
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Dynamic Resource Allocation Using Improved
Firefly Optimization Algorithm in Cloud
Environment

Simin Abedi, Mostafa Ghobaei-Arani, Ehsan Khorami & Musa Mojarad

To cite this article: Simin Abedi, Mostafa Ghobaei-Arani, Ehsan Khorami & Musa
Mojarad (2022) Dynamic Resource Allocation Using Improved Firefly Optimization
Algorithm in Cloud Environment, Applied Artificial Intelligence, 36:1, 2055394, DOI:
10.1080/08839514.2022.2055394

To link to this article: https://doi.org/10.1080/08839514.2022.2055394

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 24 Mar 2022.

Submit your article to this journal Article views: 1360

View related articles View Crossmark data

Citing articles: 2 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2022.2055394
https://doi.org/10.1080/08839514.2022.2055394
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2022.2055394
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2022.2055394
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2055394&domain=pdf&date_stamp=2022-03-24
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2055394&domain=pdf&date_stamp=2022-03-24
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2022.2055394#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2022.2055394#tabModule

Dynamic Resource Allocation Using Improved Firefly
Optimization Algorithm in Cloud Environment
Simin Abedia, Mostafa Ghobaei-Arani b, Ehsan Khoramic, and Musa Mojarad d

aDepartment of Computer Engineering, Mahallat Branch, Islamic Azad University, Mahallat, Iran;
bDepartment of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran; cDepartment of
Computer Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran; dDepartment of
Computer Engineering, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran

ABSTRACT
Today, cloud computing has provided a suitable platform to
meet the computing needs of users. One of the most important
challenges facing cloud computing is Dynamic Resource
Allocation (DSA), which is in the NP-Hard class. One of the
goals of the DSA is to utilization resources efficiently and max-
imize productivity. In this paper, an improved Firefly algorithm
based on load balancing optimization is introduced to solve the
DSA problem called IFA-DSA. In addition to balancing workloads
between existing virtual machines, IFA-DSA also reduces com-
pletion time by selecting appropriate objectives in the fitness
function. The best sequence of tasks for resource allocation is
formulated as a multi-objective problem. The intended objec-
tives are load balancing, completion time, average runtime, and
migration rate. In order to improve the initial population crea-
tion in the firefly algorithm, a heuristic method is used instead of
a random approach. In the heuristic method, the initial popula-
tion is created based on the priority of tasks, where the priority
of each task is determined based on the pay as you use model
and a fuzzy approach. The results of the experiments show the
superiority of the proposed method in the makespan criterion
over the ICFA method by an average of 3%.

Introduction

Cloud computing is a general term for anything that includes the provision of
internet-hosted services (Naha et al. 2020). For example, such as digital
marketing and e-mail marketing (Pawar and Wagh 2012). In addition, cloud
computing can be introduced as providing computer services such as storage,
database, software, networking and analytics that provide more flexible
resources (Rezaeipanah, Mojarad, and Fakhari 2022). In this technology, the
user does not have access to technical details and only sees its appearance (Liu
et al. 2022). The logic behind cloud computing is time sharing. In other words,
different computer resources are shared between multiple users using multi-
programming and multi-tasking mechanisms. This approach was first used in

CONTACT Simin Abedi siminabedi68@yahoo.com; Mostafa Ghobaei-Arani m.ghobaei@qom-iau.ac.ir
Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran

APPLIED ARTIFICIAL INTELLIGENCE
2022, VOL. 36, NO. 1, e2055394 (2627 pages)
https://doi.org/10.1080/08839514.2022.2055394

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

http://orcid.org/0000-0003-2639-0900
http://orcid.org/0000-0002-2218-2170
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2055394&domain=pdf&date_stamp=2022-07-09

the 1950s (Berahmand et al. 2021). At this time, several users shared its
services with access to a central computer, because of the high price and
large size of central computers, it was not possible to provide an independent
system for each user. Thus, cloud services can be considered as a way to share
computers in the 1950s (Wang et al. 2015).

Internet technology is growing rapidly and its use is widespread, and in the
meantime cloud computing is emerging and expanding (Rezaeipanah et al.
2021; Rezaeipanah, Nazari, and Ahmadi 2019). This computing is provided as
a tool to respond to the needs of users and users can use its services on the
internet without spatial dependence. It is also used for places where dynamic
resource provision and the use of virtualization technology are important (Ali,
Affan, and Alam 2019). Virtualization is the main technology as a service
solution. Virtualization is a way to get more performance out of a computer by
sharing resources. Virtual machines (VMs) are an appropriate solution for full
implementation of software-based virtualization. In fact, using VMs,
a hardware with a suitable quality level is simulated and virtualized. This
mechanism requires high speed internet and tasks in clusters. Cloud comput-
ing has a bright future but still has a problem that has not been resolved
(Skarlat et al. 2016).

From a user’s perspective, cloud computing is an abstract concept of
extremely scalable and distant storage and computing resources. From
a service provider perspective, cloud systems are based on a large set of
computer resources and are allocated to applications on demand (Warneke
and Kao 2011). Thus, cloud computing can be defined as a distributed tem-
plate in which all resources are presented in dynamic scalability and virtuali-
zation as a service on the internet. The high scalability of cloud computing
services allows users to increase and decrease resources at any time. Reducing
costs is one of the most important benefits of a cloud computing service. Other
advantages of cloud computing include high speed, security, reliability, and
acceptable performance (Chien, Lai, and Chao 2019; Jula et al. 2021).

In cloud computing, Dynamic Resource Allocation (DSA) is the process of
allocating resources available to applications over the internet (Elhoseny et al.
2018). DSA causes famine of services if allocation is not managed properly
(Mahini et al. 2021). Resource provision solves the famine problem by allow-
ing service providers to manage resources in each module. DSA strategies are
for allocating appropriate resources in the cloud environment to meet the
needs of applications. DSA strategies and input parameters to DSA are differ-
ent based on services, infrastructure, and the nature of applications (Xu et al.
2019). Figure 1 shows a classification of DSA-based strategies for cloud
computing.

Every request sent by users to service providers takes over part of their
resources. The DSA problem is a major challenge in cloud environments
and is directly related to energy consumption, service providers’ profits

e2055394-2602 S. ABEDI ET AL.

and users’ costs (Taher et al. 2019). Hence, much task has been done in
the field of DSA, reducing the number of resources utilization, load
balancing and resource integration. Cloud customers need to receive
quality, low cost and reliable services. Basically, service cost, Quality of
Service (QoS), and service reliability depend on the DSA process in the
cloud computing environment (Elhoseny et al. 2018; Taher et al. 2019). In
cloud computing, multiple users can request a number of cloud services
simultaneously. Hence, the need for algorithms to optimally manage DSA
in the cloud with certain QoS requirements is essential. Cloud service
users and providers have different goals and needs (Elhoseny et al. 2018).
Users try to get the cloud services they need with QoS guaranteed and at
the lowest cost. On the other hand, service providers also strive to have
the highest return on investment. Therefore, a model with automated
DSA capability in which the interests of both entities are considered can
be very effective.

DSA in cloud computing is a mechanism that aims to meet the require-
ments of applications (Faraji Mehmandar, Jabbehdari, and Haj Seyyed Javadi
2020). In addition, the DSA management mechanism should examine the
current state of each resource in the cloud environment in order to provide
algorithms for optimal allocation of physical/virtual resources and reduction
of operating costs (Xu et al. 2019). It is clear that due to the scale and
complexity of these systems, centralized assignment of tasks to servers
makes it impossible to consider specific solutions. Also, due to the increasing
growth of data in data centers and the need to achieve the desired QoS, there is
a need to provide solutions to increase the productivity of service providers. In
the case of DSA, on the one hand, the needs of users should be considered and
on the other hand, the available resources should be utilized to the maximum.
As the number of cloud users increases, so do the resources that need to be
allocated. Therefore, computing resources should be timed and allocated in

Figure 1. DSA-based strategies.

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2603

such a way that both providers get the most out of the resources and users get
the applications they need at the lowest cost (Naha et al. 2020; Pawar and
Wagh 2012).

In this paper, solving DSA problem in cloud environment using Firefly
Algorithm (FA) is presented as an optimization approach. Our goal is to
improve this algorithm in order to optimize the workload balance for the
initial population production. The proposed method is called IFA-DSA, and in
addition to balancing the workload between existing VMs, it also reduces task
completion time by selecting appropriate objectives. In order to achieve the
goals, set for the production of the initial population in the FA, a heuristic
method is used instead of a random approach. In IFA-DSA, the priority of
each task is determined according to the pay as you use model and a fuzzy
approach.

The main contribution of this paper is as follows:

● Development of FA to solve DSA problem as a multi-objective optimiza-
tion problem

● Prioritize requests based on the pay as you use model and a fuzzy
approach to improve load balance

● Evaluation of the proposed method with extensive simulation using
Matlab software

The rest of the paper is organized as follows: Literature review on the DSA
problem is compiled in Section 2. Section 3 provides background on problem
formulation, objective functions, assumptions, and FA. An overview of the
proposed method for solving the DSA problem in Section 4. Section 5
describes the simulation results and experimental results. Finally, Section 6
concludes this paper.

Literature Review

Currently, various studies have been conducted on the management of energy
resources in cloud centers. Two types of energy saving algorithms (Khorsand
et al. 2019; Panda and Jana 2019) and energy efficiency algorithms (Masdari et
al. 2020; John 2020) are more important to solve the problem of high energy
consumption in data centers. The main idea in these algorithms is to reduce
energy consumption in data centers. For example, Ibrahim et al. (2020)
proposes two heuristic algorithms to reduce energy consumption. These two
algorithms are based on a simple local optimization method but do not
consider the Service Level Agreement (SLA) violation. Sheikh and Pasha
(2019) proposed an energy-saving resource allocation algorithm for cloud
data centers. The results of this study show that the minimum or maximum
runtime of tasks is not suitable for saving energy consumption. Therefore, this

e2055394-2604 S. ABEDI ET AL.

algorithm does not meet the needs of users in terms of energy consumption.
The FCFS (First Come First Serve) method was proposed by Jaiganesh et al.
(2015) to evaluate the performance of cloud services by optimizing task
scheduling. In this method, the priority queuing method has been used to
improve the scheduling system. Task Scheduling using a novel architecture
with Dynamic Queues based on hybrid algorithm using Fuzzy Logic and
Particle Swarm Optimization algorithm (TSDQ-FLPSO) was proposed by
Ben Alla et al. (2016). TSDQ-FLPSO is a new architecture with dynamic
queues based on fuzzy system and Particle Swarm Optimization (PSO) for
scheduling tasks in cloud computing.

In recent years, many studies have been presented to solve the DSA problem
in the haze environment, but more research is still needed. Because failure in
DSA increases costs and delays Ibrahim et al. 2020 Most methods are based on
heuristic and meta-heuristic approaches and use evolutionary algorithms
(Skarlat et al. (2016); (Rajabion et al. 2019); (Liu et al. 2022). In this section,
we will review the research conducted on the DSA problem.

Kumar and Kumar (2019) reviewed common load balancing algorithms in
cloud computing. One of the most widely used of these algorithms is Min-
Min. In this algorithm, first the minimum completion time for all tasks is
found and then the minimum value is selected. This time is the minimum time
between all tasks on all available resources. Finally, the task on the VM is
scheduled according to the minimum time. However, Min-Min can lead to
resource famine. Aghdashi and Mirtaheri (2019) presented a hybrid schedul-
ing strategy for managing and processing medical data in cloud resources. The
authors used a combination of Genetic Algorithm (GA) and PSO to load
balancing and allocate resources fairly. In this strategy, cloud servers have
the ability to process different user requests in parallel.

Elhoseny et al. (2018) presented a scheduling and load balancing model
based on the concept of cloud segmentation. The authors use the round robin
algorithm and game theory to select a service with a lower workload and
higher execution speed to solve the DSA problem. Here, the round robin time
slice is done according to the better server selection. Alelaiwi (2017) presented
a scalable model based on Integer Linear Programming (ILP) to identify
strategies and decisions in the cloud federation. In this model, user requests
are sent at all levels of the cloud federation and they are easily guided. The
profits from this model outsource resources to support other cloud federa-
tions. Mahini et al. (2021) proposed an approach to the allocation of multilayer
resources. In this method, resource allocation to tasks is performed on a server
of the cluster based on operating levels. This method improves efficiency by
18% and runtime by 10%.

Rajabion et al. (2019) proposed a resource allocation solution using cloud
computing and the Internet of Things (IoT) for real-time and batch proces-
sing. Here, the IoT is responsible for real-time data processing, where it sends

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2605

heavy processing to the cloud if needed. Simulations on Amazon Web Services
show that this model can reduce response time to requests. Taher et al. (2019)
proposed an autonomous approach based on fuzzy hierarchical technique to
provide resources for multi-layered applications in the cloud. In the analysis
phase of this approach, the support vector machine (SVM) technique and
linear regression (LR) have been used to predict the number of user requests.
This approach significantly reduces the cost and response time.

Jula et al. (2021) proposed an approach based on workload analysis to
provide resource efficiency. This approach combines the imperialist competi-
tive algorithm (ICA) and fuzzy c-means (FCM) clustering to categorize user
requests. The authors use the decision tree algorithm to efficiently allocate
resources based on both productivity and workload criteria. This approach
focuses only on the mapping and resource allocation phase, and hardware or
software failure can lead to increased runtime. Alboaneen et al. (2020) pro-
posed a meta-heuristic approach to Joint Task Scheduling and VM Placement
(JTSVMP) in cloud data centers. JTSVMP consists of two parts: task schedul-
ing and VM placement. The authors formulate and solve the problem in an
optimized way using meta-heuristic algorithms. The proposed optimization
process is aimed at scheduling tasks in VMs that have the lowest execution cost
in a limited time. The meta-heuristic algorithms used include glowworm
swarm optimization (GSO), moth-flame glowworm swarm optimization
(MFGSO), and GA.

Aburukba et al. (2020) proposed a resource scheduling algorithm for
managing IoT services using ILP. The authors use an improved GA to
minimize delay to take into account the dynamic nature of the fog envir-
onment. The performance of this algorithm is compared with round robin,
waited-fair and priority-strict techniques. The results of this method show
a delay rate between 21.9% to 46.6%, which is promising. Faraji
Mehmandar, Jabbehdari, and Haj Seyyed Javadi (2020) introduced
a distributed computing framework for resource management in fog com-
puting. Here, the MAPE-k control loop is responsible for providing IoT
services. In this regard, the reinforcement learning technique for the deci-
sion-making module and SVM for the analysis module have been used. The
results of this method show better average cost and latency compared to
similar algorithms. However, this approach does not take into account the
different QoS needs of the fog service.

Skarlat et al. (2016) provided a conceptual framework for providing
resources in fog computing. The purpose of this framework is to optimize
the scheduling of IoT services by considering delays in the allocation of
computing resources, where applications and resources heterogeneity are
taken into account. To solve this problem, a GA-based meta-heuristic method
is proposed that reduces communication delays and makes better utilization of
fog resources. Wang, Liu, and Jolfaei (2020) proposed a DSA approach for

e2055394-2606 S. ABEDI ET AL.

sensor networks using the improved chaotic firefly algorithm (ICFA) in the
cloud. This approach creates a multi-objective optimization model based on
the interference analysis of the working scenario of the cognitive radio. Since
the multi-objective model is a nonlinear convex optimization problem, this
paper uses ICFA to solve it. ICFA can effectively achieve the optimal solution
while reducing the complexity of the problem.

Table 1 summarizes the literature reviewed in terms of objectives and
algorithms used. Although there are numerous works in the literature,
some methods do not take into account the characteristics of the cloud
environment and need to improve performance in several respects, includ-
ing DSA.

Table 1. Summary of related works.
Reference Objective Algorithm used

Skarlat et al. (2016) A conceptual framework for providing
resources in fog computing

A meta-heuristic method based on
genetic algorithm

Alelaiwi (2017) A scalable model based on linear
programming in the cloud federation

A multi-objective optimization model
based on genetic algorithm

Elhoseny et al. (2018) A scheduling and load balancing model
based on the concept of cloud
segmentation

Round robin and game theory

Kumar and Kumar (2019) An overview of common load balancing
algorithms in cloud computing

One of the load balancing algorithms is
Min-Min.

Aghdashi and Mirtaheri
(2019)

A hybrid scheduling strategy for
managing and processing medical data
in the cloud

Combining genetic algorithms and
particle swarm optimization

Rajabion et al. (2019) A DSA approach in cloud computing and
the Internet of Things for real-time and
batch processing

Analysis of different algorithms

Taher et al. (2019) An autonomous approach based on fuzzy
hierarchical technique for DSA in the
cloud

Support vector machines and linear
regression

Alboaneen et al. (2020) Joint task scheduling and VM placement Glowworm swarm optimization, moth-
flame glowworm swarm optimization,
and genetic algorithm

Aburukba et al. (2020) A resource scheduling algorithm for
managing IoT services using integer
linear programming

Improved genetic algorithm

Faraji Mehmandar,
Jabbehdari, and Haj
Seyyed Javadi (2020)

A distributed computing framework for
resource management in fog
computing

Reinforcement learning and support
vector regression techniques

Wang, Liu, and Jolfaei
(2020)

A multi-objective optimization approach
for DSA on cloud-based sensor
networks

Chaotic firefly algorithm

Mahini et al. (2021) A scheduling algorithm for multilayer DSA
in the cloud

A formal definition of cloud federation
integrity based on clustering

Jula et al. (2021) An approach based on workload analysis
to ensure resource efficiency

Imperialist competitive algorithm and
fuzzy c-means clustering

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2607

Background

This section consists of four subsections. The first subsection is devoted to
formulating the DSA problem. The second subsection reviews the objective
functions in DSA. The third subsection refers to the system hypotheses and
finally the fourth subsection deals with the problem-solving approach,
i.e., FA.

Problem Formulation

In the pay as you use model, users pay more to request their task done in less
time (Ponraj 2019). The processing units in cloud computing are VMs. In
cloud computing, there are a number of physical servers that each contain
multiple VMs. VMs as a computing unit of the cloud environment have
different types such as computers, servers and networks so that each VM has
multiple resources (Wang, Liu, and Jolfaei 2020). Let the resources in each VM
be static and LAN-based communication where this allows parallel processing.
Task scheduling aims to allocate appropriate VMs to user requests to max-
imize resource utilization. This is referred to as the DSA problem (Kumar,
Kikla, and Navya 2022).

The cloud environment has a scheduling system for the proper distribution
of tasks between physical servers (Elhoseny et al. 2018). Each physical server
also has an independent scheduling system that divides tasks between VMs.
Since each VM has several independent sources with parallel processing
capability, several tasks can be assigned to one VM simultaneously (Kumar,
Kikla, and Navya 2022). All tasks send by users are assumed to be computa-
tional and independent of each other. The most important goal of the sche-
duling system in the cloud environment is the load balance of each VM. Load
balancing is the concept of ensuring the proper distribution of tasks in terms
of computational volume between VMs (Wang, Liu, and Jolfaei 2020). The
main purpose of scheduling algorithms in the cloud environment is to max-
imize resource efficiency and reduce tasks spanning time according to user
requests (Liu et al. 2022). Therefore, the DSA problem is known as a multi-
objective optimization problem in the cloud environment. Solving the DSA
problem means finding the proper sequence of tasks to run on VMs so that it
reduces the makespan and load balances the VMs (Kumar, Kikla, and Navya
2022).

In recent years, the issue of migration in the cloud environment has become
one of the major challenges in scheduling systems (Rezaeipanah, Nazari, and
Ahmadi 2019). When too much task is assigned to one VM, it becomes an
Overloaded VM (OVM). Therefore, some existing tasks must be transferred
from OVM to Lowloaded VM (LVM) (Ibrahim et al. 2020; Zhou, Hu, and Li
2016). This technique is known as migration, which results in a workload

e2055394-2608 S. ABEDI ET AL.

balance between VMs. Given that migration has a computational overhead,
therefore reducing migration rates in the cloud environment and load balan-
cing will improve scheduling (Zhou, Hu, and Li 2016). In cloud environment
scheduling systems for DSA on tasks offered by users, the K physical server is
available as PS ¼ p1; p2; . . . ; pi; . . . ; pKf g. Each pi consists of mi VM as
VMi ¼ vi;1; vi;2; . . . ; vi;j; . . . ; vi;mi

� �
. Thus, VMi represents a list of VMs

on the physical server pi. Also, vi;j represents the j th VM in the i th physical
server. In general, the purpose of the scheduling system is to apply DSA to N
independent tasks as T ¼ t1; t2; . . . ; tNf g on M VMs. Here, M is the total
number of VMs associated with the K physical server,
where VM ¼ v1; v2; . . . ; vMf g.

Objective Functions

There are many factors in the DSA problem that are considered as objective
functions by various researchers (Ponraj 2019). Some of these factors include
total runtime, makespan, workload balance and migration rate (Zhou, Hu, and
Li 2016). These factors are briefly discussed below. The completion time of
a task depends on the runtime by the VM. Let TTi;j be the runtime of ti on vj,
TTj is the average total runtime of the tasks assigned to vj, as defined in Eq. (1).

TTj ¼
1

ti 2 vj

X

ti2vj

TTi;j (1)

Where, ti 2 vj represents the number of tasks assigned to vj. Accordingly, TT
is the average of the total runtime for all virtual machines defined by Eq. (2).

TT ¼
1
M

XM

j¼1
TTj (2)

Let CTij be the completion time of ti on vj and CTmax be the completion time of
the last task (makespan). Here, makespan means the largest completion time
between all tasks and is defined according to Eq. (3).

CTmax ¼ max fCTijji 2 T; i ¼ 1; 2; . . . ; N and j 2 VM; j ¼ 1; 2; . . . ;Mg
(3)

The workload of a VM is calculated according to the size of the tasks running on
this VM in relation to the total size of tasks. In general, WLj workload is related
to vj, which is determined based on the size of tasks in the vj queue. Hence, WL
represents the average workload of all VMs and is defined by Eq. (4).

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2609

WL ¼
1
M

XM

j¼1
WLj (4)

In order to describe the scatter and load balance of different VMs, the load
variance of VMs is defined as σ WLð Þ. The value of σ WLð Þ is used to check the
load balance of a cloud environment scheduling system. The lower the load
variance of VMs, the better the distribution of tasks and therefore the better
the load balance. Eq. (5) is defined for calculating σ WLð Þ.

σ WLð Þ ¼

ffi

1
M � 1

XM

j¼1
WLj � WL
� �2

v
u
u
t (5)

The migration technique can be used when a VM has a large load
(Rezaeipanah, Nazari, and Ahmadi 2019). In this technique, a number
of tasks are removed from the OVM queue and transferred to the LVM.
Increasing the migration rate increases the time it takes to complete
a task. Therefore, a parameter called migration rate is introduced here
and the cloud environment scheduling system seeks to minimize it.
Migration is the ratio of the number of tasks transferred to the total
number of tasks over a time period. If TS is the entire scheduling period
in the cloud environment being tested, then the time periods can be
considered as Eq. (6).

TS ¼ t0 � t1ð Þ; t1 � t2ð Þ; . . . ; tk� 1 � tkð Þ; . . .½ � (6)

Here, tk� 1 � tkð Þ refers to the k th time period. Therefore, the migration rate
can be calculated based on the time period k. ρ kð Þ is the migration rate over
time k and is calculated as Eq. (7).

ρ kð Þ ¼
nk

N
; k 2 TS (7)

Where, nk indicates the number of tasks that have been transferred to other
VMs over time period k.

System Hypotheses

The simulation start time in the scheduling system is considered to be zero
seconds. This time is not taken into account due to the slight delay in
preparing VMs. Therefore, the runtime of a task depends on the runtime
the task on the VM. All tasks and resources are computational and indepen-
dent. Here, each request from users includes details such as request send
time per second, task size based on million instructions per second (MIPS),
priority execution of request based on pay as you use. There is no time

e2055394-2610 S. ABEDI ET AL.

deadline for processing requests. Also, cloud environment specifications
such as number of physical servers, number of active VMs and processing
power of a VM in MIPS are available. All VMs are capable of performing
more than one task (depending on available resources). We assume that the
details of the user requests as well as the specifications of the VMs are the
input to the system.

Firefly Algorithm

Optimization algorithms seek to find a solution in the search space that has
the minimum (or maximum) value of the objective function (Hajipour,
Khormuji, and Rostami 2016). In an optimization problem, the types of
mathematical relationships between objectives, constraints, and decision
variables characterize the difficulty of the problem. Objective optimization
is often used by researchers to solve real-world problems (Yang and Deb
2009). In general, a better solution is achieved by setting several objectives in
solving the problem. Multi-objective optimization is a process for solving
a problem with simultaneous optimization of two or more objectives subject
to constraints. In recent years, nature-inspired algorithms and biological
processes have been the most powerful solutions to optimization problems
(Hajipour, Khormuji, and Rostami 2016; Mirjalili and Lewis 2016; Yang and
Deb 2009).

The FA was introduced by Yang (2009). The main idea of FA is inspired by
the optical relationship between fireflies and their biological communication
phenomenon. This algorithm can be considered as a manifestation of swarm
intelligence in which the cooperation of low-intelligence members creates
a higher level of intelligence (Rostami et al. 2021). FA is a meta-heuristic
algorithm inspired by the behaviors of artificial fireflies and is formulated with
three hypotheses: 1) fireflies can be attracted to each other regardless of
gender, 2) the attractiveness factor is measured in proportion to the brightness
of fireflies and can be increased or decreased based on the distance, and 3)
when the brightness of both fireflies is the same, the fireflies move randomly
(Shahidinejad et al. 2020). Fireflies in the FA work independently and are
suitable for parallel processing. FA is one of the techniques recently used by
researchers to solve optimization problems in dynamic environments (Yousif
et al. 2022). Figure 2 shows the flowchart of the FA steps.

FA is one of the most efficient algorithms in solving hybrid optimization
problems and is used in various fields of optimization problems. Today, FA
has a variety of applications in various sciences (Yousif et al. 2022). Problems
such as discrete optimization, anomaly, multi-objective and other issues are
addressed by the behavior of fireflies (Yousif et al. 2022). Other applications of
FA include the use of these algorithms in combination with optimization
algorithms and other improved techniques. Evidence shows that most

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2611

methods that have used the FA technique in combination with their method
have performed better than other meta-heuristic algorithms (Wang, Liu, and
Jolfaei 2020). In most cases, it uses a random search to reach a set of solutions.
The FA focuses on generating solutions within a search space. Because this
algorithm performs the search process randomly, it does not get stuck in local
optimal points. Based on the advantages of this algorithm, we use FA as an
optimization approach to solve the DSA problem in this study.

Proposed Method

In this paper, a combined FA-based optimization approach and fuzzy method
are used to solve the DSA problem and improve task scheduling, which we call
IFA-DSA. IFA-DSA tries to find the best sequence of tasks on VMs and
ultimately improve DSA by considering different objectives and heuristic
operators. Here, each firefly is a solution to the problem and specifies the

Figure 2. Flowchart of FA steps.

e2055394-2612 S. ABEDI ET AL.

sequence of tasks on VMs. This sequence allocates the appropriate VMs
resources to each task. In order to improve the DSA process, the priority of
each task is determined by the pay as you use model. We use tasks priority to
create an initial population in the FA in a heuristic method, where the goal is
to properly distribute the task on VMs by a fuzzy approach.

Objectives function for improving the DSA problem are calculated as the
luciferin value (fitness function) for each firefly. We consider four objectives
including workload balancing, minimizing the completion time of the last task
(i.e., makespan), minimizing the average runtime of tasks and reducing the
migration rate, and formulate the problem as multi-objective optimization. In
the next step, the sensor radius to determine the neighborhood is calculated
based on the amount of luciferin, where the probability of fireflies moving
toward the neighbors is calculated. This probability is defined in terms of
higher luciferin (attractiveness). Finally, the movement of each firefly to
a neighbor is more likely to be done using the evolutionary difference

Figure 3. IFA-DSA flowchart.

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2613

operator. In cases were increasing the workload on some VMs leads to work-
load imbalance, the load balance can be improved by the migration technique
between VMs. The flowchart of IFA-DSA is shown in Figure 3.

Prioritize Tasks

This paper uses three modes, including Low, Medium and High, to prioritize
user requests. These terms are fuzzy and we use fuzzy logic to assign them to
user requests. Basically, the higher the user’s payment and the smaller the
computational size of the task, the higher the priority of the task to be
performed. Let ω be the priority decision parameter, which is defined based
on the ratio of the user’s payment to the task size. We use a trapezoidal
membership function with fixed threshold values (i.e., T1;T2; . . . ;T6) to
prioritize the tasks, as shown in Figure 4

The reason for estimating the input parameter is fuzzy in the form of Eq.
(8) – Eq. (10). Here, the parameter ω determines the value of the fuzzy
variables for the input value.

μLow ωð Þ ¼
0 if ω � T3

T3� ω
T3� T2

if T2 � ω<T3
1 if ω<T2

8
<

:
(8)

μMediumðωÞ ¼

0 if ω<T2
ω� T4
T5� T4

if T2 � ω<T3
1 if T3 � ω<T4
T5� ω
T5� T4

if T4 � ω<T5
0 if ω � T5

8
>>>><

>>>>:

(9)

Figure 4. Trapezoidal membership function with three modes to prioritize tasks.

e2055394-2614 S. ABEDI ET AL.

μHigh ωð Þ ¼
0 if ω<T4

ω� T4
T5� T4

if T4 � ω<T5
1 if ω � T5

8
<

:
(10)

In this paper, rules in the form of Eq. (11) are used for the knowledge base.

Rk : If x1isA1ð Þ and: : :and xLisALð ÞThenYisG (11)

Where, Rk refers to the rule k. xi and Ai refer to the input parameter i and the
assigned fuzzy set, respectively. Y is the output of the rule and G is a linguistic
term of the fuzzy set belonging to it. Finally, L refers to the number of input
parameters.

We use Mamdani fuzzy inference system to infer the winning rule. The
degree of compatibility of the input parameters X ¼ x1; x2; . . . ; xLf g with the
premise of rule k is calculated based on Eq. (12).

μk Xð Þ ¼
YL

i¼1
μAi xið Þ

(12)

Where, L is the number of parameters and Ai is the fuzzy set i. In fact, Ai

contains Alow;Amiddle;Ahigh
� �

.
According to this method, the winning rule is selected based on the degree

of confidence factor for decision making. Based on the fuzzy system, it is
assumed that th, tm, tl are the tasks requested by users with high, medium and
low priorities, respectively, which should be assigned to appropriate
resources.

Encoding Fireflies and Initial Population

Each firefly is equivalent to a solution in the search space. The DSA
problem encoding for each firefly is defined as a vector of length N,
where N represents the total number of tasks. The content of each element
of the vector is a VM assigned to the corresponding task. Figure 5 shows
the representation structure of fireflies in the DSA problem. According to
this definition, the i th element of this vector represents the j th VM
assigned to the i th task.

The FA begins its work by producing an initial population of solutions. In
classical FA, the initial population is created randomly, but in the case of DSA,
this leads to a poor distribution of tasks between VMs. To solve this problem,

Figure 5. Encoding structure of fireflies.

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2615

we create the initial population on a heuristic basis based on the priority of
tasks. Here the VM assigned to each task is determined based on the workload.
VM selection for all three types of tasks with th, tm, and tl priorities are
determined by Eq. (13) – Eq. (15).

th ! vdjmin
Xth
� �

2 VM (13)

tm ! vdjmin
Xth

þ
Xtm

� �
2 VM (14)

tl ! vdjmin
XT� �

2 VM (15)

Where, vd is the VM assigned to the task, where d ¼ 1; 2; . . . ;M.

Algorithm 1. Proposed heuristic method for creating an initial population

Input: NP : Population size; M: Number of VMs; N: Number of tasks.
Output: Pop NP;Nð Þ as the initial population.

1: Pop NP;Nð Þ null.
2: for i = 1 to NP do
3: for j = 1 to N do
4: if Task(tj) is high priority then
5: th ! vdjmin

Pth
� �

2 VM
6: Pop i; jð Þ ¼ vd
7: elseif Task(tj) is middle priority then
8: tm ! vdjmin

Pth þ
Ptm

� �
2 VM

9: Pop i; jð Þ ¼ vd
10: else
11: tl ! vdjmin

PT
� �

2 VM

12: Pop i; jð Þ ¼ vd
13: end
14: end
15: end
16: The initial population created is Pop, as output.

When assigning a high-priority task (i.e., th), this task should be assigned to
an LVM. This strategy ensures that a high-priority task selects a VM with the
lowest number of high-priority tasks for processing. Medium priority tasks
(tm) should also select a VM with the lowest number of high and medium
priority tasks. For low-priority tasks (tm), selecting the VM with the least
workload is emphasized. Algorithm 1 shows the pseudocode of the proposed
heuristic method for creating the initial population. Here, NP is the size of the
firefly population.

According to Algorithm 1, line 1 defines the empty initial population in the
Pop variable. Line 2 The process of creating solutions in the initial population is
repeated as much as NP. Lines 3 to 14 are related to creating a solution based on
N existing tasks. In line 4, the priority of the tasks is checked in terms of high.
High-priority tasks are assigned to the appropriate VM according to line 5. The

e2055394-2616 S. ABEDI ET AL.

selected VM is recorded in line 6 in the current solution. Similarly, lines 7 to 9
indicate the VM for medium-priority tasks, and lines 10 to 12 indicate this for
low-priority tasks. Finally, the initial population in line 16 is returned as output.

Objective Function (Luciferin)

Fireflies have a radiance that attracts other fireflies to themselves. This radi-
ance is known as luciferin. More luciferin for a firefly indicates its better
position in the search space. In this paper, the luciferin of each firefly is
formulated as a multi-objective function. Here, workload balancing, comple-
tion time of the last task (i.e., makespan), the average runtime of tasks and
reducing the migration rate are considered as objectives function of the DSA
problem. ,i the value of luciferin is related to the i th firefly, which is calculated
by Eq. (16).

,i ¼ a1:TT þ a2:CTmax þ a3:σ WLð Þ þ a4:ρ kð Þ (16)

Where, TT is the average runtime of tasks, CTmax is the completion time of the
last task, σ WLð Þ is the standard deviation of the workload balance and ρ kð Þ is
the migration rate. Also, a1 to a4 are the weights of these objectives,
respectively.

Luciferin is released for each firefly during movement. This update reduces
the radiance of fireflies due to time/iteration. Let ,i tð Þ be the luciferin corre-
spond to the i th firefly in the t th iteration and let ,i t � 1ð Þ be the value for the
t � 1 iteration. Accordingly, Eq. (17) shows the firefly update process.

,i tð Þ ¼ 1 � ρð Þ,i t � 1ð Þ þ γ,i tð Þ (17)

Where, ρ is a factor to model the gradual decline of luciferin and γ is defined to
model the effect of fitness on luciferin.

Evolution of Fireflies

The process of population evolution in successive iterations is discussed in this
section. Each firefly can have a number of neighbors based on its sensor radius.
Based on these neighbors, each firefly selects a possible neighbor to move. The
probability of selection is calculated based on higher luciferin and roulette
wheel policy. In the DSA problem, which is a discrete problem, the amount of
luciferin is used to determine the sensor radius and neighbors. In this paper,
the sensing radius (rs) of the i th firefly includes all fireflies whose luciferin
levels are in the range ,i tð Þ � θ. Here, θ is the radius of decision of fireflies.

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2617

Let Ei be the set of i th firefly neighbors. As shown in Eq. (18), pij is the
probability of the i th firefly moving toward the j th firefly, where j 2 Ei. After
calculating the probabilities for all neighbors, a neighbor is selected based on
the roulette wheel policy (Rezaeipanah, Nazari, and Ahmadi 2019).

pij ¼
,j tð Þ � ,i tð Þ

P
kεEi

,k tð Þ � ,i tð Þ
; j 2 Ei (18)

Let Xj be the firefly selected to move the Xi firefly. In this paper, the movement
process is performed based on an evolutionary difference operator. The
purpose of this operator is to create a new position vector for Xi based on
Xj. Xnew is a new position vector and is generated according to the difference
between Xi and Xj. Here, xnew

i kð Þ is the new position in the k th element of Xi

and is calculated as Eq. (19).

xnew
i kð Þ ¼ xi kð Þ R<RND

xi kð Þ þ F � xi � xj
� �

Otherwise

�

(19)

Where, RND is a random number between [0–1] and R is a numerical constant
smaller than one that regulates the rate of population convergence. F is a scale
factor that controls the large differences between the values generated in the
search space. F is calculated dynamically according to Eq. (20).

F ¼
C1 � RND

max xi kð Þ; xj kð Þ
� � (20)

Where, C1 is a constant less than one. The effect of this approach is to allow
each member of the population to fluctuate within appropriate ranges to reach
optimal solutions.

Migration Technique

When an increase in load on some VMs leads to an imbalance in the load of
the system, the migration technique is used to improve the workload.
However, increased migration leads to increased computational costs. Once
an OVM is created, tasks must be moved from OVM to LVM. This means
migration, and eventually results in a set of balanced VMs (BVMs). In this
paper, whenever the load difference between LVM and OVM exceeds the ψ
threshold, a task is randomly selected from OVM and transferred to LVM.

e2055394-2618 S. ABEDI ET AL.

Stop Condition

After an iteration of the FA, the current population has evolved over the old
population. This process is repeated until a stop condition is reached. In this
paper, the stop condition of the algorithm is defined based on the fixed
number of iterations with the variable Itermax.

Simulation Results

This section is related to the evaluation and comparison of the proposed IFA-
DSA method in solving the DSA problem in the cloud environment.
Evaluation and comparison are based on various criteria such as workload
balancing and makespan. FCFS (Jaiganesh et al. 2015), TSDQ-FLPSO (Ben
Alla et al. 2016) and ICFA (Wang, Liu, and Jolfaei 2020) methods were used to
compare the performance of the IFA-DSA. In addition, the performance of the
FA is evaluated compared to other evolutionary algorithms (i.e., GA and PSO).
The simulation was performed by MATLAB R2019a on a Dell Inspiron laptop
with an Intel Core i7-11370 H processor in 12MB cache, 4.8 GHz and 16GB
memory. Various scenarios have been considered to evaluate the proposed
method in the cloud environment, as shown in Table 2. For each scenario, the
cloud environment configuration for the DSA problem is based on Table 3.

The IFA-DSA algorithm has different input parameters. Here, the priority
decision threshold values are set as equal divisions between 0 and 1. The values
of other parameters based on Ben Ben Alla et al. (2016) and Wang, Liu, and
Jolfaei (2020) are as follows: ψ ¼ 0:1, C1 ¼ 0:8, R ¼ 0:1, θ ¼ �0:5, γ ¼ 0:9,
ρ ¼ 0:15, a1 ¼ 0:5, a2 ¼ 0:1, a3 ¼ 0:1, a4 ¼ 0:3, NP ¼ 40, Itermax ¼ 200.

The proposed method creates the initial population in a heuristic method
based on a fuzzy approach and taking into account the priority of tasks. This is
done with the aim of distributing the workload at the beginning of the
scheduling process. Figure 6 shows the workload created on each VM for

Table 2. Scenarios defined for the DSA problem.
Scenario Number of tasks (N) Number of VMs (M)

Scenario 1 100 5
Scenario 2 50 10
Scenario 3 500 60
Scenario 4 1000 100

Table 3. Configuring the cloud environment for the DSA
problem.

Parameter Value

Task size Randomly between 500 and 2000
Power VMs Randomly between 100 and 1000
Number of resources in VMs Randomly between 1 and 4

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2619

the defined scenarios. Here, the workload is calculated based on the tasks size
assigned to a VM relative to the total workload. Also, the workload of each VM
is reported on an average basis for the entire population of fireflies. The results
of this simulation show that the workload in all VMs is almost at the same
level. Hence, the heuristic approach provides the apt load balancing at the
beginning of the scheduling process.

The tasks distribution process on VMs is based on the priority of each task. the
goal is to have almost the same number of tasks assigned to each VM with
different priorities. In general, the IFA-DSA allocates sequence tasks to VMs in
creating the initial population in such a way that the number of tasks with
different priorities on VMs is fair. The results of the study of this problem are
shown in Figure 7 for different scenarios. As illustrated, it is fair to distribute tasks
with different priorities between VMs in all scenarios. For example, in Scenario 2,
the average number of tasks assigned with low priority is approximately 11.7, and
this value is 11.3 and 12.0 for medium and high priority, respectively. Based on
these results, the proximity of the number of tasks with different priorities
indicates the proper distribution of tasks among VMs by IFA-DSA.

Figure 6. VMs load balancing at the beginning of the scheduling process.

e2055394-2620 S. ABEDI ET AL.

The FA performance is then evaluated in comparison with GA and PSO.
This evaluation is based on the makespan metric for the various scenarios
shown in Figure 8. Here, the comparison based on the convergence rate of
different methods in reducing makespan is emphasized. The results of this
comparison show the superior performance of FA compared to GA and PSO
during the optimization process. The reason for this advantage is the use of
a heuristic method to generate the initial population and the proper distribu-
tion of tasks among VMs. The proposed method has a population of best
quality at the start of optimization, and load balancing on VMs accelerates
convergence during evolution.

Another experiment evaluated the performance of IFA-DSA compared to
similar methods (i.e., FCFS, TSDQ-FLPSO and ICFA). These results are
reported based on the makespan criteria and with a different number of
tasks (i.e., 100, 200, 300, 400 and 500). In this comparison, the number of
VMs is fixed and set to 50. The results of this experiment are shown in
Figure 9. As illustrated, the superiority of IFA-DSA with makespan is less
obvious than other methods. The proposed method is superior to other
methods with a number of different tasks except 500. Here, ICFA performs
better than IFA-DSA when the number of tasks is 500. Hence, the IFA-DSA

Figure 7. Distribution of tasks with different priorities on VMs.

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2621

Figure 8. Comparison of FA with GA and PSO in the proposed method.

Figure 9. Comparison of IFA-DSA with similar methods in the makespan criteria.

e2055394-2622 S. ABEDI ET AL.

performs worse than the ICFA as the number of tasks increases, although this
is negligible. Overall, the average makespan results show that IFA-DSA per-
forms 95%, 39% and 3% better than FCFS, TSDQ-FLPSO and ICFA methods,
respectively.

Table 4 shows the proposed method statistical analysis for DSA in the cloud
using paired t-test, which determines the significance level of the proposed
method compared to other methods. These results are reported based on an
average of 4 scenarios. Evaluation criteria used in experiments such as load
balancing and makespan are considered in this analysis. Statistical parameters
include difference of mean and standard deviation (SD) between IFA-DSA
and comparable methods (i.e., FCFS, TSDQ-FLPSO and ICFA) based on t-
value and p-value. In this analysis, a significant level of p< 0:05 is considered
for paired t-test. Therefore, when the p-value is less than 0.05, it can be
concluded that the difference between the proposed method and a similar
method is significant for an evaluation criterion. The results show that there is
a significant difference between the proposed method and other methods,
because for all evaluation criteria, the p-value is less than 0.05.

In a DSA system in a cloud environment, various quality parameters such as
runtime, cost, load balance, energy consumption, fairness, resource efficiency,
etc. must be considered. However, it is not possible to consider all of these
parameters in practice. In a parametric comparison, the position of the
proposed IFA-DSA method in comparison with FCFS, TSDQ-FLPSO and
ICFA methods is investigated. The results of this study are presented in

Table 4. Statistical analysis of the proposed method in comparison with other methods.

Evaluation
criteria

FCFS TSDQ-FLPSO ICFA

Mean SD
t-

value
p-

value Mean SD
t-

value
p-

value Mean SD
t-

value p-value

Workload
balance

2.16 3.73 2.54 0.016 2.95 3.92 5.98 0.009 3.01 2.67 2.29 0.01489058

Makespan 50.16 5.43 2.73 0.018 53.04 5.30 2.64 0.015 53.45 5.23 2.32 0.0256673

Table 5. Parameters used by different methods for DSA.
Parameters FCFS TSDQ-FLPSO ICFA IFA-DSA

Workload balance √ √ √ √
Being fair - √ - -
Efficiency √ - - -
Utilization of resources - - √ -
Run-time - - - √
Energy consumption - - √ -
Processing cost √ - - √
Response time √ √ √ -
Prioritize tasks - - - √

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2623

Table 5. According to all the tests performed, IFA-DSA performs better than
other methods compared in most cases and has reported promising results in
other cases.

Conclusion

Cloud computing is a model based on large computer networks that provides
a new model for the supply, consumption and provision of information
technology services using the internet. Cloud centers provide their resources
with a technology called virtualization, which can provide dynamic flexibility
in the DSA. In this regard, virtualization technology allocates server resources
dynamically and based on user requests. This technology allows simultaneous
access to cloud services for a large number of users. Therefore, it is essential to
provide sufficient resources for each application. Given the limited resources
available, it is crucial for cloud service providers to manage resource allocation
to consumers, which is dynamically changing. In DSA, various factors such as
QoS, price, fairness, profit and workload balance are emphasized. The process
of allocating resources is a complex one, as both the consumer and the cloud
server seek to make the most profit. Inspired by evolutionary algorithms, this
paper presents a DSA-based approach to efficient load balancing in the cloud
environment. The proposed method has the advantages of both FA and fuzzy
approaches. FA has been efficiently improved to create the initial population
by the fuzzy approach. The proposed method provides the DSA process with
efficient load balancing and proper runtime. The simulation results confirm
the effectiveness of the proposed method and show its superiority over similar
methods. For future work, the proposed method can be configured to perform
cloud task scheduling to achieve some objectives such as maximizing the
resource utilization and reducing SLA violation. In addition, the proposed
method can be applied to emerging real-world applications such as home
health care systems.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

ORCID

Mostafa Ghobaei-Arani http://orcid.org/0000-0003-2639-0900
Musa Mojarad http://orcid.org/0000-0002-2218-2170

e2055394-2624 S. ABEDI ET AL.

References

Aburukba, R. O., M. AliKarrar, T. Landolsi, and K. El-Fakih. 2020. Scheduling Internet of
Things requests to minimize latency in hybrid Fog–Cloud computing. Future Generation
Computer Systems 111:539–51. doi:10.1016/j.future.2019.09.039.

Aghdashi, A., and S. L. Mirtaheri. 2019, April. A survey on load balancing in cloud systems for
big data applications. In International congress on high-performance computing and big data
analysis, Lucio Grandinetti, Seyedeh Leili Mirtaheri, Reza Shahbazian editors, 156–73.
Cham: Springer.

Alboaneen, D., H. Tianfield, Y. Zhang, and B. Pranggono. 2020. A metaheuristic method for
joint task scheduling and virtual machine placement in cloud data centers. Future
Generation Computer Systems 115:201–12. doi:10.1016/j.future.2020.08.036.

Alelaiwi, A. 2017. A collaborative resource management for big IoT data processing in Cloud.
Cluster Computing 20 (2):1791–99. doi:10.1007/s10586-017-0839-y.

Ali, S. A., M. Affan, and M. Alam (2019). A study of efficient energy management techniques
for cloud computing environment,9th International Conference on Cloud Computing, Data
Science & Engineering (Confluence) (pp.13–18), IEEE, Noida, India.

Ben Alla, H., S. Ben Alla, A. Ezzati, and A. Mouhsen. 2016, May. A novel architecture with
dynamic queues based on fuzzy logic and particle swarm optimization algorithm for task
scheduling in cloud computing. In International symposium on ubiquitous networking,
Rachid El-Azouzi, Daniel Sadoc Menasche, Essaïd Sabir, Francesco De Pellegrini,
Mustapha Benjillali editots,205–17. Singapore: Springer.

Berahmand, K., E. Nasiri, Y. Li, and Y. Li. 2021. Spectral clustering on protein-protein
interaction networks via constructing affinity matrix using attributed graph embedding.
Computers in Biology and Medicine 138:104933. doi:10.1016/j.compbiomed.2021.104933.

Chien, W. C., C. F. Lai, and H. C. Chao. 2019. Dynamic resource prediction and allocation in
C-RAN with edge artificial intelligence. IEEE Transactions on Industrial Informatics
15 (7):4306–14. doi:10.1109/TII.2019.2913169.

Elhoseny, M., A. Abdelaziz, A. S. Salama, A. M. Riad, K. Muhammad, and A. K. Sangaiah. 2018.
A hybrid model of internet of things and cloud computing to manage big data in health
services applications. Future Generation Computer Systems 86:1383–94. doi:10.1016/j.
future.2018.03.005.

Faraji Mehmandar, M., S. Jabbehdari, and H. Haj Seyyed Javadi. 2020. A dynamic fog service
provisioning approach for IoT applications. International Journal of Communication
Systems 33 (14):e4541. doi:10.1002/dac.4541.

Hajipour, H., H. B. Khormuji, and H. Rostami. 2016. ODMA: A novel swarm-evolutionary
metaheuristic optimizer inspired by open-source development model and communities. Soft
Computing 20 (2):727–47. doi:10.1007/s00500-014-1536-x.

Ibrahim, A., M. Noshy, H. A. Ali, and M. Badawy. 2020. PAPSO: A power-aware VM
placement technique based on particle swarm optimization. IEEE Access 8:81747–64.
doi:10.1109/ACCESS.2020.2990828.

Jaiganesh, M., B. Ramadoss, A. V. A. Kumar, and S. Mercy. 2015. performance evaluation of
cloud services with profit optimization. Procedia Computer Science 54:24–30. doi:10.1016/j.
procs.2015.06.003.

John, N. P. (2020, March). A review on dynamic consolidation of virtual machines for effective
energy management and resource utilization in data centres of cloud computing. In 2020
Fourth International Conference on Computing Methodologies and Communication
(ICCMC), Erode, India, (pp. 614–19). IEEE.

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2625

https://doi.org/10.1016/j.future.2019.09.039
https://doi.org/10.1016/j.future.2020.08.036
https://doi.org/10.1007/s10586-017-0839-y
https://doi.org/10.1016/j.compbiomed.2021.104933
https://doi.org/10.1109/TII.2019.2913169
https://doi.org/10.1016/j.future.2018.03.005
https://doi.org/10.1016/j.future.2018.03.005
https://doi.org/10.1002/dac.4541
https://doi.org/10.1007/s00500-014-1536-x
https://doi.org/10.1109/ACCESS.2020.2990828
https://doi.org/10.1016/j.procs.2015.06.003
https://doi.org/10.1016/j.procs.2015.06.003

Jula, A., E. A. Sundararajan, Z. Othman, and N. K. Naseri. 2021. Color revolution: a novel
operator for imperialist competitive algorithm in solving cloud computing service composi-
tion problem. Symmetry 13 (2):177. doi:10.3390/sym13020177.

Khorsand R, Ghobaei-Arani M and Ramezanpour M. 2019. A self-learning fuzzy approach for
proactive resource provisioning in cloud environment. Softw: Pract Exper 49(11): 1618–
1642. doi:10.1002/spe.2737

Kumar, N., M. Kikla, and C. Navya. 2022. Dynamic resource allocation for virtual machines in
cloud data center. In Emerging research in computing, information, communication and
applications, N. R. Shetty, L. M. Patnaik, H. C. Nagaraj, Prasad N. Hamsavath, N. Nalini
editors, 501–10. Singapore: Springer.

Kumar, P., and R. Kumar. 2019. Issues and challenges of load balancing techniques in cloud
computing: A survey. ACM Computing Surveys (CSUR) 51 (6):1–35. doi:10.1145/3281010.

Liu, C., J. Wang, L. Zhou, and A. Rezaeipanah. 2022. Solving the multi-objective problem of iot
service placement in fog computing using cuckoo search algorithm. In press. Neural
Processing Letters. 1–32. https://doi.org/10.1007/s11063-021-10708-2

Mahini, A., R. Berangi, A. M. Rahmani, and H. Navidi. 2021. Bankruptcy approach to integrity
aware resource management in a cloud federation. Cluster Computing 24 (4):3469–94.
doi:10.1007/s10586-021-03336-x.

Masdari M, Gharehpasha S, Ghobaei-Arani M and Ghasemi V. 2020. Bio-inspired virtual
machine placement schemes in cloud computing environment: taxonomy, review, and
future research directions. Cluster Comput 23 (4): 2533–2563. doi:10.1007/s10586-019-
03026-9

Mirjalili, S., and A. Lewis. 2016. The whale optimization algorithm. Advances in Engineering
Software 95:51–67. doi:10.1016/j.advengsoft.2016.01.008.

Naha, R. K., S. Garg, A. Chan, and S. K. Battula. 2020. Deadline-based dynamic resource
allocation and provisioning algorithms in fog-cloud environment. Future Generation
Computer Systems 104:131–41. doi:10.1016/j.future.2019.10.018.

Panda, S. K., and P. K. Jana. 2019. An energy-efficient task scheduling algorithm for hetero-
geneous cloud computing systems. Cluster Computing 22 (2):509–27. doi:10.1007/s10586-
018-2858-8.

Pawar, C. S., and R. B. Wagh (2012, December). Priority based dynamic resource allocation in
cloud computing. In 2012 International Symposium on Cloud and Services Computing,
Mangalore, India, (pp. 1–6). IEEE.

Ponraj, A. 2019. Optimistic virtual machine placement in cloud data centers using queuing
approach. Future Generation Computer Systems 93:338–44. doi:10.1016/j.
future.2018.10.022.

Rajabion, L., A. A. Shaltooki, M. Taghikhah, A. Ghasemi, and A. Badfar. 2019. Healthcare big
data processing mechanisms: The role of cloud computing. International Journal of
Information Management 49:271–89. doi:10.1016/j.ijinfomgt.2019.05.017.

Rezaeipanah, A., P. Amiri, H. Nazari, M. Mojarad, and H. Parvin. 2021. An energy-aware
hybrid approach for wireless sensor networks using re-clustering-based multi-hop routing.
Wireless Personal Communications 120 (4):3293–314. doi:10.1007/s11277-021-08614-w.

Rezaeipanah, A., M. Mojarad, and A. Fakhari. 2022. Providing a new approach to increase fault
tolerance in cloud computing using fuzzy logic. International Journal of Computers and
Applications 44 (2):139–47. doi:10.1080/1206212X.2019.1709288.

Rezaeipanah, A., H. Nazari, and G. Ahmadi. 2019. A hybrid approach for prolonging lifetime of
wireless sensor networks using genetic algorithm and online clustering. Journal of
Computing Science and Engineering 13 (4):163–74. doi:10.5626/JCSE.2019.13.4.163.

e2055394-2626 S. ABEDI ET AL.

https://doi.org/10.3390/sym13020177
https://doi.org/10.1002/spe.2737
https://doi.org/10.1145/3281010
https://doi.org/10.1007/s11063-021-10708-2
https://doi.org/10.1007/s10586-021-03336-x
https://doi.org/10.1007/s10586-019-03026-9
https://doi.org/10.1007/s10586-019-03026-9
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.future.2019.10.018
https://doi.org/10.1007/s10586-018-2858-8
https://doi.org/10.1007/s10586-018-2858-8
https://doi.org/10.1016/j.future.2018.10.022
https://doi.org/10.1016/j.future.2018.10.022
https://doi.org/10.1016/j.ijinfomgt.2019.05.017
https://doi.org/10.1007/s11277-021-08614-w
https://doi.org/10.1080/1206212X.2019.1709288
https://doi.org/10.5626/JCSE.2019.13.4.163

Rostami, M., K. Berahmand, E. Nasiri, and S. Forouzandeh. 2021. Review of swarm
intelligence-based feature selection methods. Engineering Applications of Artificial
Intelligence 100:104210. doi:10.1016/j.engappai.2021.104210.

Shahidinejad A, Ghobaei-Arani M and Esmaeili L. 2020. An elastic controller using Colored
Petri Nets in cloud computing environment. Cluster Comput 23 (2): 1045–1071. doi:10.1007/
s10586-019-02972-8

Sheikh, S. Z., and M. A. Pasha (2019, October). An improved model for system-level energy
minimization on real-time systems. In 2019 IEEE 27th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), Rennes, France, (pp. 276–82). IEEE.

Skarlat, O., S. Schulte, M. Borkowski, and P. Leitner (2016, November). Resource provisioning
for IoT services in the fog. In 2016 IEEE 9th international conference on service-oriented
computing and applications (SOCA), Macau, China, (pp. 32–39). IEEE.

Taher, N. C., I. Mallat, N. Agoulmine, and N. El-Mawass (2019, April). An IoT-Cloud based
solution for real-time and batch processing of big data: Application in healthcare. In 2019
3rd International Conference on Bio-engineering for Smart Technologies (BioSMART), Paris,
France, (pp. 1–8). IEEE.

Wang, Z., D. Liu, and A. Jolfaei. 2020. Resource allocation solution for sensor networks using
improved chaotic firefly algorithm in IoT environment. Computer Communications
156:91–100. doi:10.1016/j.comcom.2020.03.039.

Wang, X., X. Wang, H. Che, K. Li, M. Huang, and C. Gao. 2015. An intelligent economic
approach for dynamic resource allocation in cloud services. IEEE Transactions on Cloud
Computing 3 (3):275–89. doi:10.1109/TCC.2015.2415776.

Warneke, D., and O. Kao. 2011. Exploiting dynamic resource allocation for efficient parallel
data processing in the cloud. IEEE Transactions on Parallel and Distributed Systems
22 (6):985–97. doi:10.1109/TPDS.2011.65.

Xu, X., R. Mo, F. Dai, W. Lin, S. Wan, and W. Dou. 2019. Dynamic resource provisioning with
fault tolerance for data-intensive meteorological workflows in cloud. IEEE Transactions on
Industrial Informatics 16 (9):6172–81. doi:10.1109/TII.2019.2959258.

Yang, X. S. 2009, October. Firefly algorithms for multimodal optimization. In International
symposium on stochastic algorithms, Osamu Watanabe, Thomas Zeugmann editors,169–78.
Berlin, Heidelberg: Springer.

Yang, X. S., and S. Deb (2009, December). Cuckoo search via Lévy flights. In 2009 World
congress on nature & biologically inspired computing (NaBIC), Coimbatore, India, (pp.
210–14). IEEE.

Yousif, A., S. M. Alqhtani, M. B. Bashir, A. Ali, R. Hamza, A. Hassan, and T. M. Tawfeeg. 2022.
Greedy firefly algorithm for optimizing job scheduling in iot grid computing. Sensors
22 (3):850. doi:10.3390/s22030850.

Zhou, Z., Z. Hu, and K. Li. 2016. Virtual machine placement algorithm for both
energy-awareness and SLA violation reduction in cloud data centers. Scientific
Programming 2016:1–12.

APPLIED ARTIFICIAL INTELLIGENCE e2055394-2627

https://doi.org/10.1016/j.engappai.2021.104210
https://doi.org/10.1007/s10586-019-02972-8
https://doi.org/10.1007/s10586-019-02972-8
https://doi.org/10.1016/j.comcom.2020.03.039
https://doi.org/10.1109/TCC.2015.2415776
https://doi.org/10.1109/TPDS.2011.65
https://doi.org/10.1109/TII.2019.2959258
https://doi.org/10.3390/s22030850

	Abstract
	Introduction
	Literature Review
	Background
	Problem Formulation
	Objective Functions
	System Hypotheses
	Firefly Algorithm

	Proposed Method
	Prioritize Tasks
	Encoding Fireflies and Initial Population
	Objective Function (Luciferin)
	Evolution of Fireflies
	Migration Technique
	Stop Condition

	Simulation Results
	Conclusion
	Disclosure Statement
	ORCID
	References

