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Abstract
In this paper, an algorithm for solving high-order non-singular Sturm-Liouville eigenvalue problems
is proposed. A modified form of Adomian decomposition method is implemented to provide a semi-
analytical solution in the form of a rapidly convergent series. Convergent analysis and error estimate
based on the Banach fixed-point is discussed. Five high-order Sturm-Liouville problems are solved
numerically. Numerical results demonstrate reliability and efficiency of the proposed scheme.

Keywords: High-order Sturm-Liouville problems; Modified Adomian decomposition method; Banach
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1 Introduction
In this study, we will propose an alternative semi-analytical approximation based on a new type of
modified Adomian decomposition which is an application of the fixed point iteration method to solve
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non-singular high-order Sturm-liouville problems in the form

(−1)m(pm(x)y(m))(m) + (−1)m−1(pm−1(x)y
(m−1))(m−1)

+ · · ·+ (p2(x)y
′′)′′ − (p1(x)y

′)′ + p0(x)y = λw(x)y, a = 0 < x < b,
(1.1)

subject to some 2m point specified conditions at the boundary x ∈ {a, b} on

uk = y(k−1), 1 ≤ k ≤ m,
v1 = p1y

′ − (p2y
′′)′ + (p3y

′′′)′′ + · · ·+ (−1)m−1(pmy
(m))(m−1),

v2 = p2y
′′ − (p3y

′′′)′ + (p4y
(4))′′ + · · ·+ (−1)m−2(pmy

(m))(m−2),
...
vk = pky

(k) − (pk+1y
(k+1))′ + (pk+2y

(k+2))′′ + · · ·+ (−1)m−k(pmy(m))(m−k),
...
vm = pmy

(m).

(1.2)

In Eq. (1.1), we assume that all coefficient functions are real valued. The technical conditions for the
problem to be non-singular are: the interval (a, b) is finite; the coefficient functions pk (0 ≤ k ≤ m−1),
w(x) and 1/pm(x) are in L1(a, b), pm(x) and weight function w(x) are both positive. The eigenvalues
λk, k = 1, 2, 3, . . . can be ordered as an increasing sequence

λ1 ≤ λ2 ≤ λ3 ≤ · · · ,
where lim

k→∞
λk = ∞ and each eigenvalue has multiplicity at most m [1], [2]. The Sturm-Liouville

boundary value problems play an important role in both theory and applications of ordinary differential
equations. Many physical phenomena, both in classical mechanics and in quantum mechanics are
described mathematically by second-order Sturm-Liouville problems [3], [4], [5]. However many
important phenomena occurring in various fields of science are described mathematically by high-
order Sturm-Liouville problems. For example, the free vibration analysis of beam structures [6], [7],
[8] is governed by a fourth-order Sturm-Liouville problem, and it is known that when a layer of fluid
is heated from below and is subject to the action of rotation, instability may set as overstability, this
instability my be modelled by a eighth-order Sturm-Liouville boundary value problem with appropriate
boundary conditions specified. It may be noted that, when instability sets as ordinary convection, the
marginal state will be characterized by sixth-order Sturm-Liouville boundary value problem [9], [10],
[11], [12]. Ten and twelfth-order Sturm-Liouville boundary value problems arise in the context when
a uniform magnetic field is applied across the fluid in the same direction as gravity. When instability
sets in as an ordinary convection, it is modelled by the tenth-order boundary value problems, when
instability sets in as overstability, it is modelled by the twelfth-order boundary value problems [1], [2],
[11], [12]. Let L2

w(a, b), be the space of functions f(x) on (a, b) such that∫ b

a

f(x)|2 w(x)dx <∞.

L2
w(a, b) is a Hilbert space with inner product

〈f, g〉 =
∫ b

a

f(x)g(x)w(x)dx,

and norm ‖f‖2 = 〈f, f〉. The standard Adomian decomposition method is applied for computing
eigenvalues of Sturm-Liouville problems [13], [14], [15]. In the present work, based on basic idea
of the Adomian decomposition method [16], [17], [18] and [19], we will improve a modified Adomian
decomposition algorithm to solve high-order Sturm-Liouville problem (1.1) which is summarized in
the following section. The paper is organized as follows: Modified Adomian decomposition method
for solving high-order Sturm-Liouville problems is proposed in Section 2. Whill convergence of a new
modification is discussed in Section 3. To illustrate the efficiency of proposed technique five numerical
examples are discussed in Section 4. Section 5 concludes the paper.
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2 Modified Adomian Decomposition Method (MADM)
Let us rewrite equation (1.1) in the following form

(−1)m(pm(x)y(m))(m) = F (y, y′, . . . , y(2m−2), λ) = (λw(x)− p0(x))y
−{(−1)m−1(pm−1(x)y)

(m−1) + · · ·+ (p2(x)y
′′)′′}, a < x < b,

(2.1)

which can be written in the operator form as

Ly(x) +Ry(x) = 0, (2.2)

where Ly(x) = (pm(x)y(m))(m) and Ry(x) = −F (y, y′, . . . , y(2m−1), λ), Ry is a differential operator
satisfies Lipchitz condition for y, ŷ ∈ L2

w(a, b) and C > 0, we have, ‖Ry−Rŷ‖ ≤ C‖y− ŷ‖. We define
the differential operator

L =
dm

dxm

(
pm(x)

dm

dxm

)
, (2.3)

then Eq. (2.1) can be rewritten as

Ly = F (y, y′, . . . , y(2m−2), λ), (2.4)

The inverse operator L−1 is therefore considered a 2m-fold integral operator defined by

L−1 =

∫ x

0

∫ x1

0

. . .

∫ xm−1

0︸ ︷︷ ︸
m times

1

pm(xm)

∫ xm

0

∫ xm+1

0

. . .

∫ x2m−1

0︸ ︷︷ ︸
m times

dx2m . . . dx1 (2.5)

Operating with L−1 on (2.4), we get

y(x) = y0(x) + L−1F (y, y′, . . . , y2m−1, λ). (2.6)

The Adomian decomposition method expresses the solution y(x) of (1.1) by the decomposition series

y(x) =

∞∑
n=0

yn(x). (2.7)

The method defines F (y, y′, . . . , y(2m−2), λ) by an infinite series of polynomials

F (y, y′, . . . , y(2m−2), λ) =

∞∑
n=0

An(x, λ), (2.8)

where An(x, λ) are the so-called Adomian polynomials. Substituting (2.7) and (2.8) into (2.6), we
have

∞∑
n=0

yn(x) = y0(x) + L−1

(
∞∑
n=0

An(x, λ)

)
. (2.9)

The components of the series (2.7), yn(x), n ≥ 0, are obtained in the following recursive relation: by
using all terms that arise from the boundary conditions at x = a and from Ly0(x) = 0, we determine
y0(x), thus

y0(x) =

2m−1∑
i=0

ci
xi

i!
, (2.10)

where ci, i = 0, . . . , 2m − 1 are some constants. Now by using Eq. (2.10), we can determined the
remaining components by the following relation

yn+1 =

2m−1∑
i=0

ci
xi

i!
+ L−1(An(x, λ)), n ≥ 0, (2.11)
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for determination of the components yn(x) of y(x). In Eq. (2.11) An(x, λ), are the Aomian polynomial
defined as

An =
1

n!

[
dn

dµn

[
R

(
∞∑
i=0

µiyi, . . . ,

∞∑
i=0

µiy
(2m−2)
i , λ

)]]
µ=0

. (2.12)

Fixed points of (2.11) under the suitable choice of the initial approximation y0(x) that is given by
(2.10) are in fact solutions of problem (2.1). Note that exactly m conditions are specified initially at
x = a, (these m conditions arise in different forms based on nature of the problem such as order of
the highest derivative appearing in each condition must be less than 2m). Now, if these m conditions
at x = a have the following form

yn(a, λ) = y′n(a, λ) = · · · = y(m−1)
n (a, λ) = 0,

then the approximate solution will be

yn(x, λ) =

2m−1∑
i=m

cifni(x, λ), n > 0. (2.13)

By using other conditions at endpoint b, for example yn(b, λ) = y′n(b, λ) = · · · = y
(m−1)
n (b, λ) = 0, we

get the following system
2m−1∑
i=m

cifni(b, λ) = 0,

2m−1∑
i=m

cif
′
ni
(b, λ) = 0,

...
2m−1∑
i=m

cif
(m−1)
ni

(b, λ) = 0,

(2.14)

for cm, cm+1, . . . , c2m−1. By Crammer’s rule, we will get a nontrivial solution for the system (2.14) if

Mn(λ) =

∣∣∣∣∣∣∣∣∣∣∣

fnm(b, λ) fnm+1(b, λ) . . . fn2m−1(b, λ)

f ′nm
(b, λ) f ′nm+1

(b, λ) . . . f ′n2m−1
(b, λ)

...
... · · ·

...

f
(m−1)
nm (b, λ) f

(m−1)
nm+1 (b, λ) · · · f

(m−1)
n2m−1(b, λ)

∣∣∣∣∣∣∣∣∣∣∣
= 0, (2.15)

which is a polynomial in λ. Therefore the eigenvalues of the problem (1.1) are the roots of Mn(λ).
Section 2 may be summarized in the following algorithm.

Algorithm 2.1.
Step 1: Rewrite problem (1.1) in the format of Eq. (2.1).
Step 2: Use Eqs. (2.3) and (2.5), to define L and L−1.
Step 3: Use Eq. (2.10) and initial conditions at x = a to construct y0(x).
Step 4: Apply formula (2.11) to produce the sequence {yn} for some K ∈ Z+.
Step 5: Find roots of the polynomial (2.15), in which they are eigenvalues of problem (1.1).
Step 6: Find eigenfunctions yn(x) corresponding to eigenvalues λn for n = 1, 2, ... by using (2.11).

3 Convergent Analysis
Convergence of the Adomian decomposition series solution was studied for different problems, (for
example see [20], [21], [22], [23], [24], [25]). In present analysis we discuss the convergence
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properties of generalized MADM presented in Section 2 based on Banach fixed point theorem [26].
From (2.11), we obtain the successive approximation for the eigenfunctions of problem (1.1), where
the exact solution can be derived from

y(x) = lim
n→∞

yn(x). (3.1)

Now, by using initial approximation y0 (see (2.10)), the approximation solution can be considered by
taking k-terms of the series (2.7), that is

yk(x) =

k∑
i=0

yi(x). (3.2)

The modified Adomian decomposition method proposed in Section 2 makes a sequence {yn}, here,
we show that the sequence {yn} converges to the solution of problem (1.1). To do this, we state and
prove the following theorems.

Theorem 3.1. The series solution of problem (1.1) defined by (2.7) converges, if there exists α = CT ,
0 ≤ α < 1 such that ‖y1‖ <∞.

Proof. Define the sequence {Sn}∞n=0 as

S0 = y0,
S1 = y0 + y1,
S2 = y0 + y1 + y2,
...
Sn = y0 + y1 + · · ·+ yn,

(3.3)

and we show that {Sn}∞n=0 is a Cauchy sequence in the Hilbert space H = L2
w(a, b). We consider

that
‖Sn+1 − Sn‖L2

w
= ‖yn+1‖L2

w
≤ α ‖yn‖L2

w
≤ · · · ≤ αn+1 ‖y0‖L2

w
. (3.4)

Then for every m ≥ n, we have

‖sm − sn‖L2
w
≤ ‖sn+1 − sn‖L2

w
+ ‖sn+2 − sn+1‖L2

w
+ · · ·+ ‖sm − sm−1‖L2

w

≤ αn[1 + α+ · · ·+ αm−n−1]‖s1 − s0‖L2
w

≤ αn

1−α‖y1‖L2
w
.

(3.5)

Since α ∈ (0, 1), then ‖sm − sn‖L2
w
→ 0 as m,n → ∞. Thus {sn} is a Cauchy sequence in the

L2
w(a, b) space, therefore the series solution converges and the proof is complete.

Theorem 3.2. If the series solution (2.7) converges then it converges to the exact solution of the
problem (1.1).

Proof. For y ∈ H = L2
w(a, b), define an operator L : H → H by

L(y) = y0(x) + L−1F (y, y′, . . . , y(2m−2), λ) = y0 + L−1
∞∑
n=0

An(x, λ). (3.6)
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Let y, ŷ ∈ H = L2
w(a, b), we have

‖L(y)− L(ŷ)‖2L2
w
= ‖L−1R(y)− L−1R(ŷ)‖2L2

w
= ‖L−1R (y − ŷ) ‖2L2

w

=

∫ b

a

∣∣∣∣ ∫ x

0

∫ x1

0

. . .

∫ xm−1

0︸ ︷︷ ︸
m times

1

pm(xm)

∫ xm

0

∫ xm+1

0

. . .

∫ x2m−1

0︸ ︷︷ ︸
m times

R (y − ŷ) · 1dx2m . . . dx1
∣∣∣∣2w(x)dx

≤
∫ b

a

(∫ x

0

∫ x1

0

. . .

∫ xm−1

0︸ ︷︷ ︸
m times

1

pm(xm)

∫ xm

0

∫ xm+1

0

. . .

∫ x2m−1

0︸ ︷︷ ︸
m times

∣∣∣∣R (y − ŷ)
∣∣∣∣2dx2m . . . dx1)

×
(∫ x

0

∫ x1

0

. . .

∫ xm−1

0︸ ︷︷ ︸
m times

1

pm(xm)

∫ xm

0

∫ xm+1

0

. . .

∫ x2m−1

0︸ ︷︷ ︸
m times

12dx2m . . . dx1

)
w(x)dx

≤ K
∫ b

a

(∫ x

0

∫ x1

0

. . .

∫ xm−1

0︸ ︷︷ ︸
m times

1

pm(xm)

∫ xm

0

∫ xm+1

0

. . .

∫ x2m−1

0︸ ︷︷ ︸
m times

∣∣∣∣R (y − ŷ)
∣∣∣∣2dx2m . . . dx1)w(x)dx

≤ K
∫ x

0

∫ x1

0

. . .

∫ xm−1

0︸ ︷︷ ︸
m times

1

pm(xm)

∫ xm

0

∫ xm+1

0

. . .

∫ x2m−1

0︸ ︷︷ ︸
m times

∥∥∥∥R (y − ŷ)
∥∥∥∥2
L2

w

dx2m . . . dx1

≤ CT‖y − ŷ‖2L2
w
≤ α‖y − ŷ‖2L2

w
,

where α = CT Therefore the mapping L is contraction and by the Banach fixed-point theorem
for contraction [26], there is a unique solution of the problem (1.1). Now, we prove that the series
solution (2.7) satisfies problem (1.1). It suffices to show that

L−1R(y) = lim
n→∞

L−1(N(Sn)) (3.7)

Since Ny is Lipschitzian function, we have

L−1(R(y)) = L−1

(
R

(
∞∑
k=0

yk

))

= L−1

(
R

(
lim
n→∞

n∑
k=0

yk

))
= L−1

(
R lim
n→∞

Sn
)

= lim
n→∞

L−1(R(Sn)).

(3.8)

Theorem 3.3. If the series solution (2.7) converges to the solution y(x) and if the truncated series (3.2)
is used as an approximation to the solution y(x) for problem (1.1) then the error estimate is∥∥∥∥∥y(x)−

k∑
i=0

yi

∥∥∥∥∥
L2

w

≤ αn

1− α ‖y1‖L2
w
. (3.9)

Proof. From Theorem 3.1, we have

‖Sm − Sn‖L2
w
≤ αn

1− α ‖y1‖L2
w
, m ≥ n.

Now, when m→∞ then Sm → y(x). So

‖y(x)− Sn‖L2
w
≤ αn

1− α‖y1‖L2
w
, (3.10)
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which implies that ∥∥∥∥∥y(x)−
k∑
i=0

yi

∥∥∥∥∥
L2

w

≤ αn

1− α‖y1‖L2
w
. (3.11)

This completes the proof.

4 Numerical Results
In this section, we will apply the proposed algorithm to solve five high-order Sturm-Liouville problems.
We are interested in approximating an eigenelement solution (y(x), λ) to their corresponded eigenvalue
problems.

Example 4.1. Consider the following sixth-order Sturm-Liouville problem
−y(6)(x) = λy(x), x ∈ (0, π),

y(0) = y′′(0) = y(4)(0) = 0,

y(π) = y′′(π) = y(4)(π) = 0.

(4.1)

By using (2.10) and boundary conditions at x = 0, we get

y0(x) = c1x+ c3
x3

3!
+ c5

x5

5!

and using (2.11), we get

y1(x) =

(
x− λx

7

7!

)
c1 +

(
x3

3!
− λx

9

9!

)
c3 +

(
x5

5!
− λx

11

11!

)
c5,

y2(x) =

(
x− λx

7

7!
+ λ2 x

13

13!

)
c1 +

(
x3

3!
− λx

9

9!
+ λ2 x

15

15!

)
c3

+

(
x5

5!
− λx

11

11!
+ λ2 x

17

17!

)
c5,

y3(x) =

(
x− λx

7

7!
+ λ2 x

13

13!
− λ3 x

19

19!

)
c1 +

(
x3

3!
− λx

9

9!
+ λ2 x

15

15!
− λ3 x

21

21!

)
c3

+

(
x5

5!
− λx

11

11!
+ λ2 x

17

17!
− λ3 x

23

23!

)
c5,

...

(4.2)

More general, we see that

yn(x, λ) =

n∑
k=0

(−1)kλk x6k+1

(6k + 1)!
c1 +

n∑
k=0

(−1)kλk x6k+3

(6k + 3)!
c3

+

n∑
k=0

(−1)kλk x6k+5

(6k + 5)!
c5.

(4.3)

Now, by applied Algorithm 1, the solution of (4.1) is

y(x, λ) = y0(x, λ) + y1(x, λ) + y2(x, λ) + · · · (4.4)

Then by using n terms of (4.3) and boundary conditions at x = π, we get∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=0

(−λ)i π
(6i+1)

(6i+ 1)!

n∑
i=0

(−λ)i π
(6i+3)

(6i+ 3)!

n∑
i=0

(−λ)i π
(6i+5)

(6i+ 5)!
n∑
i=0

(−λ)i π
(6i−1)

(6i− 1)!

n∑
i=0

(−λ)i π
(6i+1)

(6i+ 1)!

n∑
i=0

(−λ)i π
(6i+3)

(6i+ 3)!
n∑
i=0

(−λ)i π
(6i−3)

(6i− 3)!

n∑
i=0

(−λ)i π
(6i−1)

(6i− 1)!

n∑
i=0

(−λ)i π
(6i+1)

(6i+ 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (4.5)
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which is a polynomial in λ and roots of (4.5) are the eigenvalues of (4.1). The first sixth eigenvalues of
problem (4.1) are given in Table 1. These results are convergence to exact solutions, for comparison
results of present technique with other published papers in the literature (see for example [2], [6], [10]).
Excellent agreements are observed between results of present technique and published papers. It is
well known that the exact eigenvalues are given by λk = k6 and the corresponding eigenfunction are
yk = sin(kx).

Example 4.2. Consider the following sixth-order Sturm-Liouville problem [10]
−y(6)(x) + (3α2x2y

′′
)
′′
+ ((8α− 3α2x4)y

′
)
′
+ (α3x6

−14α2x2)y = λy(x), x ∈ (0, 5),

y(0) = y′′(0) = y(4)(0) = 0,

y(5) = y′′(5) = y(4)(5) = 0.

(4.6)

By using Algorithm 2.1, we get

y0 = c1x+
c3
6
x3 +

c5
120

x5,

y1 =

(
x+

1

1235520
x13α3 − 13

30240
x9α2 − 1

5040
x7λ

)
c1 +

(
1

6
x3 +

1

21621600
α3x15

− 17

498960
x11α2 − 1

362880
x9λ+

13

2520
x7α

)
c3 +

(
1

120
x5 +

1

1069286400
α3x17

− 67

74131200
x13α2 − 1

39916800
x11λ+

17

90720
x9α

)
c5,

...

(4.7)

The first three eigenvalues of problem (4.6) for α = 0.01 are λ1 = 0.0997267782366864, λ2 =
4.57232895602626 and λ3 = 48.0416354201057.

Example 4.3. Consider the following eighth-order Sturm-Liouville problem
y(8)(x) = λy(x), x ∈ (0, π),

y(0) = y′′(0) = y(4)(0) = y(6)(0) = 0,

y(π) = y′′(π) = y(4)(π) = y(6)(π) = 0.

(4.8)

By using Algorithm 2.1, we get

y0(x) = c1x+ c3
x3

3!
+ c5

x5

5!
+ c7

x7

7!
,

y1(x) =

(
x+ λ

x9

9!

)
c1 +

(
x3

3!
+ λ

x11

11!

)
c3 +

(
x5

5!
+ λ

x13

13!
)c5 +

(
x7

7!
+ λ

x15

15!

)
c7,

y2(x) =

(
x+ λ

x9

9!
+ λ2 x

17

17!

)
c1 +

(
x3

3!
+ λ

x11

11!
+ λ2 x

19

19!

)
c3 +

(
x5

5!
+ λ

x13

13!

+λ2 x
21

21!

)
c5 +

(
x7

7!
+ λ

x15

15!
+ λ2 x

23

23!

)
c7,

...

(4.9)

In more general, we see that

yn =

n∑
i=0

λi
x(8i+1)

(8i+ 1)!
c1 +

n∑
i=0

λi
x(8i+3)

(8i+ 3)!
c3 +

n∑
i=0

λi
x(8i+5)

(8i+ 5)!
c5 +

n∑
i=0

λi
x(8i+7)

(8i+ 7)!
c7. (4.10)

By algorithm 2.1, the solution of problem (4.8) is

y(x, λ) = y0(x, λ) + y1(x, λ) + y2(x, λ) + · · · (4.11)
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and by using the boundary conditions at x = π and n terms from (4.10), we will solve

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=0

λi
π(8i+1)

(8i+ 1)!

n∑
i=0

λi
π(8i+3)

(8i+ 3)!

n∑
i=0

λi
π(8i+5)

(8i+ 5)!

n∑
i=0

λi
π(8i+7)

(8i+ 7)!
n∑
i=0

λi
π(8i)

(8i)!

n∑
i=0

λi
π(8i+1)

(8i+ 1)!

n∑
i=0

λi
π(8i+3)

(8i+ 3)!

n∑
i=0

λi
π(8i+3)

(8i+ 3)!
n∑
i=0

λi
π(8i−3)

(8i− 3)!

n∑
i=0

λi
π(8i−1)

(8i− 1)!

n∑
i=0

λi
π(8i+1)

(8i+ 1)!

n∑
i=0

λi
π(8i+3)

(8i+ 3)!
n∑
i=0

λi
π(8i−5)

(8i− 5)!

n∑
i=0

λi
π(8i−3)

(8i− 3)!

n∑
i=0

λi
π(8i−1)

(8i− 1)!

n∑
i=0

λi
π(8i+1)

(8i+ 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (4.12)

which is a polynomial in λ. By computing roots of (4.12), we can obtain the eigenvalues of problem (4.8).
The first six eigenvalues are listed in Table 1.

Example 4.4. Consider the following tenth-order Sturm-Liouville problem


−y(10)(x) = λy(x), x ∈ (0, π),

y(0) = y′′(0) = y(4)(0) = y(6)(0) = y(8)(0) = 0,

y(π) = y′′(π) = y(4)(π) = y(6)(π) = y(8)(π) = 0.

(4.13)

Now, by applied Algorithm 2.1, we have

y0(x) = c1x+ c3
x3

3!
+ c5

x5

5!
+ c7

x7

7!
+ c9

x9

9!
,

y1(x) =

(
x− λx

11

11!

)
c1 +

(
x3

3!
− λx

13

13!

)
c3 +

(
x5

5!
− λx

15

15!

)
c5 +

(
x7

7!
− λx

17

17!

)
c7

+

(
x9

9!
− λx

19

19!

)
c9,

y2(x) =

(
x− λx

11

11!
+ λ2 x

21

21!

)
c1 +

(
x3

3!
− λx

13

13!
+ λ2 x

23

23!

)
c3 +

(
x5

5!
− λx

15

15!

+λ2 x
25

25!

)
c5 +

(
x7

7!
− λx

17

17!
+ λ2 x

27

27!

)
c7 +

(
x9

9!
− λx

19

19!
+ λ2 x

29

29!

)
c9,

...

(4.14)

We see that

yn(x, λ) =

n∑
i=0

(−λ)i x
(10i+1)

(10i+ 1)!
c1 +

n∑
i=0

(−λ)i x
(10i+3)

(10i+ 3)!
c3

+

n∑
i=0

(−λ)i x
(10i+5)

(10i+ 5)!
c5 +

n∑
i=0

(−λ)i x
(10i+7)

(10i+ 7)!
c7

+

n∑
i=0

(−λ)i x
(10i+9)

(10i+ 9)!
c9.

(4.15)
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Now by using the boundary conditions at x = π and n terms from (4.15), we will solve∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=0

(−λ)iπ(10i+1)

(10i+ 1)!

n∑
i=0

(−λ)iπ(10i+3)

(10i+ 3)!

n∑
i=0

(−λ)iπ(10i+5)

(10i+ 5)!

n∑
i=0

(−λ)iπ(10i+7)

(10i+ 7)!

n∑
i=0

(−λ)iπ(10i+9)

(10i+ 9)!
n∑

i=0

(−λ)iπ(10i−1)

(10i− 1)!

n∑
i=0

(−λ)iπ(10i+1)

(10i+ 1)!

n∑
i=0

(−λ)iπ(10i+3)

(10i+ 3)!

n∑
i=0

(−λ)iπ(10i+5)

(10i+ 5)!

n∑
i=0

(−λ)iπ(10i+7)

(10i+ 7)!
n∑

i=0

(−λ)iπ(10i−3)

(10i− 3)!

n∑
i=0

(−λ)iπ(10i−1)

(10i− 1)!

n∑
i=0

(−λ)iπ(10i+1)

(10i+ 1)!

n∑
i=0

(−λ)iπ(10i+3)

(10i+ 3)!

n∑
i=0

(−λ)iπ(10i+5)

(10i+ 5)!
n∑

i=0

(−λ)iπ(10i−5)

(10i− 5)!

n∑
i=0

(−λ)iπ(10i−3)

(10i− 3)!

n∑
i=0

(−λ)iπ(10i−1)

(10i− 1)!

n∑
i=0

(−λ)iπ(10i+1)

(10i+ 1)!

n∑
i=0

(−λ)iπ(10i+3)

(10i+ 3)!
n∑

i=0

(−λ)iπ(10i−7)

(10i− 7)!

n∑
i=0

(−λ)iπ(10i−5)

(10i− 5)!

n∑
i=0

(−λ)iπ(10i−3)

(10i− 3)!

n∑
i=0

(−λ)iπ(10i−1)

(10i− 1)!

n∑
i=0

(−λ)iπ(10i+1)

(10i+ 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(4.16)
which is a polynomial in λ. The roots of (4.16) are eigenvalues of problem (4.13). The first sixth
eigenvalues are computed and listed in Table 1.

Example 4.5. Consider the following fourth-order Sturm-Liouville problem related to mechanicals
non-linear systems identification [7], [10], [14] y(4)(x)− 2αx2y′′ − 4αxy′ + (α2x4 − 2α)y = λy(x), x ∈ (0, 5),

y(0) = y′′(0) = 0,
y(5) = y′′(5) = 0.

(4.17)

By using Algorithm 2.1, we have

y0(x) = c1x+ c3
x3

3!

y1(x) =

(
x− 1

3024
α2x9 +

1

20
x5α+

1

120
x5λ

)
c1 +

(
1

6
x3 − 1

47520
α2x11

+ 13
2520

x7α+ 1
5040

x7λ

)
c3

y2(x) =

(
x+

1

172730880
α4x17 − 131

259459200
x13λα2 − 119

18532800
x13α3

+
1

1440
α2x9 +

17

90720
x9αλ+

1

362880
x9λ2 +

1

120
x5α+

1

120
x5λ

)
c1

+

(
1

6
x3 − 1

4420500480
α4x19 +

73

5448643200
x15α3 − 59

10897286400
x15λα2

+
59

1108800
α2x11 +

1

285120
x11αλ+

1

39916800
x11λ2 +

13

2520
x7α

+ 1
5040

x7λ

)
c3

...

The first three eigenvalues of problem (4.17), for α = 0.01 are: λ1 = 0.21505086447024, λ2 =
2.75480992983924 and λ3 = 13.21535155405568.

5 Conclusion
Present paper exhibits the applicability of the modified Adomian decomposition method to solve high-
order Sturm-Liouville eigenvalue problems. In this work we prove that proposed method is convergent
and is well suited to solve high-order Sturm-Liouville problems. Numerical results obtained by using
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the modified Adomian decomposition method described in Section 2 show excellent agreement with
the exact solution when one uses only a few terms.
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Table
1:

The
firstsix

eigenvalues
forE

xam
ples

1,3,4.

E
x.

k
λ
1

λ
2

λ
3

λ
4

λ
5

λ
6

2
1.000012982591777

56.278890029834861
3

0.999999999669759
64.019803409965889

532.149383877359631
4

1.000000000000002
63.999993955805054

731.361440711892019
2356.075545405737775

5
1.000000000000000

64.000000000480616
728.997819007874182

4228.049464086881536
1

6
1.000000000000000

63.999999999999987
729.000000676691570

4095.803602772923499
7

1.000000000000000
64.000000000000000

728.999999999917061
4096.000137789611629

8
1.000000000000000

64.000000000000000
729.000000000000005

4095.999999956884880
15625.010847562816665

46394.783558877924645
9

1.000000000000000
64.000000000000000

729.000000000000000
4096.000000000006639

15624.999993556946824
46656.493105853629153

10
1.000000000000000

64.000000000000000
729.000000000000000

4095.999999999999999
15625.000000002026883

46655.999532344118299
11

1.000000000000000
64.000000000000000

729.000000000000000
4096.000000000000000

15625.000000000000000
46655.999999999921245

12
1.000000000000000

64.000000000000000
729.000000000000000

4096.000000000000000
15625.000000000000000

46656.000000000000015
13

1.000000000000000
64.000000000000000

729.000000000000000
4096.000000000000000

15625.000000000000000
46656.000000000000000

2
1.0000000139424631

255.1912484516522934
3

1.0000000000000015
255.9999758252043787

6582.1556126715761096
4

1.0000000000000000
255.9999999999357797

6561.0014872300863400
65301.5245144208390651

5
1.0000000000000000

256.0000000000000000
6561.0000000165164423

65535.9727164431913067
392431.0850276472580053

6
1.0000000000000000

256.0000000000000000
6561.0000000000000410

65535.9999993102692247
390625.2710159350685007

1670123.8569155902998318
3

7
1.0000000000000000

256.0000000000000000
6561.0000000000000000

65535.9999999999950702
390625.0000117142127737

1679614.1356936972701543
8

1.0000000000000000
256.0000000000000000

6561.0000000000000000
65536.0000000000000000

390625.0000000001698410
1679615.9998824062972465

9
1.0000000000000000

256.0000000000000000
6561.0000000000000000

65536.0000000000000000
390625.0000000000000009

1679615.9999999971653998
10

1.0000000000000000
256.0000000000000000

6561.0000000000000000
65536.0000000000000000

390625.0000000000000000
1679615.9999999999999710

11
1.0000000000000000

256.0000000000000000
6561.0000000000000000

65536.0000000000000000
390625.0000000000000000

1679616.0000000000000000
12

1.0000000000000000
256.0000000000000000

6561.0000000000000000
65536.0000000000000000

390625.0000000000000000
1679616.0000000000000000

1
0.9997297302962838

2
1.0000000000064805

1023.9747265452897512
3

1.0000000000000000
1024.0000000076896544

59048.8233931585398257
4

1.0000000000000000
1023.9999999999999999

59049.0000001486483621
1048575.5634512260551001

5
1.0000000000000000

1024.0000000000000000
59048.9999999999999880

1048576.0000006373640029
9765624.3859898835405941

4
6

1.0000000000000000
1024.0000000000000000

59049.0000000000000000
1048575.9999999999998610

9765625.0000012665779169
60466175.3942395260829979

7
1.0000000000000000

1024.0000000000000000
59049.0000000000000000

1048576.0000000000000000
9765624.9999999999994714

60466176.0000015840152622
8

1.0000000000000000
1024.0000000000000000

59049.0000000000000000
1048576.0000000000000000

9765625.0000000000000000
60466175.9999999999989557

9
1.0000000000000000

1024.0000000000000000
59049.0000000000000000

1048576.0000000000000000
9765625.0000000000000000

60466176.0000000000000000
10

1.0000000000000000
1024.0000000000000000

59049.0000000000000000
1048576.0000000000000000

9765625.0000000000000000
60466176.0000000000000000
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