

4
    

and 

 
1 1

2 ! ( 1 ) 2
4 2


 

  
 

  

 

Since    2 !r r    at 1,r   then the condition (4) is satisfied. 

 
Thus, this method is said to be consistent. 
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6 Zero Stability 
 
Definition [5]: A linear multistep method is said to be zero-stable, if no root of the first characteristics 

polynomials  r  has modulus greater than one and if every root of modulus one has multiplicity not 

greater than two. 
 

The scheme is zero stable when no root of the first characteristics polynomial  r has modulus greater 

than one that is  1r    

 

A method is zero stable if  
0

0
k

j
j




  , where j  are the coefficients of 
0

k

j n j
j

y 



 
 

0 1 1 3 2
2 20

0 0 1 2 1 0
k

j
j

     


             

 
Thus, this method is said to be zero stable. 
 

7 Implementation of the Method 
 

Two test problems were solved using the mesh size of 1
320

h  and 0.1h  for 10,n  which 

automatically changes with different n to test the efficiency of this method. The errors arising from both 
problems were compared with the errors from different method. 
 

8 Numerical Problems 
 
Problem 1 
 

0,y y         0 1 0 ,y y        

 

0.1h    
 

Analytical Solution 
 

  cos siny x x x    

 
Problem 2 
 

 
2

' 1 3
'' 2 , , ' ,

2 6 4 6 2

1

320

y
y y y y

y

h

    
      

   


       

 

Theoretical solution 
 

2( )y x Sin x
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Problem 3 
  

  
2'' ( ')y x y

 
1 1

(0) 1,  '(0) ,  
2 320

y y h  
       

 

Theoretical solution 
 

 
1 2

( ) 1 log
2 2

x
y x

x

 
   

    

  

8.1 Numerical Solutions to Problems 1-3 as Shown in the Tables 1-3 
 
The computational errors of our method tested on problems 1 – 3 compared to other researchers. Problem 1 
was compared with Ehigie et al. [7]. Problem 2 was compared with Awoyemi [3], Awoyemi and Kayode [8] 
while the result of problem 3 was compared with Kayode and Adeyeye [6]. 
 

Table 1. Table 1 for problem 1 
 

X Error in new method  Error in Ehigie et al. [7]  
0.1 1.07E-008 4.25E-06 
0.2 3.08E-008  8.46E-06 
0.3 5.18E-008 1.26E-05 
0.4 8.23E-008 1.66E-05 
0.5 1.22E-007 2.05E-05 
0.6 1.72E-007 2.41E-05 
0.7 2.32E-007 2.75E-05 
0.8 3.01E-007 3.07E-05 
0.9 3.79E-007 3.35E-05 
1.0 4.65E-007 3.60E-05 

 
Table 2. Table 2 for problem 2 

 
X  Error in Awoyemi and Kayode [8]  Error in Awoyemi [3]  Error in our method  
0.1 6.6391E-14 2.6074E-10 3.33E-016   
0.2 2.0012E-10 1.9816E-09 7.77E-016   
0.3 1.72007E-09 6.5074E-09 1.11E-015   
0.4 5.8946E-08 1.5592E-08 1.66E-015   
0.5 1.4434E-08 3.1504E-08 2.27E-015     
0.6 4.1866E-08 5.6374E-08 3.86E-014   
0.7 5.3109E-08 9.6164E-08 1.89E-013   
0.8 9.1131E-08 1.5686E-07 4.19E-013   
0.9 1.4924E-07 2.4869E-07 6.74E-013   
1.0 2.3718E-07 3.8798E-07 8.87E-013   

 
Table 3. Table 3 for problem 3 

 
X  Error in  new method   Error in Kayode and Adeyeye [6]   
0.1 1.0284E-011 4.831380E-011 
0.2 7.6971E-011   3.382836E-009 
0.3 2.6111E-010   1.580320E-008 
0.4 6.5442E-010 4.333951E-008 
0.5 1.3893E-009   9.391426E-008  
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9 Conclusions 
 
In this work, we have derived, analysed and implemented a 4-point-2-step hybrid method for the solution of 
general second order differential equations by adopting power series as the basis function. Collocation and 
interpolation approach is adopted for the derivation of the method while Taylor’s series approach is adopted 
for its implementation. In Table 1, our method perform better than the method of Ehigie et al. [8] despite the 
large step number of the scheme, likewise Table 2; showed better accuracy than Awoyemi and Kayode [3] 
and Awoyemi [2]. Also, despite the implementation of Kayode and Adeyeye [9] our method still performed 
better than both whom earlier solved the same problems respectively. Thus, the method developed in this 

paper is efficient and compare favourably with other methods. 
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