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Abstract
This short paper continues to discuss randomness of the Euler’s number e digits in decimal expan-
sion. To analyze such randomness statistically, we exploit fixed-effects and random-effects Poisson
panel-data models. The results of the regression models reveal the presence of some structure in
the distribution of e decimals.
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1 Introduction
As it is well known, the absolutely exact value of the Euler’s number e cannot be computed (given that
– according to the Lindemann-Weierstrass theorem [1] – the number e is not algebraic); therefore, the
representation of this number in any base would never end and would never settle into a permanent
repeating pattern. It is conjectured that e is normal, meaning that when e is expressed in, say, decimal
base

e = 2.718281828459045235360287 . . . = 2.d1d2 . . . di . . . dN−1dN . . . ,
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the possible decimal digits in the Euler’s number di occur with equal probability

P (di = n) = P (dj = n) n ∈ [0, 9], i 6= j

in any sequence of given length. Albeit the decimal digits di indeed seem to be distributed randomly,
no proof of such randomness has been found yet.

With no mathematically rigorous proof in sight, the main method of attacks on e randomness be-
comes statistical analysis. Many statistical tests have been used to determine to what extent the
digits di are randomly arranged (see for example papers [2, 3], to name a few). Despite an appar-
ent diversity of the exploited tests, they are all based on the same idea originated from works [4] and
[5] of Marsaglia: These tests are to examine if the digits di, whether viewed one at a time, or in seg-
ments or, more generally, as arguments in complicated functions, can be reasonably considered to
have arisen as the output of those same functions applied to a sequence of independent identically
distributed (i.i.d.) random digits.

Even as such tests proved to be quite powerful (that is, they would be difficult to pass had the
distribution of the digits di been not random), they, nevertheless, could be eluded if there were
possible “structure” in a sequence of di. Explicitly, if, for example, a particular sequence Sh =
{dh, . . . , dh+km, . . . , dh+lm} (0 ≤ k ≤ l) has the probability P (dh+km = n), which is greater (or
less) than the corresponding probability P (dj+km = n) for the analogous disjoint h 6= j sequence
Sj = {dj , . . . , dj+km, . . . , dj+lm}, then those random tests might not detect this difference when test-
ing the ordered sequence S = {d1, . . . , di, . . . , dN} that includes the elements of both sequences Sh

and Sj .

On the other hand, panel data analysis (also known as cross-sectional time-series analysis) looking
at the sequence Sh = {dh, . . . , dh+km, . . . , dh+lm} (that is, at the hth panel unit) on more than one
occasion h = 1, 2, . . . would possibly be capable of detecting such change in the probability (for a full
and systematic discussion of panel-data models, see papers [6, 7, 8]). Surprisingly panel data anal-
ysis was never done for the analysis of e randomness.

Thus, the aim of this short paper is to analyze the distribution of the digits di in the Euler’s number e
using fixed-effects and random-effects Poisson panel-data models.

The paper is organized as follows. First, a brief explanation of Poisson panel-data models will be pre-
sented; then the description of the panel data analysis will follow. The results of the analysis and the
interpretation will conclude the paper.

2 Poisson Panel-data Models
Poisson panel-data regression fits via maximum likelihood the model

P (Dht = dht | xht) = F (dht,xhtβ + νh)

for h = 1, 2, . . . panels, where t = 1, 2, . . . , Th is the object’s current number in the hth panel, xht are
covariates, β are their regression coefficients. If Xht is the exposure, the expected number of inci-
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dents, dht, will be

dht = exp(lnXht + xhtβ + νh) .

In the standard random-effects model, νh is assumed to be i.i.d. such that exp (νh) is gamma with
mean one and variance α, which is estimated from the data. For a more detailed review of Poisson
panel-data regression models see [9, 10, 11].

3 Description of the Statistical Analysis

In order to construct our statistical dataset, we use as the dependent variable D={d1,. . .,di,. . .,d3096}
the first 3,096 decimal digits of e computed in the paper [12] by the famous series expansion given
by Euler. As the independent variable of the dataset X = {1, . . . , xi, . . . , 3096}, we use the place of
a given decimal di (counted from the decimal separator) in the expansion of e in base ten. Using the
variable X we generate four additional variables X3, X2, X1 and X0 in the following way:

X3 =

⌊
X

103

⌋
,

X2 =

⌊
X

102

⌋
−X3 · 10 ,

X1 =

⌊
X

10

⌋
−X3 · 102 −X2 · 10 ,

X0 = X −X3 · 103 −X2 · 102 −X1 · 10 ,

where b·c denotes the floor function of the variable X; thus, if X is equal to, say, 1324, the generated
variables X3, X2, X1 and X0 will be equal 1, 3, 2 and 4, respectively. It is clear that within the con-
structed dataset the span of the generated variables is X2, X1, X0 ∈ [0, 9], X3 ∈ [0, 3].

To declare the data to be a panel, we identify the variable X0 as the panel unit identification. Ac-
cordingly, the zero panel unit is the sequence S0 = {d10, d20, . . . , d3090} of the decimal digits in e
whose sequential number (i.e., its place) ends with ‘0’, the 1st panel unit is the sequence S1 =
{d1, d11, . . . , d3091} of the decimals di whose sequential number ends with ‘1’, and so on.

In this way, we get data on e decimals di (which we will consider as the numbers of some hypothet-
ical “incidents”) for ten different panel units h = 0, 1, . . . , 9. Our measure of “exposure” is X – the
position of a digit from the decimal separator, and in our models we assume that the exponentiated
random effects are distributed as gamma with mean one and variance α.

We wish to analyze whether the “incident” rate is affected by the variables X3, X2 and X1. Clearly, if
the answer were ‘yes’, it would indicate the presence of some structure in the distribution of e deci-
mals di.
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4 The Results of the Analysis and the Interpretation
In the Tables 1 and 2, we present the output of two different Poisson panel-data regression mod-
els (implemented using the commercially available statistical software Stata, version 12.1, on a PC
equipped with the Intel Core i7 3.1 GHz processor). The Table 1 also includes a likelihood-ratio test
of α = 0, which compares the panel estimator with the pooled (Poisson) estimator.

Table 1: Random-effects Poisson regression of e decimals
Variables in model Coefficient p-value

X3 -0.871779 0.000
X2 -0.114161 0.000
X1 -0.114161 0.000

lnX 1 (exposure)
α 0.000861

Likelihood-ratio test of α = 0: χ̄2 = 4.07 at p = 0.022

Table 2: Conditional fixed-effects Poisson regression of e decimals
Variables in model Coefficient p-value

X3 -0.8718306 0.000
X2 -0.1141646 0.000
X1 -0.010065 0.001

lnX 1 (exposure)

Table 3: Comparing two sequences SA and SB of e decimals
Statistics SA: decimals whose SB : decimals whose

for sequences sequential numbers start sequential numbers start
of decimals with ‘00’ with ‘29’

Number of decimals 99 100
Median 5 4
Mean 4.939394 4.4

Standard Deviation 2.614005 3.117238
Variance 6.833024 9.717172

Skewness -0.1815752 0.0486636
Kurtosis 2.003474 1.651921

As it can be readily seen, both of these models with the almost identical efficiency show that the “in-
cident” rate for the decimals di is significantly different for all the covariates, but especially for X3 and
X2.
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To illustrate the results of the regression models, in the Table 3 we compare two sequence SA and
SB of the decimals di whose sequential numbers X = X3X2X1X0 start with ‘00’ and ‘29’, respec-
tively.

As it is supposed to be in accordance with the results of the regression models, the decimals of the
sequence SA turn out to be higher on average than those of the sequence SB .

5 Conclusion
So, in conclusion we can say that in all probability (or at least for the first few thousand of digits) the
distribution of decimals di in the Euler’s number e is structured and thus not random.

Unfortunately, the statistical evidence against randomness of the decimal expansion of the Euler’s
number e, which we have demonstrated in this paper, leaves open the question whether the ob-
served structured sequences of decimals di are related to the Euler’s number itself or whether they
are a product of arithmetical operations of approximation of that number (along the lines of the idea
which was put forward in the work of Rodrigues and Martins, see [13]). But, in fact, this is the limitation
of any statistical approach to e randomness since such an approach ignores the a priori knowledge
that the decimals di of the Euler’s number are the result of a computation and asks only whether the
observed series of di behaves, within reasonable statistical norms, as though it were the realization
of a sequence of i.i.d. random variables with discrete uniform distribution on {0, 1, . . . , 9}.
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