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Abstract 

 
In this paper, a SEIV epidemic model with saturated incidence rate that incorporates polynomial 

information on current and past states of the disease is investigated. The model exhibits two 

equilibria, disease-free equilibrium (DFE) and the endemic equilibrium (EE). It is shown that if 

the basic reproduction number, R0< 1, the DFE is locally asymptotically stable and by the use of 

Lyapunov function, DFE is globally asymptotically stable and in such a case, the EE is unstable. 

Moreover, if R0>1, the endemic equilibrium is locally asymptotically stable. The effects of the 

rate at which vaccine wanes (ω ) are investigated through numerical stimulations. 

Keywords: SEIV epidemic model, saturated incidence rate, basic reproduction number, locally 

and globally stable. 

 

1 Introduction 
 

Vaccinating susceptible against disease infections is an effective measure to control and prevent 

the spread of the infection. [1] investigated SIS model with vaccination, standard incidence and no 

disease-induced deaths. In [2], they formulated an SIRS model with vaccinations standard 

incidence and no disease-induced deaths. [3] studied an SIS model with vaccination, standard 

incidence and the disease induced death. [4,5] all analyzed global behaviour of simple SIS 
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vaccination epidemic models under the condition that the vaccine is perfectly efficient. In [6], they 

introduced a vaccination compartment into an SIS model. They assumed that in vaccine takes 

effect in duration of lengthτ . 

 

In [7], they studied an SEIV epidemic model with vaccination and vertical transmission. Their 

results were written in form of basic reproduction number, 
0R  and they carried out a bifurcation 

analysis and obtain the conditions ensuring that the system exhibits backward bifurcation. [8] 

extended the model in [9] by incorporating important practical factors as the proportion of 

recruited individuals that are exposed or infectious, the recovery rate of exposed individuals and 

the mortality rate due to the infection. In [10], he discussed a vaccination model with non-linear 

incidence rate and vaccination waning period like [9] but they numerically simulated the model to 

see how variations in rate of the variables. In [11], they introduced a saturated incidence rate g (I) 

S into epidemic models, where g(I) tends to a saturation level when I gets large, i.e. 

I

kI
Ig

α+
=

1
)( where kI measures the infection force of the disease and 

Iα+1

1

   

 measures 

the inhibition effect from the behavioural change of the susceptible individuals when their number 

increases or  from the crowding effect of the infective individual. In this paper, we extend the 

work  done by [9] to incorporate a saturated incidence rate as used by [11].  
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where 

 

π = recruitment of individuals that includes new born and immigrants into the susceptible 

population S, ρ = fraction of recruited individuals who are vaccinated, β = rate at which 

susceptible individual become infected by those who are infectious, µ = natural death rate, σ = 

rate at which exposed individuals become infectious so that 
σ

1  is the mean latent period.  γ = 

rate at which infected individuals are treated or recovered, 
)(1

1

Iα+
= measurement of 

psychological or inhibition effect of the behavioural change of the susceptible individuals when 

there is an increase in the number of infective individuals, ω = rate at which vaccine wanes. The 

total population size N(t) can be determined by )()()()()( tVtItEtStN +++= , and is a 

solution of the differential equation 
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 )(
)(

tN
dt

tdN
µπ −=  

 

Therefore, in the rest of the paper, we will study (1.1) in the closed set 
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2 The Basic Reproduction Number 
 

It is easy to see that the region }0,0,0,0),,,,{( >≥≥> VEISVIES is positively invariant 

for the model (1.1). Summing up the four equations in model (1.1), we have  

 

 

)].([)( VIESVIES
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d
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Then, 
∞→t

lim sup
µ

π
≤+++ )( VIES . So, we study the dynamic behaviour of model 

(1.1) on the region 
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µ
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which is a positive invariant set for (1.1) 

Corresponding to E = I = 0, model (1.1) always has a disease-free equilibrium, 
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Let ( )T
VIESx ,,,= .Then the model (1.1) can be written as )()( xVxF
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We have              
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In [12], the basic reproduction number is defined as the spectral radius of the next generation 

matrix   

 

   

( )( ).11 −−
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So, according to Theorem (2) in [12], the basic reproduction number of model (1.1),is 
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Note: The spectral radius ( )][ 1−
FVρ   is the dominant eigenvalue of the matrix FV

-1
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3 Local and Global Stability of Disease Free Equilibrium 

 
Let )1.3(,,, 00 VVyEEIISSx −===−=

 
 

Then, equation (1.1) becomes 
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The Jacobian matrix of equation (3.2)   after linearization is 
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Therefore, µλ −=1  , ),(2 ωµλ +−= and the roots of the quadratic  
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For negative roots, we must have by Descartes’ rule of signs  
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Theorem 3.1:  If R0<1, the disease free equilibrium P0 is locally asymptotically stable; if R0=1, 

P0 is stable; if  R0>1, P0 is unstable. 

 

Proof: We shall check the stability of the disease-free equilibrium P0, from the model, thus the 

linearization of model of the disease-free equilibrium P0 gives the following characteristics 

equation. 
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From equation (3.4), it can be seen that )(, 21 ωµλµλ +−=−=  are two of the eigenvalues 

and they are always negative. To obtain the other eigenvalues of equation (3.4) we consider the 

equation 

 

)5.3(0
)(

])1)([(
)2( 22 =

+

+−+
−+++++++

ωµµ

ωρππρωµσβ
σγσµµγµλσγµλ

 
 

From equation (3.5) we see that all roots have negative real parts if  
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That is, if  R0<1. 

 

The disease-free equilibrium P0, is locally asymptotically stable. 

 

 If R0=1, one eigenvalue of equation (3.5) is zero and it is simple. Then P0 is stable. 

 If R0>1, one of the roots of equation (3.5) has a positive real part, then P0 is unstable. 

 

Theorem 3.2: If R0<1, the disease-free equilibrium P0 is globally asymptotically stable in D. 

 

Proof: Consider the Lyapunov function    ( ) IEtL σµσ ++=)( . Its derivative along the 

system (1.1) is  

 

 

( )( )

( )( )

]1
)1(

[)(

]1
)1(

[)(

1
)(

01

01

01

−
+

=

−
+++

=

++−
+

=

I

R
tL

I
I

S
tL

I
I

IS
tL

α

γµσµα

σβ

γµσµ
α

σβ

 

 

If 0)(,0,1 1

0 <≠< tLIR
 

 

Therefore, disease-free equilibrium is globally asymptotically stable 

 

4 Local Stability of the Endemic Equilibrium 

 
It is a known fact that the disease is endemic if the infectious part of the population persists above 

a certain positive level for sufficiently large time. The disease is endemic if (1.1) is uniformly 

persistent as in [13]. 

 

Theorem 1:  R0>1, then unique endemic equilibrium P* of (1.1) is locally asymptotically stable in 

D.  

 

Proof: The method of Routh-Hurwitz will be used to show the local asymptotic stability of the 

equilibrium, P*. The Jacobian matrix of (1.1) at a point ))(),(),(),(( tVtItEtSD =  is 
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It is proved that the matrix P is stable with all its eigenvalues have negative real parts. 

From the Jacobian matrix, the characteristics equation is 
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If 321 aaa >  the endemic equilibrium P* is locally asymptotically stable in D. 

 

5 Numerical Simulation 

 

 
 

Fig.  5.1. Graph of S(t), E(t), I(t), V(t) against time (t) when 1.0=ρ , 2.0=π , 1.0=β , 

1.0=α , 2.0=µ , 9.0=ω , 1.0=σ , 5.0=γ  
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Fig. 5.2. Graph of S(t), E(t), I(t), V(t) against time (t) when 1.0=ρ , 2.0=π , 1.0=β , 

1.0=α , 2.0=µ , 4.0=ω , 1.0=σ , 5.0=γ  

 

 

 
 

Fig. 5.3. Graph of S(t), E(t), I(t), V(t) against time (t) when 1.0=ρ , 2.0=π , 

1.0=β , 1.0=α , 2.0=µ , 1.0=ω , 1.0=σ , 5.0=γ
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6 Conclusions and Discussion 

 

This paper has considered a SEIV model that incorporates an incidence rate of the form
I

SI

α

β

+1
. 

We discussed the local and global stabilities of the disease-free equilibrium and as well as the 

local stability of the endemic equilibrium. We presented the results in the form of basic 

reproduction number, R0. 

 

The effects at which vaccine wanes were investigated and it is discovered in Fig. 5.1, Fig. 5.2 and 

Fig. 5.3 that the smaller the value that represents the rate at which vaccine wanesω , the greater 

the effect on the model. This implies that vaccination has a role to play in any disease eradication 

and that the rate at which vaccine wanes should be reduced to the barest minimum for the vaccine 

to be effective in the population. 
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