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ABSTRACT

In this paper, we examine the association between climate change and outbreak
probability of Highly Pathogenic Avian Influenza A virus (HPAI H5N1) in birds. Climate
change is a potential factor for the recent spread of H5N1 outbreaks because it can
directly alter the conditions involved in persistence of the virus and disease transmission.
Also it can contribute indirectly by changing wild bird migration patterns. Econometric
analyses using a dynamic Probit model over monthly data from January 2004 to
December 2008 found that a 1% rise in winter total precipitation increases the risk of HPAI
H5N1 outbreaks by 0.26%. Spring mean temperature was also found to have positive and
significant impacts. Our findings are robust across different model specifications and under
out-of-sample tests. Using historical data we find the realized climate change of the last 20
years partly explains the recent expansion in outbreaks. Under future climate change
projections, we find that countries having higher projected spring temperature or more
winter precipitation or both, such as Japan and Romania, will have large increases in
outbreak probabilities. This suggests that climate change may play an even greater role in
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the future, although magnitudes will vary across countries and climate projections. From a
policy perspective, future climate conditions may give rise to a need for different disease
control and prevention strategies.

Keywords: HPAI H5N1; climate change; general circulation models (GCMs); risk
assessment.

1. INTRODUCTION

Avian Influenza (AI) or "bird flu" is a contagious animal viral disease [1]. Infections can be
divided into highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza
(LPAI). LPAI is less contagious, and infected species may not display clinical signs. The
HPAI A (H5N1) virus spreads rapidly among infected birds with a high mortality rate (up to
90-100% within 48 hours) and may spread to humans [2].

Since 2003, epidemics of HPAI H5N1 have occurred in domestic and wild bird populations
with unprecedented frequency across the globe. This strain was first identified in Hong Kong
in 1997 and subsequent outbreaks were observed in East and Southeast Asia during 2003
and 2004. In 2005, outbreaks occurred in central Asia, Russia and Europe. Since then, HPAI
H5N1 has continued to spread through Europe, the Middle East, and Africa [3]. As of 2007,
60 countries had experienced outbreaks [4,5], and the number of countries with outbreaks is
expanding [6]. In addition, as the end of 2013, there have been 648 reported cases of
human infection, resulting in 384 deaths [7].

Globally outbreaks of HPAI H5N1 have resulted in the destruction of more than 250 million
domestic poultry including chickens, ducks, turkeys, quail and ostriches, causing large
socioeconomic and livelihood losses, as well as affecting food and protein supplies, wildlife
populations and public health [3,4]. Determining factors causing this HPAI H5N1 spread and
estimating risk probabilities of further outbreaks could improve surveillance, control
measures, and disease prevention planning to ultimately reduce losses [8].

Climate has been argued to be a driver of disease transmission and persistence plus a
driver of wild bird migration patterns [9,10-11]. In particular, experimental evidence shows
that cold temperature and low relative humidity are favorable to the spread of influenza virus
and suggests that these two environmental factors could contribute to the seasonality of
epidemic influenza [12], thus regional weather monitoring may serve as an integral part of a
bird flu surveillance system [13]. In empirical studies, Si et al. [9] indicate that lower levels of
moisture and humidity affect wild bird food availability and thereby their distribution and
migration patterns. Fang et al. [15] find that precipitation is an important risk factor affecting
H5N1 virus distribution in China and Si et al. [10] find that HPAI H5N1 occurrences in wild
birds in Europe are highly correlated with increased minimum temperatures and reduced
precipitation in January. Ottaviani et al. [11] and Kilpatrick et al. [16] conclude that alterations
in cold weather trigger winter movements of migratory birds and have contributed to H5N1
spread outside the traditional migration period in Europe. In the future, since climate change
alters these environment conditions, it would almost certainly influence virus transmission
and survival outside the host [14].

In terms of disease spread vectors, there has been considerable effort investigating how the
HPAI H5N1 virus enters previously unaffected countries. The main pathways that have been
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identified are wild bird migration, live bird trade and the transport of poultry and poultry
products. In terms of migration, studies suggest that wild birds carry HPAI and can introduce
it into new areas during migration [9,10,14,16-17]. Wild ducks were found to be able to carry
the H5N1 virus asymptomatically [18]. Circumstantial evidence from Russia and Mongolia
indicates that wild birds play a significant role in disease spread, because they can become
infected and travel long distances before dying [9,19,20-21].

Some studies have attributed the increased frequency of outbreaks to the expanding poultry
industry as well as greater movements of live poultry and poultry products [22]. Analysis of
spring 2006 Romanian H5N1 outbreaks indicates that poultry movement might have
facilitated the spread of infection [23]. However, quantification of the contribution is difficult
due to the combination of local, unregulated movements of poultry plus illicit bird trade
[24,25], particularly in developing counties. Therefore, few studies have examined the
influence of poultry movements [16].

Studies in Romania, Thailand, Indonesia and China suggest that human infection and
poultry outbreaks can be aggravated by agricultural and socio-demographic factors [26].
These factors include agricultural population density, and poultry density plus incidence of
rice paddy fields, water sources and transportation. Ward et al. [23] and Farnsworth and
Ward [27] indicate that the environment and landscape factors (specifically the Danube River
Delta) played a critical role in the introduction and initial spread of H5N1 in Romania. Fang et
al. [15] find that the distance to the nearest main city, distance to the nearest body of water
and distance to the nearest highway contributed to disease spread in China. Others find that
the risk of outbreaks increases with poultry density (of both chickens and ducks), road
density, and is more likely in areas located near major cities and highway junctions [8,23,28].

Despite the importance of predicting the global outbreak spread plus the potentially
contributing nature of climate change, little effort has been applied to project HPAI H5N1 risk
across regions and countries under climate change scenarios [24,25]. In this study, we
examine the extent to which climate is associated with outbreaks of HPAI H5N1 in birds, and
then we project future consequences for HPAI H5N1 spread under projected changes in
temperature and precipitation.

2. MATERIALS AND METHODS

Here we first introduce the conceptual framework of our analyses, the selection of variables,
and the data used. Finally we present our econometric model.

2.1 Conceptual Framework

Fig. 1 shows a generalized potential relationship between climate change and HPAI H5N1
outbreaks considering direct and indirect influences. Suppose following [18] the probability of
HPAI H5N1 outbreaks denoted byY , is determined by the virus survival time outside of the
host ( ST ), the movement of wild birds (MB ), and the environmental conditions including
temperature (T ), precipitation ( P ) and extreme weather ( EX ) as given by the equation:

( , , , , , )Y f ST MB T P EX X (1)
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Where in addition to the factors defined above, X includes proximity to wild bird migratory
flyways, number of live birds traded, per capita gross domestic product (GDP) and
population density.

In equation (1), ST is affected by temperature and humidity of the host environment and
MB forms the distribution of wild birds which is also impacted by temperature and
precipitation through the availability of food and water and via their migration patterns [9, 10
and 11]. Consequently, we can rewrite equation (1) as follows:

( ( , , ), ( , , ), , , , )Y f ST T P EX MB T P EX T P EX X (2)

Therefore, we could develop a statistical model that includes climate variables reflecting both
direct and indirect effects and non-climate variables as shown in the equation below:

( , , , )Y f T P EX X (3)

Equation (3) is a reduced form model showing the probability of HPAI H5N1 outbreaks as a
function of temperature, precipitation, extreme weather and social-economic development.

Fig. 1. A conceptual framework regarding climate effects on HPAI H5N1 outbreaks
(Solid lines indicate direct effects of climate on HPAI H5N1 survival and persistence times. Dashed
lines indicate the indirect effects of temperature and precipitation on outbreaks via the distribution of

wild birds)

2.2 Data and Variables

This study focuses on data regarding HPAI H5N1 outbreaks that occurred between January
2004 and December 2008, the peak period of epidemic activity. The data cover 90 regions in
16 countries in Asia, Africa, Europe and North America. Countries included are Malaysia,
South Korea, Cambodia, Indonesia, Thailand, Japan, Vietnam, China, Egypt, Nigeria,
Germany, Romania, Turkey, Pakistan, Russia and the United States. Even though there was
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no HPAI H5N1 outbreak in the U.S., there was a H5N2 outbreak in February 2004 in Texas.
Since the U.S. is on migratory flyways, it is vulnerable to H5N1 introduced via wild bird
migration. Fig. 2 shows the distribution of H5N1 outbreaks since 2005 that were reported to
the World Organization for Animal Health (OIE), suggesting that there exists heterogeneity
across regions with 12% having had at least one HPAI H5N1 outbreak in the past 5 years.

Fig. 2. Outbreaks of HPAI H5N1 in birds since 2005 as portrayed by OIE (2005)

The HPAI H5N1 outbreak incidence data were obtained from the World Animal Health
Information Database (WAHID) for 2005−2008. The 2004 data were drawn from the Animal
Health Database HANDISTATUS II. The HPAI H5N1 outbreak incidence is a binary variable
in which a value of one indicates that a region has at least one reported HPAI H5N1outbreak
in domestic poultry or wild birds in a given month while a zero indicates no reported outbreak
in that month. We include H5N1 outbreaks in both domestic and wild birds.

Historical monthly climate data were drawn from the National Environmental Satellite Data
and Information Service (NESDIS). To construct data on regional climate, we constructed
average data across weather stations in each region for temperature and precipitation.
Monthly mean temperature was computed in degrees Celsius, and total monthly precipitation
including rain and melted snow was computed in millimeters.

Future climate projections were obtained through the Intergovernmental Panel on Climate
Change Data Distribution Center (IPCC DDC) for the 2007 IPCC data. Since the projection
of future climate change is uncertain, we used multiple General Circulation Models(GCMs) to
allow for this uncertainty. Specifically, we choose the following three GCMs:

 The Hadley Center coupled model, version 3 (HAD: CM3), which projects a stable
global mean climate [29] and is a mid-sensitivity case [30].

 The Geophysical Fluid Dynamics Laboratory global climate model, version 2.0
(GFDL: CM2.0), which is a model with drastically lower drifts in hydrographic fields
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such as temperature and salinity, and display more realistic current climate results
that are close to observed values [31,32].

 The Centre National de Recherches Météorologiques coupled atmosphere-ocean
climate model, version 3 (CNRM: CM3), which is in close accordance with the
present-day climate and predicts a general increase in precipitation throughout the
21st century [33].

We assembled projections of monthly changes in temperature and precipitation of these
three GCMs under the A1B SRES [34] emissions scenario for 2030 for each country. We
obtained the baseline climate data for the period 1961 to 2000 also from the IPCC DDC. We
used the historical climate data from 1971-1980 to 1981-1990 and to 1991-2000 to represent
the degree of climate change in those two decades.

Per capita GDP and population density were drawn from the U.S. Department of Agriculture
Economic Research Service. Data on country-to-country trade in live birds (which excludes
illegal movements) were drawn from the United Nations Food and Agricultural Organization
and the U.S. Census Bureau, Foreign Trade Division (for the commodity code H1-0105 - live
poultry, domestic fowls, ducks, geese, etc.). We also considered trade of live birds by
aggregating the totals from three commodity codes: H2-010632 (live birds including parrots,
parakeets, macaws and cockatoos), H1-010631 (live birds of prey) and H1-010639 (live
birds excluding H1-010632 and H2-010631). However, the data were incomplete and so
were not used in the analysis. For each country, trade data were reported either in dollar
values or kilograms. Following Kilpatrick et al. [16], we converted the data to numbers of live
birds using the median number of birds per kilogram (obtained from trade data) and 10.61
for poultry (most traded poultry are domestic fowl <185g). Table 1 gives definitions and
summary statistics of variables used in this study.

Table 1. Definitions and statistical descriptions of variables

Variable Definition Mean Std.Dev. Min Max
AIOtbkProb Outbreak incidence in a country and

month equaling 1 if outbreaks occurred,
0 otherwise

0.12 0.32 0 1

AIOtbkProbt-1 Lagged outbreak incidence 0.12 0.33 0 1
sptemp Spring mean temperature(ºC) 5 9 -7 34
ftemp Fall mean temperature(ºC) 5 9 -8 36
wtemp Winter mean temperature(ºC) 2 7 -21 30
spprecp Spring total precipitation(mm) 18 59 0 2336
fprecp Fall total precipitation(mm) 19 62 0 1143
wprecp Winter total precipitation(mm) 11 48 0 2384
cold_month Dummy variable for whether the

month average temperature is <= 4ºC
0.12 0.32 0 1

hot_month Dummy variable for whether the
month average temperature is >= 28ºC

0.16 0.36 0 1

lnpimport Log of imported live birds 8.95 5.06 0 16
lnpexport Log of exported live birds 6.80 5.98 0 17
popden Population density (people/ square km) 152 115 8 493
gdpden Per capita GDP($1000) 10 14 0.4 44
EAAFW East Asia Australian Flyway 0.53 0.50 0 1
CAFW Central Asian Flyway 0.12 0.33 0 1
BSMFW Black Sea  Mediterranean Flyway 0.30 0.46 0 1
EAFW East Atlantic Flyway 0.09 0.28 0 1
EFWAFW East African West Asian Flyway 0.04 0.21 0 1



British Journal of Environment & Climate Change, 4(2): 166-185, 2014

172

2.3 Econometric Models

We examine the relationship between the probability of HPAI H5N1 outbreaks and climate
plus other social-economic and geographic factors using a dynamic Probit model with
unobserved individual effects as described in Wooldridge [35-37].  We use this because we
are interested in whether there is state dependence after controlling for unobserved
heterogeneity. In other words, we estimate how much past HPAI H5N1 outbreaks affect the
probability of current outbreaks after controlling unobserved effects. The dynamic Probit
model with unobserved individual effects is written as

, 1 , 1( 1 | , , ) ( )it i t it i i t it iP y y x c G y x c      (4)

where ity is a binary variable, indicating whether an outbreak occurred in region i at period

t; , 1i ty  is the lagged dependent variable allowing the current outbreak probability to be

altered by whether the region has suffered previous outbreaks; itx is a 1k  vector of

explanatory variables; ic is an unobserved individual effect in the region that is allowed to be

correlated with some elements of itx ; and G is a cumulative distribution function that maps

the index into the response probability;  and  are parameters to be estimated.

Without loss of generality, we can arrange the observations starting at t= 0 , so 0iy is the

first observation on y . For 1,2,...t T , the density function of ity , under the assumption of
normal distribution, can be written as,

1
1 0 , 1 , 1

1

( ,..., | , , , ) ( ) [1 ( )]it it

T
y y

i iT i i i i t it i i t it i
t

f y y y x c y x c y x c     
 



       (5)

Where ( )  is the standard normal cumulative distribution function.

To estimate  and  consistently, we need to address the existence of outbreaks before
the model starts, which is called the initial conditions problem. By making an additional
assumption on ic as in Wooldridge [35-37], we assume,

0 1 0i i i ic y x a      (6)

Where the conditional distribution of 2
0| ( , ) ~ (0, )i i i aa y x Normal  and is independent of

ix and .

To avoid a large dimensionality problem in estimation1, we use the average of ix over time

1 Since we have monthly data from January 2004 to December 2008, ix is a k T matrix and itx is a 1k vector of

independent, contemporaneous explanatory variables, which is too large to be estimated based on our sample size.

0iy



British Journal of Environment & Climate Change, 4(2): 166-185, 2014

173

( ix ) to replace ix , as in Chamberlain [38]. Also to identify time indicators, which do not vary

acrossi, they must be omitted from ix by setting 0 . Therefore the dynamic Probit model
with unobserved individual effects becomes

2 1/2
1 0 , 1 0 1 0

1
12 1/2

, 1 0 1 0

( ,..., | , ) [( ) (1 ) ]

{1 [( ) (1 ) ]}

it

it

yT

i iT i i i t it i i a
t

y
i t it i i a

f y y y x y x y x

y x y x

     

     









        

      


(7)

Although a cannot be identified in Probit models, we can consistently estimate

0 1, , ,a a a a    and a applying the conditional Maximum Likelihood Method [37] and
estimating a Random-Effects model, which is different from the standard random-effects
model since we allow for correlation between the error term and independent variables by
specifying the conditional distribution of the unobserved effects.

In the estimation function (7), x includes,

 Seasonal climate variables (Temperature and precipitation) and their squared terms
permit a nonlinear response and allow the model to reflect previous inconsistent
results on disease outbreaks as have arose in the literature [10,15,18].

 Dummy variables reflecting temperature extremes as motivated by the fact that AI
viruses have been found to survive for long periods in the environment, especially
when temperatures are low [15]. Also two studies showed the virus retained its
infectivity at 4ºC for more than 100 days but lost its infectivity after 24 hours when
kept at room temperature (28ºC) [39,40]. Therefore, two temperature indices are
included: cold_month is 1 when the mean temperature is lower than 4ºC, and zero
otherwise; hot_month is 1 when the mean temperature is higher than 28ºC and zero
otherwise.

 A set of migratory bird flyway indicators that identify whether the region is on one of
five specific wild bird migratory flyways, or zero otherwise. Disease clusters have
occurred throughout the East Asia-Australian flyway since 2003. In the Central Asian
flyway, disease clusters started emerging in July 2005 and waned in October 2005.
In the Black Sea-Mediterranean flyway, clusters lasted from December 2005 to
March 2006. Finally, clusters appeared in the East Atlantic and East Africa-West
Asian flyway in March and April 2006, respectively [9].

 Economic variables for country, including per capita GDP, population density, and
country-to-country trade in live poultry following Kilpatrick et al. [16].

When applying the econometric model to our data, the empirical model for estimation is,
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0 , 1 1 2
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a it a it a it a it
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ak it i i
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fprecip sq
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flyway y x
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  

  


  
  

  

(8)

We then use estimated coefficients to derive the average partial effects (APE). If jtx is a

continuous variable and ( )  is the standard normal probability density function, the APE
can be calculated as,

b̂ajf(

z0a + ra yi ,t-1+


z1a yi0 +


baxit + xi


za ) (9)

If jtx is a discrete variable, the APE is computed as,

1 0( ) | ( ) |
jt jtx x     (10)

3. RESULTS AND DISCUSSION

In this section, we present the estimation coefficients, their associated marginal effects and
outbreak response elasticities, plus results of the robustness check of using data from 2009
and 2010. We then predict the likelihood of HPAI H5N1 outbreaks under current and future
climate scenarios and discuss policy implications.

3.1 Estimation Results

The estimated coefficients from the model are reported in Table 2 as are three model
variants included to examine robustness of our results. There the results from the full model
given in equation (8) are called model 1, and plus the results from an alternative that
excludes the economic variables are labeled model 2 while another variant that excludes the
indices of migratory flyways is defined as model 3. The three models give qualitatively
similar results for key variables. To save space, we shall focus on model 1, given its greater
log-likelihood value and smaller within-sample mean squared error.

Results of Model 1 in Table 2 suggest significant nonlinear effects of climate on HPAI H5N1
outbreaks. For illustration, we plot the marginal effects of spring temperature and winter
precipitation in Fig. 3, holding all other variables at their average. Fig. 3 indicates that the
probability of disease outbreaks increases as spring temperature increases and then
decreases when it reaches a threshold (about 13ºC). The pattern is consistent with the
cold_month dummy variable, which is positive and statistically significant (as argued to be
the case in Brown et al. [39] and Shahid et al. [40]). Fig. 3 also suggests that higher risks of
disease outbreak exist under heavier winter precipitation. It is possible that winter
precipitation affects the risk of disease outbreaks through its impacts on water and food
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resources and thus affects bird population size and virus survival time [18]. With sufficient
precipitation, wild birds might stop for water and food on their migration flyways, which would
promote virus transmission among birds [11].

Table 2. Estimation of the dynamic Probit model with unobserved effects
Model1 Model2 Model3

Variable Coefficients Coefficients Coefficients
AIOtbkProbt-1 1.4382***

(0.0671)
1.4628***
(0.0664)

1.4380***
(0.0671)

Wtemp 0.0108
(0.0124)

0.0100
(0.0124)

0.0099
(0.0124)

wtemp2 -0.0006
(0.0005)

-0.0005
(0.0005)

-0.0005
(0.0005)

Sptemp 0.0350**
(0.0174)

0.0339**
(0.0172)

0.0355**
(0.0174)

sptemp2 -0.0013**
(0.0006)

-0.0013**
(0.0006)

-0.0013**
(0.0006)

Ftemp 0.0299
(0.0207)

0.0281
(0.0204)

0.0298
(0.0205)

ftemp2 -0.0013*
(0.0008)

-0.0013*
(0.0008)

-0.0013*
(0.0008)

wprecp 0.0069***
(0.0021)

0.0063***
(0.0021)

0.0064***
(0.0021)

wprecp2 0.0000***
(0.0000)

0.0000***
(0.0000)

0.0000***
(0.0000)

spprecp 0.0004
(0.0016)

0.0006
(0.0016)

0.0002
(0.0015)

spprecp2 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

fprecp 0.0008
(0.0012)

0.0008
(0.0011)

0.0007
(0.0012)

fprecp2 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

cold_month 0.3669**
(0.1430)

0.3583**
(0.1414)

0.3601**
(0.1422)

hot_month -0.0524
(0.0952)

-0.0614
(0.0944)

-0.0493
(0.0950)

lnpimport 0.0894
(0.0921)

0.0897
(0.0922)

lnpexport -0.0487**
(0.0205)

-0.0476**
(0.0203)

popden 0.0411***
(0.0108)

0.0395***
(0.0107)

gdpden 0.1259
(0.0871)

0.1445
(0.0891)

EAAFW 0.1376
(0.3235)

0.7440***
(0.2137)

CAFW 0.3129**
(0.1498)

0.0510
(0.1188)

BSMFW 0.0224
(0.3640)

0.7805***
(0.2084)

EAFW 0.9670***
(0.2682)

0.9937***
(0.2618)

EFWAFW 0.0211
(0.4535)

0.9209***
(0.2861)
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Table 2 Continued………..
Intercept 0.0043

(1.2156)
-1.7493*
(0.9196)

0.2971
(1.0692)

LR test of
rho=0

0.23
(0.3160)

0.99
(0.1600)

3.38**
(0.0330)

LR value -1242.99 -1258.65 -1252.15
MSE
(with-in-sample)

0.0687
(0.1854)

0.0690
(0.1874)

0.0693
(0.1863)

MSE
(out-of-sample)

0.09
(0.2187)

0.08
(0.2089)

0.09
(0.2204)

Note: * p<0.1, ** p<0.05, *** p<0.01; standard errors are in parenthesis; Model 1 is the full model with
all variables; Model 2 is the model without economic variables and Model 3 is the model without

indices on wild bird flyways. We omitted estimated results of 1 and  because these parameters do
not have economic meaning

Fig. 3. Marginal effects of spring temperature and winter precipitation on HPAI H5N1
outbreak probability

(We control all other variables at their sample mean)

In Table 3, we report the calculated APEs and their associated elasticities. It can be seen
that a 1% rise in winter total precipitation increases the risk of HPAI H5N1 outbreaks by
0.26%. Spring mean temperature was also found to have positive and significant impacts.
Compared to temperature, precipitation has a larger average partial effect, increasing the
risk by 0.12% (model 1).

Previous studies have examined the effect of wild bird movements on HPAI H5N1 spread
[9]. Results in both Table 2 and 3 show that countries presence on a migration flyway are
statistically significant and positively related to disease outbreaks. The East Atlantic flyway
has the largest effects. Previous studies have found that H5N1 outbreaks in some European
and African countries were very likely due to earlier seasonal movements of wild birds,
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particularly from the East Atlantic flyway [9-11]. Therefore, countries on flyways might need
to pay more attention to disease control and prevention plans.

As expected, we find that past outbreaks significantly increase the chance of a current
outbreak. A number of Asian countries succeeded in eradicating the disease, notably China,
Japan, Malaysia, and South Korea, but then all of these countries experienced re-incursions
[41]. These repeated outbreaks indicate virus persistence once introduced into an area [42],
suggesting that the dynamics of virus survival are also important to a country’s decision
making on whether to implement disease prevention and control strategies.

Table 3. Average partial effects and the elasticitiy of disease outbreak (change in
outbreak probability to change in the independent variable) as derived from

regression models

Variable Model 1 Model 2 Model 3
APE Elasticity APE Elasticity APE Elasticity

AIOtbkProbt-1 0.3292***
(0.0251)

0.7318 0.3468***
(0.0253)

0.7197 0.3345***
(0.0253)

0.7135

Wtemp 0.0020
(0.0022)

0.0875 0.0022
(0.0027)

0.0918 0.0012
(0.0014)

0.0497

Sptemp 0.00005**
(0.0000)

0.0050 0.0000**
(0.0000)

0.0030 0.0001**
(0.0000)

0.0060

Ftemp 0.0002
(0.0001)

0.0171 0.0001
(0.0000)

0.0046 0.0000
(0.0000)

0.0000

Wprecp 0.0012***
(0.0004)

0.2627 0.0014***
(0.0005)

0.2714 0.0007***
(0.0002)

0.1446

Spprecp 0.0000
(0.0000)

0.0000 0.0000
(0.0000)

0.0002 0.0000
(0.0000)

0.0001

Fprecp 0.0000
(0.0000)

0.0017 0.0000
(0.0000)

0.0005 0.0000
(0.0000)

0.0000

cold_month 0.0510**
(0.0238)

0.1119 0.0520**
(0.0244)

0.1065 0.0517**
(0.0242)

0.1088

hot_month -0.0057
(0.0099)

-0.0164 -0.0071
(0.0103)

-0.0192 -0.0056
(0.0102)

-0.0156

Lnpimport 0.0103
(0.0102)

1.6981 0.0108
(0.0105)

1.7059

Lnpexport -0.0055**
(0.0023)

-0.6954 -0.0056**
(0.0023)

-0.6750

Popden 0.0045***
(0.0012)

12.6509 0.0045***
(0.0013)

12.2528

Gdpden 0.0144
(0.0096)

2.5948 0.0164
(0.0101)

2.8406

EAAFW -0.0124
(0.0364)

-0.1221 0.0871***
(0.0254)

0.8001

CAFW 0.0306
(0.0223)

0.0689 -0.0085
(0.0137)

-0.0178

BSMFW -0.0269
(0.0341)

-0.1491 0.1301***
(0.0421)

0.6722

EAFW 0.2023**
(0.0822)

0.3317 0.2207**
(0.0880)

0.3378

EFWAFW -0.0268
(0.0314)

-0.0220 0.2180**
(0.0981)

0.1668

Note: * p<0.1, ** p<0.05, *** p<0.01; standard errors are in parentheses; Model 1 is the full model with all variables;
Model 2 is the reduced model without economic variables and Model 3 is the reduced model without indices of wild
bird flyways. Please see equation (9) and (10) for the calculation of APE; the elasticities show the effects of a 1%

change in the independent variable on the outbreak probability
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We also find the probability of disease outbreaks is positively related to human population
density. Apparently a country with a denser population is more likely to spread the disease
through contact or trade as found in [14,16]. In addition, we find a statistically significant,
negative effect of exporting live birds, showing that trade is another important factor as
argued in [16]. Countries with more exports of live birds have less disease outbreaks
perhaps because of a combination of a need for more careful management to meet
international standards and possible underreporting.

Under alternative model specifications (i.e., model 2 and model 3), we find qualitatively
similar results, suggesting that our model exhibits substantial robustness. To further test the
model robustness, we use an out of sample evaluation using data from 2009 to 2010. In that
case, we predict the probability of disease outbreaks and then calculate the out-of-sample
mean squared errors (MSEs). We find that the MSEs across models are very close (see
thebottom of Table 2), indicating that our models are stable in both specifications and
predictions. Therefore, we continue our analyses to predict the disease outbreak risk using
climate data from existing and future climate projections.

3.2 Outbreak Probability under Effects of Climate Change

Using estimated parameters from model 1, we first examine the shift in outbreak probability if
we had or did not have the climate change of the last 20 years. Additionally, we examine the
effects of projected climate change until 2030.

3.2.1 Outbreaks under past climate change

IPCC (2007) reports that the global average temperature has increased by 0.55ºC per
decade from 1970-2006 [43]. Changes in overall precipitation vary by regions and seasons,
but globally there has been a statistically significant 2 to 4% increase in the frequency of
heavy and extreme precipitation events [44,45].

For countries in this study, Fig. 4 shows the changes in mean temperature (oC) and total
precipitation (mm) for recent periods. We use the climate in 1971-1980 as the baseline, and
calculate the average difference in temperature and precipitation between 1971-1980 and
1981-1990 for a 10-year comparison and the difference between1971-1980 and 1991-2000
for a 20-year comparison. These data show temperature has increased in all northern
hemisphere countries relative to 1971-1980, while changes in precipitation vary across
countries and time periods. In most countries, changes in precipitation are close to zero,
while in others, for example, Cambodia, Japan, South Korea, Malaysia and Viet Nam, there
are large variations of precipitation changes.

To predict the effect of climate change of the last few decades on outbreak probability, we
use the changes between decadal average climate data for 1971-1980, 1981-1990 and
1991-2000. We evaluate this using the model 1 parameters, holding all but the climatic
variables constant. We compute probability under the climate of 1971-1980, and then
compute the change under1981-1990 and 1991-2000 conditions.

Fig. 5 presents these predicted probabilities for each country and shows little change in
disease outbreak probability during the 1980s and 1990s. This is because with mixed
changes in temperature and precipitation, effects on disease outbreak may trade-off. For
example, Romania has a large increase in temperature and a modest decrease in
precipitation, but since our statistical results suggest that precipitation plays a more
important role in disease outbreaks, the predicted risk decreases. On the other hand, Turkey
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has increased risk of disease outbreaks because it has increased temperature as well as
slightly increased precipitation. Although impacts from past climate change on the risk of
disease outbreaks are insignificant for some countries, overall results suggest that
temperature and precipitation plays a significant role in outbreaks of HPAI H5N1.

Fig. 4. Changes in winter precipitation and spring temperature between 1971-1980 and
recent periods

(we use the climate in 1971-1980 as the baseline to calculate the difference of temperature (left) and
precipitation (right) from 1971-1990 and 1971-2000)

Fig. 5. Percent changes in predicted probabilities of HPAI H5N1 outbreaks under past
climate change

(We use the predicted probabilities from 1971-1980 as the baseline and calculate the percent change
in predicted probabilities under 1981-1990 and 1991-2000 climate conditions from the baseline,

respectively)
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3.2.2 Outbreak probability shifts under future climate change

For the effects of future climate change on outbreak risks, we use projected climate data
from three GCMs used in IPCC AR4 (2007) under the A1B emission scenario [34] because
we note that by 2030, the degree of climate change is not very sensitive to the choice of
scenarios across the SRES alternatives [43].

In the climate projections (Fig. 6) all three GCMs project an increase in spring temperature in
Indonesia, Japan, Nigeria, Russia, and the US, and an increase in winter precipitation in
China, Germany, Japan, Korea, Nigeria, Romania, Russia and the US. There are large
variations of changes in temperature and precipitation across countries and GCMs.

Fig. 6. Changes in spring temperature and winter precipitation under three GCMs
(we use the climate in 1961-2000 as the baseline to calculate the difference of temperature (left)and

precipitation (right) from climate models by 2011-2030)

Fig. 7 shows the predicted probabilities of HPAI H5N1 outbreaks across climate scenarios.
We find that projected climate change increases the risk of HPAI H5N1 outbreaks in certain
countries, mainly depending on the changes in temperature and precipitation or both. In
particular, we find increases in disease outbreak probabilities in Japan and Romania,
because Japan is projected to have increased temperature and precipitation, and Romania
will have increased precipitation and decreased temperature. Additionally, Russia has
decreased risk of HPAI H5N1 outbreaks although it has increased temperature and
precipitation, but with increased temperature projected in the future, there are fewer cold
months with temperature below 4ºC. We caution that results in Fig. 7 are not necessarily in
accordance with those in Fig. 6 because results in Fig. 7 are generated by changing all
climate variables in the model ‒ not only spring temperature and winter precipitation. Note
we also include the effects of climate variables that are insignificant in Table 2.
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Fig. 7. Percent changes in predicted probabilities of HPAI H5N1 outbreaks under
projected climate change

(We set the predicted probabilities from 1961-2000 as the base and compute the percent changes in
predicted probabilities under three GCMs climate conditions from the base, respectively)

3.3 Discussion

Results in Fig. 7 suggest that climate change is likely to increase the risk of HPAI H5N1
outbreak in a number of countries although different GCMs provide different ranges of
increase or decrease. Given this information, those countries with shifts in outbreak levels
could use this information to design more aggressive disease prevention, surveillance, and
control plans.

From a methodology development perspective, by including more climate models it would be
possible to better capture uncertainties associated with climate projections, which has been
an important topic for climate modelers and agronomic researchers [46]. This approach is
applicable to risk assessment of epidemic diseases, which could provide useful insight into
underlying uncertainties.

4. CONCLUSION

We examined the relationship between HPAI H5N1 outbreaks and climate change. We used
an econometric model to estimate the effects of climate on the probability of disease
outbreaks. The results suggest that the risk of HPAI H5N1 outbreaks is positively related to
spring temperature and winter precipitation. Using projected climate data from three GCMs,
we find that countries with higherspring temperature and morewinter rainfall, or both, are
likely to have more disease outbreaks during the future 20 years.

-2
00

0
20

0
40

0
60

0

Cambodia
China

Egypt

Germany

Indonesia
Japan

Malaysia
Nigeria

Pakistan
Romania

Russia

South Korea
Thailand

Turkey
USA

Vietnam

Changes in predicted prob of HAD:CM3 to baseline(1961-2000)

Changes in predicted prob of GFDL2 to baseline (1961-2000)

Changes in predicted prob of CNRM:CM3 to baseline (1961-2000)



British Journal of Environment & Climate Change, 4(2): 166-185, 2014

182

Our results indicate that climate change is a likely factor affecting HPAI H5N1 outbreaks in
the past and the future. Two policy implications flow from our statistical and predicted
results,

 Countries which are projected to have higherspring temperatures or more
winterprecipitation might enhance their planning regarding disease prevention and
surveillance so as to reduce the likelihood of future disease outbreaks.

 Climate change mitigation strategies would also have co-benefits in reducing the
risks of HPAI H5N1 outbreaks in the future.

Our results also show there are other important factors that influence the risk, including
history of past outbreaks, human population density and amount of international trade in live
birds. These factors are related to the technology and social-economic development in a
country, and are difficult to project in the future. Nonetheless, further research could examine
what would happen if social-economic scenarios change together with climate change.
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