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ABSTRACT
Today, cloud computing has provided a suitable platform to 
meet the computing needs of users. One of the most important 
challenges facing cloud computing is Dynamic Resource 
Allocation (DSA), which is in the NP-Hard class. One of the 
goals of the DSA is to utilization resources efficiently and max-
imize productivity. In this paper, an improved Firefly algorithm 
based on load balancing optimization is introduced to solve the 
DSA problem called IFA-DSA. In addition to balancing workloads 
between existing virtual machines, IFA-DSA also reduces com-
pletion time by selecting appropriate objectives in the fitness 
function. The best sequence of tasks for resource allocation is 
formulated as a multi-objective problem. The intended objec-
tives are load balancing, completion time, average runtime, and 
migration rate. In order to improve the initial population crea-
tion in the firefly algorithm, a heuristic method is used instead of 
a random approach. In the heuristic method, the initial popula-
tion is created based on the priority of tasks, where the priority 
of each task is determined based on the pay as you use model 
and a fuzzy approach. The results of the experiments show the 
superiority of the proposed method in the makespan criterion 
over the ICFA method by an average of 3%.

Introduction

Cloud computing is a general term for anything that includes the provision of 
internet-hosted services (Naha et al. 2020). For example, such as digital 
marketing and e-mail marketing (Pawar and Wagh 2012). In addition, cloud 
computing can be introduced as providing computer services such as storage, 
database, software, networking and analytics that provide more flexible 
resources (Rezaeipanah, Mojarad, and Fakhari 2022). In this technology, the 
user does not have access to technical details and only sees its appearance (Liu 
et al. 2022). The logic behind cloud computing is time sharing. In other words, 
different computer resources are shared between multiple users using multi- 
programming and multi-tasking mechanisms. This approach was first used in 
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the 1950s (Berahmand et al. 2021). At this time, several users shared its 
services with access to a central computer, because of the high price and 
large size of central computers, it was not possible to provide an independent 
system for each user. Thus, cloud services can be considered as a way to share 
computers in the 1950s (Wang et al. 2015).

Internet technology is growing rapidly and its use is widespread, and in the 
meantime cloud computing is emerging and expanding (Rezaeipanah et al. 
2021; Rezaeipanah, Nazari, and Ahmadi 2019). This computing is provided as 
a tool to respond to the needs of users and users can use its services on the 
internet without spatial dependence. It is also used for places where dynamic 
resource provision and the use of virtualization technology are important (Ali, 
Affan, and Alam 2019). Virtualization is the main technology as a service 
solution. Virtualization is a way to get more performance out of a computer by 
sharing resources. Virtual machines (VMs) are an appropriate solution for full 
implementation of software-based virtualization. In fact, using VMs, 
a hardware with a suitable quality level is simulated and virtualized. This 
mechanism requires high speed internet and tasks in clusters. Cloud comput-
ing has a bright future but still has a problem that has not been resolved 
(Skarlat et al. 2016).

From a user’s perspective, cloud computing is an abstract concept of 
extremely scalable and distant storage and computing resources. From 
a service provider perspective, cloud systems are based on a large set of 
computer resources and are allocated to applications on demand (Warneke 
and Kao 2011). Thus, cloud computing can be defined as a distributed tem-
plate in which all resources are presented in dynamic scalability and virtuali-
zation as a service on the internet. The high scalability of cloud computing 
services allows users to increase and decrease resources at any time. Reducing 
costs is one of the most important benefits of a cloud computing service. Other 
advantages of cloud computing include high speed, security, reliability, and 
acceptable performance (Chien, Lai, and Chao 2019; Jula et al. 2021).

In cloud computing, Dynamic Resource Allocation (DSA) is the process of 
allocating resources available to applications over the internet (Elhoseny et al. 
2018). DSA causes famine of services if allocation is not managed properly 
(Mahini et al. 2021). Resource provision solves the famine problem by allow-
ing service providers to manage resources in each module. DSA strategies are 
for allocating appropriate resources in the cloud environment to meet the 
needs of applications. DSA strategies and input parameters to DSA are differ-
ent based on services, infrastructure, and the nature of applications (Xu et al. 
2019). Figure 1 shows a classification of DSA-based strategies for cloud 
computing.

Every request sent by users to service providers takes over part of their 
resources. The DSA problem is a major challenge in cloud environments 
and is directly related to energy consumption, service providers’ profits 
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and users’ costs (Taher et al. 2019). Hence, much task has been done in 
the field of DSA, reducing the number of resources utilization, load 
balancing and resource integration. Cloud customers need to receive 
quality, low cost and reliable services. Basically, service cost, Quality of 
Service (QoS), and service reliability depend on the DSA process in the 
cloud computing environment (Elhoseny et al. 2018; Taher et al. 2019). In 
cloud computing, multiple users can request a number of cloud services 
simultaneously. Hence, the need for algorithms to optimally manage DSA 
in the cloud with certain QoS requirements is essential. Cloud service 
users and providers have different goals and needs (Elhoseny et al. 2018). 
Users try to get the cloud services they need with QoS guaranteed and at 
the lowest cost. On the other hand, service providers also strive to have 
the highest return on investment. Therefore, a model with automated 
DSA capability in which the interests of both entities are considered can 
be very effective.

DSA in cloud computing is a mechanism that aims to meet the require-
ments of applications (Faraji Mehmandar, Jabbehdari, and Haj Seyyed Javadi 
2020). In addition, the DSA management mechanism should examine the 
current state of each resource in the cloud environment in order to provide 
algorithms for optimal allocation of physical/virtual resources and reduction 
of operating costs (Xu et al. 2019). It is clear that due to the scale and 
complexity of these systems, centralized assignment of tasks to servers 
makes it impossible to consider specific solutions. Also, due to the increasing 
growth of data in data centers and the need to achieve the desired QoS, there is 
a need to provide solutions to increase the productivity of service providers. In 
the case of DSA, on the one hand, the needs of users should be considered and 
on the other hand, the available resources should be utilized to the maximum. 
As the number of cloud users increases, so do the resources that need to be 
allocated. Therefore, computing resources should be timed and allocated in 

Figure 1. DSA-based strategies.
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such a way that both providers get the most out of the resources and users get 
the applications they need at the lowest cost (Naha et al. 2020; Pawar and 
Wagh 2012).

In this paper, solving DSA problem in cloud environment using Firefly 
Algorithm (FA) is presented as an optimization approach. Our goal is to 
improve this algorithm in order to optimize the workload balance for the 
initial population production. The proposed method is called IFA-DSA, and in 
addition to balancing the workload between existing VMs, it also reduces task 
completion time by selecting appropriate objectives. In order to achieve the 
goals, set for the production of the initial population in the FA, a heuristic 
method is used instead of a random approach. In IFA-DSA, the priority of 
each task is determined according to the pay as you use model and a fuzzy 
approach.

The main contribution of this paper is as follows:

● Development of FA to solve DSA problem as a multi-objective optimiza-
tion problem

● Prioritize requests based on the pay as you use model and a fuzzy 
approach to improve load balance

● Evaluation of the proposed method with extensive simulation using 
Matlab software

The rest of the paper is organized as follows: Literature review on the DSA 
problem is compiled in Section 2. Section 3 provides background on problem 
formulation, objective functions, assumptions, and FA. An overview of the 
proposed method for solving the DSA problem in Section 4. Section 5 
describes the simulation results and experimental results. Finally, Section 6 
concludes this paper.

Literature Review

Currently, various studies have been conducted on the management of energy 
resources in cloud centers. Two types of energy saving algorithms (Khorsand 
et al. 2019; Panda and Jana 2019) and energy efficiency algorithms (Masdari et 
al. 2020; John 2020) are more important to solve the problem of high energy 
consumption in data centers. The main idea in these algorithms is to reduce 
energy consumption in data centers. For example, Ibrahim et al. (2020) 
proposes two heuristic algorithms to reduce energy consumption. These two 
algorithms are based on a simple local optimization method but do not 
consider the Service Level Agreement (SLA) violation. Sheikh and Pasha 
(2019) proposed an energy-saving resource allocation algorithm for cloud 
data centers. The results of this study show that the minimum or maximum 
runtime of tasks is not suitable for saving energy consumption. Therefore, this 
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algorithm does not meet the needs of users in terms of energy consumption. 
The FCFS (First Come First Serve) method was proposed by Jaiganesh et al. 
(2015) to evaluate the performance of cloud services by optimizing task 
scheduling. In this method, the priority queuing method has been used to 
improve the scheduling system. Task Scheduling using a novel architecture 
with Dynamic Queues based on hybrid algorithm using Fuzzy Logic and 
Particle Swarm Optimization algorithm (TSDQ-FLPSO) was proposed by 
Ben Alla et al. (2016). TSDQ-FLPSO is a new architecture with dynamic 
queues based on fuzzy system and Particle Swarm Optimization (PSO) for 
scheduling tasks in cloud computing.

In recent years, many studies have been presented to solve the DSA problem 
in the haze environment, but more research is still needed. Because failure in 
DSA increases costs and delays Ibrahim et al. 2020 Most methods are based on 
heuristic and meta-heuristic approaches and use evolutionary algorithms 
(Skarlat et al. (2016); (Rajabion et al. 2019); (Liu et al. 2022). In this section, 
we will review the research conducted on the DSA problem.

Kumar and Kumar (2019) reviewed common load balancing algorithms in 
cloud computing. One of the most widely used of these algorithms is Min- 
Min. In this algorithm, first the minimum completion time for all tasks is 
found and then the minimum value is selected. This time is the minimum time 
between all tasks on all available resources. Finally, the task on the VM is 
scheduled according to the minimum time. However, Min-Min can lead to 
resource famine. Aghdashi and Mirtaheri (2019) presented a hybrid schedul-
ing strategy for managing and processing medical data in cloud resources. The 
authors used a combination of Genetic Algorithm (GA) and PSO to load 
balancing and allocate resources fairly. In this strategy, cloud servers have 
the ability to process different user requests in parallel.

Elhoseny et al. (2018) presented a scheduling and load balancing model 
based on the concept of cloud segmentation. The authors use the round robin 
algorithm and game theory to select a service with a lower workload and 
higher execution speed to solve the DSA problem. Here, the round robin time 
slice is done according to the better server selection. Alelaiwi (2017) presented 
a scalable model based on Integer Linear Programming (ILP) to identify 
strategies and decisions in the cloud federation. In this model, user requests 
are sent at all levels of the cloud federation and they are easily guided. The 
profits from this model outsource resources to support other cloud federa-
tions. Mahini et al. (2021) proposed an approach to the allocation of multilayer 
resources. In this method, resource allocation to tasks is performed on a server 
of the cluster based on operating levels. This method improves efficiency by 
18% and runtime by 10%.

Rajabion et al. (2019) proposed a resource allocation solution using cloud 
computing and the Internet of Things (IoT) for real-time and batch proces-
sing. Here, the IoT is responsible for real-time data processing, where it sends 
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heavy processing to the cloud if needed. Simulations on Amazon Web Services 
show that this model can reduce response time to requests. Taher et al. (2019) 
proposed an autonomous approach based on fuzzy hierarchical technique to 
provide resources for multi-layered applications in the cloud. In the analysis 
phase of this approach, the support vector machine (SVM) technique and 
linear regression (LR) have been used to predict the number of user requests. 
This approach significantly reduces the cost and response time.

Jula et al. (2021) proposed an approach based on workload analysis to 
provide resource efficiency. This approach combines the imperialist competi-
tive algorithm (ICA) and fuzzy c-means (FCM) clustering to categorize user 
requests. The authors use the decision tree algorithm to efficiently allocate 
resources based on both productivity and workload criteria. This approach 
focuses only on the mapping and resource allocation phase, and hardware or 
software failure can lead to increased runtime. Alboaneen et al. (2020) pro-
posed a meta-heuristic approach to Joint Task Scheduling and VM Placement 
(JTSVMP) in cloud data centers. JTSVMP consists of two parts: task schedul-
ing and VM placement. The authors formulate and solve the problem in an 
optimized way using meta-heuristic algorithms. The proposed optimization 
process is aimed at scheduling tasks in VMs that have the lowest execution cost 
in a limited time. The meta-heuristic algorithms used include glowworm 
swarm optimization (GSO), moth-flame glowworm swarm optimization 
(MFGSO), and GA.

Aburukba et al. (2020) proposed a resource scheduling algorithm for 
managing IoT services using ILP. The authors use an improved GA to 
minimize delay to take into account the dynamic nature of the fog envir-
onment. The performance of this algorithm is compared with round robin, 
waited-fair and priority-strict techniques. The results of this method show 
a delay rate between 21.9% to 46.6%, which is promising. Faraji 
Mehmandar, Jabbehdari, and Haj Seyyed Javadi (2020) introduced 
a distributed computing framework for resource management in fog com-
puting. Here, the MAPE-k control loop is responsible for providing IoT 
services. In this regard, the reinforcement learning technique for the deci-
sion-making module and SVM for the analysis module have been used. The 
results of this method show better average cost and latency compared to 
similar algorithms. However, this approach does not take into account the 
different QoS needs of the fog service.

Skarlat et al. (2016) provided a conceptual framework for providing 
resources in fog computing. The purpose of this framework is to optimize 
the scheduling of IoT services by considering delays in the allocation of 
computing resources, where applications and resources heterogeneity are 
taken into account. To solve this problem, a GA-based meta-heuristic method 
is proposed that reduces communication delays and makes better utilization of 
fog resources. Wang, Liu, and Jolfaei (2020) proposed a DSA approach for 
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sensor networks using the improved chaotic firefly algorithm (ICFA) in the 
cloud. This approach creates a multi-objective optimization model based on 
the interference analysis of the working scenario of the cognitive radio. Since 
the multi-objective model is a nonlinear convex optimization problem, this 
paper uses ICFA to solve it. ICFA can effectively achieve the optimal solution 
while reducing the complexity of the problem.

Table 1 summarizes the literature reviewed in terms of objectives and 
algorithms used. Although there are numerous works in the literature, 
some methods do not take into account the characteristics of the cloud 
environment and need to improve performance in several respects, includ-
ing DSA.

Table 1. Summary of related works.
Reference Objective Algorithm used

Skarlat et al. (2016) A conceptual framework for providing 
resources in fog computing

A meta-heuristic method based on 
genetic algorithm

Alelaiwi (2017) A scalable model based on linear 
programming in the cloud federation

A multi-objective optimization model 
based on genetic algorithm

Elhoseny et al. (2018) A scheduling and load balancing model 
based on the concept of cloud 
segmentation

Round robin and game theory

Kumar and Kumar (2019) An overview of common load balancing 
algorithms in cloud computing

One of the load balancing algorithms is 
Min-Min.

Aghdashi and Mirtaheri 
(2019)

A hybrid scheduling strategy for 
managing and processing medical data 
in the cloud

Combining genetic algorithms and 
particle swarm optimization

Rajabion et al. (2019) A DSA approach in cloud computing and 
the Internet of Things for real-time and 
batch processing

Analysis of different algorithms

Taher et al. (2019) An autonomous approach based on fuzzy 
hierarchical technique for DSA in the 
cloud

Support vector machines and linear 
regression

Alboaneen et al. (2020) Joint task scheduling and VM placement Glowworm swarm optimization, moth- 
flame glowworm swarm optimization, 
and genetic algorithm

Aburukba et al. (2020) A resource scheduling algorithm for 
managing IoT services using integer 
linear programming

Improved genetic algorithm

Faraji Mehmandar, 
Jabbehdari, and Haj 
Seyyed Javadi (2020)

A distributed computing framework for 
resource management in fog 
computing

Reinforcement learning and support 
vector regression techniques

Wang, Liu, and Jolfaei 
(2020)

A multi-objective optimization approach 
for DSA on cloud-based sensor 
networks

Chaotic firefly algorithm

Mahini et al. (2021) A scheduling algorithm for multilayer DSA 
in the cloud

A formal definition of cloud federation 
integrity based on clustering

Jula et al. (2021) An approach based on workload analysis 
to ensure resource efficiency

Imperialist competitive algorithm and 
fuzzy c-means clustering
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Background

This section consists of four subsections. The first subsection is devoted to 
formulating the DSA problem. The second subsection reviews the objective 
functions in DSA. The third subsection refers to the system hypotheses and 
finally the fourth subsection deals with the problem-solving approach, 
i.e., FA.

Problem Formulation

In the pay as you use model, users pay more to request their task done in less 
time (Ponraj 2019). The processing units in cloud computing are VMs. In 
cloud computing, there are a number of physical servers that each contain 
multiple VMs. VMs as a computing unit of the cloud environment have 
different types such as computers, servers and networks so that each VM has 
multiple resources (Wang, Liu, and Jolfaei 2020). Let the resources in each VM 
be static and LAN-based communication where this allows parallel processing. 
Task scheduling aims to allocate appropriate VMs to user requests to max-
imize resource utilization. This is referred to as the DSA problem (Kumar, 
Kikla, and Navya 2022).

The cloud environment has a scheduling system for the proper distribution 
of tasks between physical servers (Elhoseny et al. 2018). Each physical server 
also has an independent scheduling system that divides tasks between VMs. 
Since each VM has several independent sources with parallel processing 
capability, several tasks can be assigned to one VM simultaneously (Kumar, 
Kikla, and Navya 2022). All tasks send by users are assumed to be computa-
tional and independent of each other. The most important goal of the sche-
duling system in the cloud environment is the load balance of each VM. Load 
balancing is the concept of ensuring the proper distribution of tasks in terms 
of computational volume between VMs (Wang, Liu, and Jolfaei 2020). The 
main purpose of scheduling algorithms in the cloud environment is to max-
imize resource efficiency and reduce tasks spanning time according to user 
requests (Liu et al. 2022). Therefore, the DSA problem is known as a multi- 
objective optimization problem in the cloud environment. Solving the DSA 
problem means finding the proper sequence of tasks to run on VMs so that it 
reduces the makespan and load balances the VMs (Kumar, Kikla, and Navya 
2022).

In recent years, the issue of migration in the cloud environment has become 
one of the major challenges in scheduling systems (Rezaeipanah, Nazari, and 
Ahmadi 2019). When too much task is assigned to one VM, it becomes an 
Overloaded VM (OVM). Therefore, some existing tasks must be transferred 
from OVM to Lowloaded VM (LVM) (Ibrahim et al. 2020; Zhou, Hu, and Li 
2016). This technique is known as migration, which results in a workload 
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balance between VMs. Given that migration has a computational overhead, 
therefore reducing migration rates in the cloud environment and load balan-
cing will improve scheduling (Zhou, Hu, and Li 2016). In cloud environment 
scheduling systems for DSA on tasks offered by users, the K physical server is 
available as PS ¼ p1; p2; . . . ; pi; . . . ; pKf g. Each pi consists of mi VM as 
VMi ¼ vi;1; vi;2; . . . ; vi;j; . . . ; vi;mi

� �
. Thus, VMi represents a list of VMs 

on the physical server pi. Also, vi;j represents the j th VM in the i th physical 
server. In general, the purpose of the scheduling system is to apply DSA to N 
independent tasks as T ¼ t1; t2; . . . ; tNf g on M VMs. Here, M is the total 
number of VMs associated with the K physical server, 
where VM ¼ v1; v2; . . . ; vMf g.

Objective Functions

There are many factors in the DSA problem that are considered as objective 
functions by various researchers (Ponraj 2019). Some of these factors include 
total runtime, makespan, workload balance and migration rate (Zhou, Hu, and 
Li 2016). These factors are briefly discussed below. The completion time of 
a task depends on the runtime by the VM. Let TTi;j be the runtime of ti on vj, 
TTj is the average total runtime of the tasks assigned to vj, as defined in Eq. (1). 

TTj ¼
1

ti 2 vj

X

ti2vj

TTi;j (1) 

Where, ti 2 vj represents the number of tasks assigned to vj. Accordingly, TT 
is the average of the total runtime for all virtual machines defined by Eq. (2). 

TT ¼
1
M

XM

j¼1
TTj (2) 

Let CTij be the completion time of ti on vj and CTmax be the completion time of 
the last task (makespan). Here, makespan means the largest completion time 
between all tasks and is defined according to Eq. (3). 

CTmax ¼ max fCTijji 2 T; i ¼ 1; 2; . . . ; N and j 2 VM; j ¼ 1; 2; . . . ;Mg
(3) 

The workload of a VM is calculated according to the size of the tasks running on 
this VM in relation to the total size of tasks. In general, WLj workload is related 
to vj, which is determined based on the size of tasks in the vj queue. Hence, WL 
represents the average workload of all VMs and is defined by Eq. (4). 
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WL ¼
1
M

XM

j¼1
WLj (4) 

In order to describe the scatter and load balance of different VMs, the load 
variance of VMs is defined as σ WLð Þ. The value of σ WLð Þ is used to check the 
load balance of a cloud environment scheduling system. The lower the load 
variance of VMs, the better the distribution of tasks and therefore the better 
the load balance. Eq. (5) is defined for calculating σ WLð Þ. 

σ WLð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � 1

XM

j¼1
WLj � WL
� �2

v
u
u
t (5) 

The migration technique can be used when a VM has a large load 
(Rezaeipanah, Nazari, and Ahmadi 2019). In this technique, a number 
of tasks are removed from the OVM queue and transferred to the LVM. 
Increasing the migration rate increases the time it takes to complete 
a task. Therefore, a parameter called migration rate is introduced here 
and the cloud environment scheduling system seeks to minimize it. 
Migration is the ratio of the number of tasks transferred to the total 
number of tasks over a time period. If TS is the entire scheduling period 
in the cloud environment being tested, then the time periods can be 
considered as Eq. (6). 

TS ¼ t0 � t1ð Þ; t1 � t2ð Þ; . . . ; tk� 1 � tkð Þ; . . .½ � (6) 

Here, tk� 1 � tkð Þ refers to the k th time period. Therefore, the migration rate 
can be calculated based on the time period k. ρ kð Þ is the migration rate over 
time k and is calculated as Eq. (7). 

ρ kð Þ ¼
nk

N
; k 2 TS (7) 

Where, nk indicates the number of tasks that have been transferred to other 
VMs over time period k.

System Hypotheses

The simulation start time in the scheduling system is considered to be zero 
seconds. This time is not taken into account due to the slight delay in 
preparing VMs. Therefore, the runtime of a task depends on the runtime 
the task on the VM. All tasks and resources are computational and indepen-
dent. Here, each request from users includes details such as request send 
time per second, task size based on million instructions per second (MIPS), 
priority execution of request based on pay as you use. There is no time 
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deadline for processing requests. Also, cloud environment specifications 
such as number of physical servers, number of active VMs and processing 
power of a VM in MIPS are available. All VMs are capable of performing 
more than one task (depending on available resources). We assume that the 
details of the user requests as well as the specifications of the VMs are the 
input to the system.

Firefly Algorithm

Optimization algorithms seek to find a solution in the search space that has 
the minimum (or maximum) value of the objective function (Hajipour, 
Khormuji, and Rostami 2016). In an optimization problem, the types of 
mathematical relationships between objectives, constraints, and decision 
variables characterize the difficulty of the problem. Objective optimization 
is often used by researchers to solve real-world problems (Yang and Deb 
2009). In general, a better solution is achieved by setting several objectives in 
solving the problem. Multi-objective optimization is a process for solving 
a problem with simultaneous optimization of two or more objectives subject 
to constraints. In recent years, nature-inspired algorithms and biological 
processes have been the most powerful solutions to optimization problems 
(Hajipour, Khormuji, and Rostami 2016; Mirjalili and Lewis 2016; Yang and 
Deb 2009).

The FA was introduced by Yang (2009). The main idea of FA is inspired by 
the optical relationship between fireflies and their biological communication 
phenomenon. This algorithm can be considered as a manifestation of swarm 
intelligence in which the cooperation of low-intelligence members creates 
a higher level of intelligence (Rostami et al. 2021). FA is a meta-heuristic 
algorithm inspired by the behaviors of artificial fireflies and is formulated with 
three hypotheses: 1) fireflies can be attracted to each other regardless of 
gender, 2) the attractiveness factor is measured in proportion to the brightness 
of fireflies and can be increased or decreased based on the distance, and 3) 
when the brightness of both fireflies is the same, the fireflies move randomly 
(Shahidinejad et al. 2020). Fireflies in the FA work independently and are 
suitable for parallel processing. FA is one of the techniques recently used by 
researchers to solve optimization problems in dynamic environments (Yousif 
et al. 2022). Figure 2 shows the flowchart of the FA steps.

FA is one of the most efficient algorithms in solving hybrid optimization 
problems and is used in various fields of optimization problems. Today, FA 
has a variety of applications in various sciences (Yousif et al. 2022). Problems 
such as discrete optimization, anomaly, multi-objective and other issues are 
addressed by the behavior of fireflies (Yousif et al. 2022). Other applications of 
FA include the use of these algorithms in combination with optimization 
algorithms and other improved techniques. Evidence shows that most 
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methods that have used the FA technique in combination with their method 
have performed better than other meta-heuristic algorithms (Wang, Liu, and 
Jolfaei 2020). In most cases, it uses a random search to reach a set of solutions. 
The FA focuses on generating solutions within a search space. Because this 
algorithm performs the search process randomly, it does not get stuck in local 
optimal points. Based on the advantages of this algorithm, we use FA as an 
optimization approach to solve the DSA problem in this study.

Proposed Method

In this paper, a combined FA-based optimization approach and fuzzy method 
are used to solve the DSA problem and improve task scheduling, which we call 
IFA-DSA. IFA-DSA tries to find the best sequence of tasks on VMs and 
ultimately improve DSA by considering different objectives and heuristic 
operators. Here, each firefly is a solution to the problem and specifies the 

Figure 2. Flowchart of FA steps.
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sequence of tasks on VMs. This sequence allocates the appropriate VMs 
resources to each task. In order to improve the DSA process, the priority of 
each task is determined by the pay as you use model. We use tasks priority to 
create an initial population in the FA in a heuristic method, where the goal is 
to properly distribute the task on VMs by a fuzzy approach.

Objectives function for improving the DSA problem are calculated as the 
luciferin value (fitness function) for each firefly. We consider four objectives 
including workload balancing, minimizing the completion time of the last task 
(i.e., makespan), minimizing the average runtime of tasks and reducing the 
migration rate, and formulate the problem as multi-objective optimization. In 
the next step, the sensor radius to determine the neighborhood is calculated 
based on the amount of luciferin, where the probability of fireflies moving 
toward the neighbors is calculated. This probability is defined in terms of 
higher luciferin (attractiveness). Finally, the movement of each firefly to 
a neighbor is more likely to be done using the evolutionary difference 

Figure 3. IFA-DSA flowchart.
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operator. In cases were increasing the workload on some VMs leads to work-
load imbalance, the load balance can be improved by the migration technique 
between VMs. The flowchart of IFA-DSA is shown in Figure 3.

Prioritize Tasks

This paper uses three modes, including Low, Medium and High, to prioritize 
user requests. These terms are fuzzy and we use fuzzy logic to assign them to 
user requests. Basically, the higher the user’s payment and the smaller the 
computational size of the task, the higher the priority of the task to be 
performed. Let ω be the priority decision parameter, which is defined based 
on the ratio of the user’s payment to the task size. We use a trapezoidal 
membership function with fixed threshold values (i.e., T1;T2; . . . ;T6) to 
prioritize the tasks, as shown in Figure 4

The reason for estimating the input parameter is fuzzy in the form of Eq. 
(8) – Eq. (10). Here, the parameter ω determines the value of the fuzzy 
variables for the input value. 

μLow ωð Þ ¼
0 if ω � T3

T3� ω
T3� T2

if T2 � ω<T3
1 if ω<T2

8
<

:
(8) 

μMediumðωÞ ¼

0 if ω<T2
ω� T4
T5� T4

if T2 � ω<T3
1 if T3 � ω<T4
T5� ω
T5� T4

if T4 � ω<T5
0 if ω � T5

8
>>>><

>>>>:

(9) 

Figure 4. Trapezoidal membership function with three modes to prioritize tasks.
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μHigh ωð Þ ¼
0 if ω<T4

ω� T4
T5� T4

if T4 � ω<T5
1 if ω � T5

8
<

:
(10) 

In this paper, rules in the form of Eq. (11) are used for the knowledge base. 

Rk : If x1isA1ð Þ and: : :and xLisALð ÞThenYisG (11) 

Where, Rk refers to the rule k. xi and Ai refer to the input parameter i and the 
assigned fuzzy set, respectively. Y is the output of the rule and G is a linguistic 
term of the fuzzy set belonging to it. Finally, L refers to the number of input 
parameters.

We use Mamdani fuzzy inference system to infer the winning rule. The 
degree of compatibility of the input parameters X ¼ x1; x2; . . . ; xLf g with the 
premise of rule k is calculated based on Eq. (12). 

μk Xð Þ ¼
YL

i¼1
μAi xið Þ

(12) 

Where, L is the number of parameters and Ai is the fuzzy set i. In fact, Ai 

contains Alow;Amiddle;Ahigh
� �

.
According to this method, the winning rule is selected based on the degree 

of confidence factor for decision making. Based on the fuzzy system, it is 
assumed that th, tm, tl are the tasks requested by users with high, medium and 
low priorities, respectively, which should be assigned to appropriate 
resources.

Encoding Fireflies and Initial Population

Each firefly is equivalent to a solution in the search space. The DSA 
problem encoding for each firefly is defined as a vector of length N, 
where N represents the total number of tasks. The content of each element 
of the vector is a VM assigned to the corresponding task. Figure 5 shows 
the representation structure of fireflies in the DSA problem. According to 
this definition, the i th element of this vector represents the j th VM 
assigned to the i th task.

The FA begins its work by producing an initial population of solutions. In 
classical FA, the initial population is created randomly, but in the case of DSA, 
this leads to a poor distribution of tasks between VMs. To solve this problem, 

Figure 5. Encoding structure of fireflies.
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we create the initial population on a heuristic basis based on the priority of 
tasks. Here the VM assigned to each task is determined based on the workload. 
VM selection for all three types of tasks with th, tm, and tl priorities are 
determined by Eq. (13) – Eq. (15). 

th ! vdjmin
Xth
� �

2 VM (13) 

tm ! vdjmin
Xth

þ
Xtm

� �
2 VM (14) 

tl ! vdjmin
XT� �

2 VM (15) 

Where, vd is the VM assigned to the task, where d ¼ 1; 2; . . . ;M. 

Algorithm 1. Proposed heuristic method for creating an initial population

Input: NP : Population size; M: Number of VMs; N: Number of tasks.
Output: Pop NP;Nð Þ as the initial population.

1: Pop NP;Nð Þ  null.
2: for i = 1 to NP do
3: for j = 1 to N do
4: if Task(tj) is high priority then
5: th ! vdjmin

Pth
� �

2 VM
6: Pop i; jð Þ ¼ vd
7: elseif Task(tj) is middle priority then
8: tm ! vdjmin

Pth þ
Ptm

� �
2 VM

9: Pop i; jð Þ ¼ vd
10: else
11: tl ! vdjmin

PT
� �

2 VM

12: Pop i; jð Þ ¼ vd
13: end
14: end
15: end
16: The initial population created is Pop, as output.

When assigning a high-priority task (i.e., th), this task should be assigned to 
an LVM. This strategy ensures that a high-priority task selects a VM with the 
lowest number of high-priority tasks for processing. Medium priority tasks 
(tm) should also select a VM with the lowest number of high and medium 
priority tasks. For low-priority tasks (tm), selecting the VM with the least 
workload is emphasized. Algorithm 1 shows the pseudocode of the proposed 
heuristic method for creating the initial population. Here, NP is the size of the 
firefly population.

According to Algorithm 1, line 1 defines the empty initial population in the 
Pop variable. Line 2 The process of creating solutions in the initial population is 
repeated as much as NP. Lines 3 to 14 are related to creating a solution based on 
N existing tasks. In line 4, the priority of the tasks is checked in terms of high. 
High-priority tasks are assigned to the appropriate VM according to line 5. The 
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selected VM is recorded in line 6 in the current solution. Similarly, lines 7 to 9 
indicate the VM for medium-priority tasks, and lines 10 to 12 indicate this for 
low-priority tasks. Finally, the initial population in line 16 is returned as output.

Objective Function (Luciferin)

Fireflies have a radiance that attracts other fireflies to themselves. This radi-
ance is known as luciferin. More luciferin for a firefly indicates its better 
position in the search space. In this paper, the luciferin of each firefly is 
formulated as a multi-objective function. Here, workload balancing, comple-
tion time of the last task (i.e., makespan), the average runtime of tasks and 
reducing the migration rate are considered as objectives function of the DSA 
problem. ,i the value of luciferin is related to the i th firefly, which is calculated 
by Eq. (16). 

,i ¼ a1:TT þ a2:CTmax þ a3:σ WLð Þ þ a4:ρ kð Þ (16) 

Where, TT is the average runtime of tasks, CTmax is the completion time of the 
last task, σ WLð Þ is the standard deviation of the workload balance and ρ kð Þ is 
the migration rate. Also, a1 to a4 are the weights of these objectives, 
respectively.

Luciferin is released for each firefly during movement. This update reduces 
the radiance of fireflies due to time/iteration. Let ,i tð Þ be the luciferin corre-
spond to the i th firefly in the t th iteration and let ,i t � 1ð Þ be the value for the 
t � 1 iteration. Accordingly, Eq. (17) shows the firefly update process. 

,i tð Þ ¼ 1 � ρð Þ,i t � 1ð Þ þ γ,i tð Þ (17) 

Where, ρ is a factor to model the gradual decline of luciferin and γ is defined to 
model the effect of fitness on luciferin.

Evolution of Fireflies

The process of population evolution in successive iterations is discussed in this 
section. Each firefly can have a number of neighbors based on its sensor radius. 
Based on these neighbors, each firefly selects a possible neighbor to move. The 
probability of selection is calculated based on higher luciferin and roulette 
wheel policy. In the DSA problem, which is a discrete problem, the amount of 
luciferin is used to determine the sensor radius and neighbors. In this paper, 
the sensing radius (rs) of the i th firefly includes all fireflies whose luciferin 
levels are in the range ,i tð Þ � θ. Here, θ is the radius of decision of fireflies.
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Let Ei be the set of i th firefly neighbors. As shown in Eq. (18), pij is the 
probability of the i th firefly moving toward the j th firefly, where j 2 Ei. After 
calculating the probabilities for all neighbors, a neighbor is selected based on 
the roulette wheel policy (Rezaeipanah, Nazari, and Ahmadi 2019). 

pij ¼
,j tð Þ � ,i tð Þ

P
kεEi

,k tð Þ � ,i tð Þ
; j 2 Ei (18) 

Let Xj be the firefly selected to move the Xi firefly. In this paper, the movement 
process is performed based on an evolutionary difference operator. The 
purpose of this operator is to create a new position vector for Xi based on 
Xj. Xnew is a new position vector and is generated according to the difference 
between Xi and Xj. Here, xnew

i kð Þ is the new position in the k th element of Xi 

and is calculated as Eq. (19). 

xnew
i kð Þ ¼ xi kð Þ R<RND

xi kð Þ þ F � xi � xj
� �

Otherwise

�

(19) 

Where, RND is a random number between [0–1] and R is a numerical constant 
smaller than one that regulates the rate of population convergence. F is a scale 
factor that controls the large differences between the values generated in the 
search space. F is calculated dynamically according to Eq. (20). 

F ¼
C1 � RND

max xi kð Þ; xj kð Þ
� � (20) 

Where, C1 is a constant less than one. The effect of this approach is to allow 
each member of the population to fluctuate within appropriate ranges to reach 
optimal solutions.

Migration Technique

When an increase in load on some VMs leads to an imbalance in the load of 
the system, the migration technique is used to improve the workload. 
However, increased migration leads to increased computational costs. Once 
an OVM is created, tasks must be moved from OVM to LVM. This means 
migration, and eventually results in a set of balanced VMs (BVMs). In this 
paper, whenever the load difference between LVM and OVM exceeds the ψ 
threshold, a task is randomly selected from OVM and transferred to LVM.
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Stop Condition

After an iteration of the FA, the current population has evolved over the old 
population. This process is repeated until a stop condition is reached. In this 
paper, the stop condition of the algorithm is defined based on the fixed 
number of iterations with the variable Itermax.

Simulation Results

This section is related to the evaluation and comparison of the proposed IFA- 
DSA method in solving the DSA problem in the cloud environment. 
Evaluation and comparison are based on various criteria such as workload 
balancing and makespan. FCFS (Jaiganesh et al. 2015), TSDQ-FLPSO (Ben 
Alla et al. 2016) and ICFA (Wang, Liu, and Jolfaei 2020) methods were used to 
compare the performance of the IFA-DSA. In addition, the performance of the 
FA is evaluated compared to other evolutionary algorithms (i.e., GA and PSO). 
The simulation was performed by MATLAB R2019a on a Dell Inspiron laptop 
with an Intel Core i7-11370 H processor in 12MB cache, 4.8 GHz and 16GB 
memory. Various scenarios have been considered to evaluate the proposed 
method in the cloud environment, as shown in Table 2. For each scenario, the 
cloud environment configuration for the DSA problem is based on Table 3.

The IFA-DSA algorithm has different input parameters. Here, the priority 
decision threshold values are set as equal divisions between 0 and 1. The values 
of other parameters based on Ben Ben Alla et al. (2016) and Wang, Liu, and 
Jolfaei (2020) are as follows: ψ ¼ 0:1, C1 ¼ 0:8, R ¼ 0:1, θ ¼ �0:5, γ ¼ 0:9, 
ρ ¼ 0:15, a1 ¼ 0:5, a2 ¼ 0:1, a3 ¼ 0:1, a4 ¼ 0:3, NP ¼ 40, Itermax ¼ 200.

The proposed method creates the initial population in a heuristic method 
based on a fuzzy approach and taking into account the priority of tasks. This is 
done with the aim of distributing the workload at the beginning of the 
scheduling process. Figure 6 shows the workload created on each VM for 

Table 2. Scenarios defined for the DSA problem.
Scenario Number of tasks (N) Number of VMs (M)

Scenario 1 100 5
Scenario 2 50 10
Scenario 3 500 60
Scenario 4 1000 100

Table 3. Configuring the cloud environment for the DSA 
problem.

Parameter Value

Task size Randomly between 500 and 2000
Power VMs Randomly between 100 and 1000
Number of resources in VMs Randomly between 1 and 4
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the defined scenarios. Here, the workload is calculated based on the tasks size 
assigned to a VM relative to the total workload. Also, the workload of each VM 
is reported on an average basis for the entire population of fireflies. The results 
of this simulation show that the workload in all VMs is almost at the same 
level. Hence, the heuristic approach provides the apt load balancing at the 
beginning of the scheduling process.

The tasks distribution process on VMs is based on the priority of each task. the 
goal is to have almost the same number of tasks assigned to each VM with 
different priorities. In general, the IFA-DSA allocates sequence tasks to VMs in 
creating the initial population in such a way that the number of tasks with 
different priorities on VMs is fair. The results of the study of this problem are 
shown in Figure 7 for different scenarios. As illustrated, it is fair to distribute tasks 
with different priorities between VMs in all scenarios. For example, in Scenario 2, 
the average number of tasks assigned with low priority is approximately 11.7, and 
this value is 11.3 and 12.0 for medium and high priority, respectively. Based on 
these results, the proximity of the number of tasks with different priorities 
indicates the proper distribution of tasks among VMs by IFA-DSA.

Figure 6. VMs load balancing at the beginning of the scheduling process.
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The FA performance is then evaluated in comparison with GA and PSO. 
This evaluation is based on the makespan metric for the various scenarios 
shown in Figure 8. Here, the comparison based on the convergence rate of 
different methods in reducing makespan is emphasized. The results of this 
comparison show the superior performance of FA compared to GA and PSO 
during the optimization process. The reason for this advantage is the use of 
a heuristic method to generate the initial population and the proper distribu-
tion of tasks among VMs. The proposed method has a population of best 
quality at the start of optimization, and load balancing on VMs accelerates 
convergence during evolution.

Another experiment evaluated the performance of IFA-DSA compared to 
similar methods (i.e., FCFS, TSDQ-FLPSO and ICFA). These results are 
reported based on the makespan criteria and with a different number of 
tasks (i.e., 100, 200, 300, 400 and 500). In this comparison, the number of 
VMs is fixed and set to 50. The results of this experiment are shown in 
Figure 9. As illustrated, the superiority of IFA-DSA with makespan is less 
obvious than other methods. The proposed method is superior to other 
methods with a number of different tasks except 500. Here, ICFA performs 
better than IFA-DSA when the number of tasks is 500. Hence, the IFA-DSA 

Figure 7. Distribution of tasks with different priorities on VMs.
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Figure 8. Comparison of FA with GA and PSO in the proposed method.

Figure 9. Comparison of IFA-DSA with similar methods in the makespan criteria.
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performs worse than the ICFA as the number of tasks increases, although this 
is negligible. Overall, the average makespan results show that IFA-DSA per-
forms 95%, 39% and 3% better than FCFS, TSDQ-FLPSO and ICFA methods, 
respectively.

Table 4 shows the proposed method statistical analysis for DSA in the cloud 
using paired t-test, which determines the significance level of the proposed 
method compared to other methods. These results are reported based on an 
average of 4 scenarios. Evaluation criteria used in experiments such as load 
balancing and makespan are considered in this analysis. Statistical parameters 
include difference of mean and standard deviation (SD) between IFA-DSA 
and comparable methods (i.e., FCFS, TSDQ-FLPSO and ICFA) based on t- 
value and p-value. In this analysis, a significant level of p< 0:05 is considered 
for paired t-test. Therefore, when the p-value is less than 0.05, it can be 
concluded that the difference between the proposed method and a similar 
method is significant for an evaluation criterion. The results show that there is 
a significant difference between the proposed method and other methods, 
because for all evaluation criteria, the p-value is less than 0.05.

In a DSA system in a cloud environment, various quality parameters such as 
runtime, cost, load balance, energy consumption, fairness, resource efficiency, 
etc. must be considered. However, it is not possible to consider all of these 
parameters in practice. In a parametric comparison, the position of the 
proposed IFA-DSA method in comparison with FCFS, TSDQ-FLPSO and 
ICFA methods is investigated. The results of this study are presented in 

Table 4. Statistical analysis of the proposed method in comparison with other methods.

Evaluation 
criteria

FCFS TSDQ-FLPSO ICFA

Mean SD
t- 

value
p- 

value Mean SD
t- 

value
p- 

value Mean SD
t- 

value p-value

Workload 
balance

2.16 3.73 2.54 0.016 2.95 3.92 5.98 0.009 3.01 2.67 2.29 0.01489058

Makespan 50.16 5.43 2.73 0.018 53.04 5.30 2.64 0.015 53.45 5.23 2.32 0.0256673

Table 5. Parameters used by different methods for DSA.
Parameters FCFS TSDQ-FLPSO ICFA IFA-DSA

Workload balance √ √ √ √
Being fair - √ - -
Efficiency √ - - -
Utilization of resources - - √ -
Run-time - - - √
Energy consumption - - √ -
Processing cost √ - - √
Response time √ √ √ -
Prioritize tasks - - - √
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Table 5. According to all the tests performed, IFA-DSA performs better than 
other methods compared in most cases and has reported promising results in 
other cases.

Conclusion

Cloud computing is a model based on large computer networks that provides 
a new model for the supply, consumption and provision of information 
technology services using the internet. Cloud centers provide their resources 
with a technology called virtualization, which can provide dynamic flexibility 
in the DSA. In this regard, virtualization technology allocates server resources 
dynamically and based on user requests. This technology allows simultaneous 
access to cloud services for a large number of users. Therefore, it is essential to 
provide sufficient resources for each application. Given the limited resources 
available, it is crucial for cloud service providers to manage resource allocation 
to consumers, which is dynamically changing. In DSA, various factors such as 
QoS, price, fairness, profit and workload balance are emphasized. The process 
of allocating resources is a complex one, as both the consumer and the cloud 
server seek to make the most profit. Inspired by evolutionary algorithms, this 
paper presents a DSA-based approach to efficient load balancing in the cloud 
environment. The proposed method has the advantages of both FA and fuzzy 
approaches. FA has been efficiently improved to create the initial population 
by the fuzzy approach. The proposed method provides the DSA process with 
efficient load balancing and proper runtime. The simulation results confirm 
the effectiveness of the proposed method and show its superiority over similar 
methods. For future work, the proposed method can be configured to perform 
cloud task scheduling to achieve some objectives such as maximizing the 
resource utilization and reducing SLA violation. In addition, the proposed 
method can be applied to emerging real-world applications such as home 
health care systems.
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