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ABSTRACT

In this paper, the Fuzzy Inference System is used for developing an operation model for
the Zayandeh-Rud Dam and for planning downstream agricultural crop farms under
different climatic conditions. The model consists of three stages: in the first, the storage
volume of the reservoir in March is predicted based on both the inflow into the reservoir
during the last three months and the Southern Oscillation Index (SOI) using the Adaptive
Network-based Fuzzy Inference System (ANFIS). The second stage involves forecasting
the annual release in the following year as the model output using both the reservoir
storage in the last month of the previous year and the amount of Snow Water Equivalent
(SWE) as FIS inputs. As the annual release from the reservoir has definitive effects on
the cropping schedule, it may be regarded as a defining factor for climate conditions. The
optimized planning of crops for the following year is developed based on the annual
release from the dam as forecasted by the fuzzy rules in the third stage of the model.
Comparison of observed data and FIS estimations shows that the method developed
here is capable of making reasonable decisions about land use and improved crop
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patterns based on climate conditions. The results also show that the Mean Average Error
(MAE) for calculating the water demand is lower than 4.0 percent and, further, that in the
case of predicting the cropping area, this error is lower than 2.0 percent.

Keywords: Fuzzy inference system; reservoir operation; southern oscillation index (SOI);
crop planning.

1. INTRODUCTION

Proper utilization of water resources is an essential task in semi-arid areas like Iran.
Reservoirs in such areas will be capable of supplying the water requirements throughout the
year, especially in drought periods, by storing the excess water in wet seasons. They also
serve as hydroelectric power generation sites, fishing resources, and recreational resorts. In
recent decades, reservoir management has become a fundamental problem in water
resources management. Researchers have devoted their work to planning reservoir
operation based on a multitude of methods. The most important aspect that must be
considered in modeling reservoir operation is uncertainty in hydrological events. To take
account of such uncertain and random properties, most simulation and optimization methods
used for this purpose have been based on stochastic concepts. Yeh [1] presented the state
of the art and discussed in detail various models for reservoir operation. Simonovic [2]
discussed the limitations in reservoir operation models and remedial measures to make
them more acceptable to operators. Russel and Campbell [3] emphasized the ‘high degree
of abstraction’ required for the efficient application of optimization techniques.

Uncertainty is an inherent property of most hydrological variation approaches which has
motivated researchers to use stochastic or statistical methods in reservoir operation.
Stochastic concepts have been recently used for extending the models to produce the widely
used ‘Stochastic Dynamic Programming’ (SDP) [4]. Managers and reservoir operators,
however, are uncomfortable with the sophisticated optimization techniques used in the
models, which have now been made even more complex by including the stochastic
concepts related to hydrologic variables. The fuzzy logic approach may provide a promising
alternative to these methods because the approach is more flexible, allows for expert
opinions to be incorporated into the model developed, and makes it even more appealing to
operators, as Russel and Campbell [3] maintained. It must, however, be remembered that
although inflow to the reservoir is a continuous variable, only discrete transitions between
states of this variable are allowed within the framework of SDP model. Mousavi et al. [5]
used the fuzzy set theory (FST) to deal with errors associated with the discretization of
variables in an SDP model. Chang et al. [6] used Multipurpose Fuzzy Programming (MFP)
for considering the optimization methods in operating a reservoir and the use of water on the
downstream land. Liu and Odanaka [7] used the Dynamic Fuzzy Criterion (DFC) model for
optimizing reservoir operation. Their goal was to achieve the best operation for meeting all of
the water requirements. Bender and Simonovic [8] used the Fuzzy Compromise Method to
model the operation based on hydrologic uncertainties. They verified their method for the
Tisza River in Poland against the ELECTRE method and obtained good results.

Among the fuzzy methods, the fuzzy rule-based models have been used to derive ‘if-then’
operating rules. The “if” part contains a vector of fuzzy or crisp explanatory variables called
premise variables that include inflow, storage, and demand; the “then” part is a fuzzy or crisp
consequence like the amount  of water released from the reservoir. Many studies have been
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conducted using this approach. Sugeno simulated the discharge of the Deniper River by
using data from its upstream river, the Niman [9]. Dubrovin et al. [10] established a fuzzy rule
method named ‘Total Fuzzy Similarity’ to model the operation of a multipurpose reservoir.
Jamali et al. [11] used the Fuzzy Inference System (FIS) for modeling the operation of the
Zayandeh-Rud Dam.

A problem commonly faced by managers and stakeholders is the change of climatic
conditions and its influence on their decisions. It will, therefore, be useful for managers to be
able to model the effects of climate change on water supply decisions. Safavi and Alijanian
[12] modeled optimized cropping pattern and irrigation program based on the annual release
from the Zayandeh-Rud Dam.

Availability of historical databases of hydrological variations plays an essential role in the
simulation and optimization of water quantities, especially when Artificial Neural Networks
(ANN) are to be used, whose most important capability is making predictions based on such
database. ANN is now being widely employed not only for river stage and rainfall forecasting
but also for deriving river operating policies[13-20]. FIS and ANN have been combined to
develop a new approach called ‘Adaptive Network-based Fuzzy Inference System’ (ANFIS).
The new method has been widely used for deriving reservoir operation models as it has the
advantages of both ANN and the Fuzzy-Ruled methods. In ANFIS, ANN is used for
developing the fuzzy rules. Alternatively, other methods such as Genetic Algorithm (GA) may
be used for this purpose. For example, Ozger [21] developed the fuzzy rules by GA and
predicted the flow of the Euphrates River in Turkey. He also compared his results with those
obtained from an ANFIS model.

In this paper, the Fuzzy Inference System is used to develop a model for the operation of the
Zayandeh-Rud Dam and for planning downstream crop farms under different climate
conditions. The model consists of three stages. In the first, the storage volume of the
reservoir in March is predicted based on both the inflow into the reservoir during the last
three months and the Southern Oscillation Index (SOI) using the Adaptive Network Fuzzy
Inference Systems (ANFIS). The second stage involves forecasting the annual release in the
following year as the model output using both the reservoir storage in the last month of the
previous year and the amount of Snow Water Equivalent (SWE) as FIS inputs. As the annual
release from the reservoir has definitive effects on the cropping schedule, it may be
regarded as a defining factor for climate conditions. The optimized planning of crops for the
following year is developed based on the annual release from the dam as forecasted by the
fuzzy rules in the third stage of the model. Data from 1990 to 2006 are used in developing
the model.

2. STUDY AREA AND DATABASES

The proposed approach was used for modeling the operation of the Zayandeh-Rud Dam
reservoir erected on the Zayandeh-Rud River flowing in the Zayandeh-Rud basin in Isfahan
Province, Iran (Fig. 1).
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Fig. 1. The Zayandeh-Rud River Basin

The reservoir operated since 1971 is a multipurpose one used for hydropower generation,
flood control, and irrigation as well as for maintaining environmental flows. Irrigation needs
accounts for the greatest demand (about 85% of the total water demands in the basin).
According to Iranian hydrological classification, the Zayandeh-Rud is the only perennial river
in central Iran, which is part of Esfahan and Sirjan Catchment located in Iran’s central
plateau. The river plays an important role in the livelihood of the inhabitants along its course
where the major crops grown are wheat, rice, corn, potato, and various fruits [22]. The
growing period for each crop in the Zayandeh-Rud basin is shown in Fig. 2.

Both the surface water released from the Zayandeh-Rud River and the groundwater in the
basin are used for irrigation of an area of around 100,000 ha downstream the Zayandeh-Rud
Dam. Most crops in this area are cultivated in the spring and summer. The annual irrigation
water demands range from a maximum of 2884.63 to a minimum of 1315.05 Million Cubic
Meters (MCM), 60% to 80% (or an average of 70%) of which is supplied by the water
released from the reservoir [23].The gross storage capacity of the reservoir is 1470 MCM
and its live storage capacity is 1090 MCM.  A water year (September 1 to August 31) is
divided into 24 fifteen-day periods. Table 1 shows the average inflows, releases, and
irrigation demands for the reservoir.
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Fig. 2. Typical schedule for crops in the Zayandeh-Rud Basin

Table 1. Average inflows, releases, and irrigation demands of the Zayandeh-Rud Dam

Month Inflow (MCM) Release (MCM) Demand (MCM)
September 39.84624 107.351 129.81
October 56.75656 103.981 77.47
November 65.97583 92.1595 252.02
December 62.81385 46.4865 234.99
January 73.59206 30.9324 30.76
February 142.0152 55.2324 84.37
March 314.7018 138.176 136.08
April 294.3572 204.427 306.64
May 187.2198 193.23 347.13
Jun 119.4994 169.684 298.24
July 72.03527 168.616 238.94
August 44.58766 152.9 183.02
Annual 122.7855 121.9320 193.2891

3. METHODOLOGIES

Most systems are characterized by some kind of ambiguity that causes problems in their
understanding or in making inferences from them. Linguistic or quality expressions are one
source of such ambiguity that poses difficulties in deriving logical senses or quantitative
values from them. An example situation is when an expert claims that ‘the rainfall in an area
is good’, by which it is hard to understand exactly how much rainfall means good conditions
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in that area. The fuzzy set theory, expounded by Zadeh [24], is a workable and useful
method for resolving these ambiguities. One of the most important features of the fuzzy set
theory is its capability to develop rule-based models. Since fuzzy set theory has the ability to
work on linguistic variables, the rules based on the knowledge and experience of experts
can be incorporated into the models thus developed. According to Sugeno and Yasukawa
[25], fuzzy-rule based modeling, which they called Fuzzy Inference System model, is a
qualitative modeling scheme where system behavior is described using a natural language.
FIS models can make decisions on the basis of experts’ experiences, which cannot be
tested or trained using a database. Rather, it is on experts develop the rules for these
purposes to introduce them into the model. On the other hand, Neural Networks have the
capability to work on databases in order to extract the relationship(s) between inputs and
outputs via training and testing processes. Jang [26] combined these two advantages into a
single system called Adaptive Network-based Fuzzy Inference System (ANFIS). While the
system works on linguistic variables to develop if-then rules, it also trains the rules based on
the database by using the neural networks. Two different approaches are commonly
available for developing the fuzzy rules, namely the Mamdani and the Takagi-Sugeno-Kang
(TSK). The differences between these two approaches can be explained as follows [21]:

In the case of the Mamdani model, both input and output variables, and for the TSK model,
only the input variables, are fuzzified by considering convenient linguistic sub-sets such as
high, medium, low; heavy, light; hot, cold; etc.

Rules are constructed based on expert knowledge and/or available data. Expert knowledge
can be used only with the Mamdani model. In TSK, however, rules are based on training by
ANN. The result appears as a fuzzy set in the Mamdani model and as individual rule outputs
in the TSK model. It is, therefore, necessary to defuzzify the set to a numeric value that can
be used by the administrator or the engineer. Most often, the defuzzification procedure is
achieved through the centroid method in the Mamdani model and the weighted average
method in the TSK model, as applied herein [21].

ANFIS model is a TSK-type neuro-fuzzy system which employs the feed forward network.
The general structure of the ANFIS is presented in Fig. 3. Selection of the FIS is the major
concern when designing an ANFIS to model a specific target system [27]. The
corresponding equivalent ANFIS architecture is presented in Fig. (3b).
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b)

Fig. 3. (a) Fuzzy inference system (b) Equivalent ANFIS architecture

3.1 Theory/Calculation

In this paper, we follow a three-stage model to describe the operating of the Zayandeh-Rud
Dam for cultivation of the downstream lands under diverse climatic conditions. Fig. 4
illustrates the schema of these stages.

In the first stage, an ANFIS model is developed to predict the storage of the reservoir at
March. Model inputs include the input volume of the reservoir over the last three months the
Southern Oscillation Index (SOI) in the last month while model output will be the storage
volume at the April. The data from 1971 to 2004 are used in this model, approximately 64
percent of which is used for training (1971 to 1992) and the remaining for testing and
validation of the model (1993 to 2004): 18% for testing and 18% for validation of the selected
model.

The second stage of modeling forecasts the annual release representing the model output.
For this purpose, it uses the storage volume in the last month obtained in the first stage, and
the equivalent water obtained from the snowmelt of that month representing the inputs in this
stage. This stage is modeled by ANFIS, too.
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Fig. 4. The schema of the model stages

The statistical period included 1989 to 2004 which was allocated to the training, testing, and
validation of the model as described above. Table 2 shows the statistical database used in
the ANFIS models of stages 1 and 2. Also, Figs. 5 to 8 illustrate the monthly storage and
inflow into the Zayandeh-Rud Dam, SOI, annual release, and annual snow water equivalent
for the Zayandeh-Rud Dam.

Table 2. Statistical parameters of the data used in both ANFIS models

Input or output
parameters of the
models (observed
data)

Period Average Maximum Minimum Variance Deviation

SOI 1971-
2004

-0.2 2 -4.6 2.6 1.61

The input water to
the reservoir (MCM)

1971-
2004

266.7 490.7 133.8 9476.6 16.33

Storage (MCM) 1971-
2004

896.7 1239 198 71816.8 267.99

Snow water
Equivalent (cm)

1989-
2004

102.5 288.3 11.3 7686.7 87.67

Release (MCM) 1989-
2004

1496.4 2543.4 567.5 169967.3 412.27
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Fig. 5. Monthly storage and inflow of the Zayandeh-Rud Dam

Fig. 6. Southern oscillation index (SOI)

Fig. 7. Annual release from the Zayandeh-Rud Dam
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Fig. 8. Annual snow water equivalent (upstream the Dam)

For the purposes of this study, two ANFIS models have been used for the following reasons:

1. The periods of the available statistical data were not equal: Statistical data of
SOI, the input water to the reservoir, and storage were available for the period from
1971 to 2004; but snow water equivalent and release were available only for the
period from 1989 to 2004. Thus, it would not be possible to model these data using
a single ANFIS model.

2. Speeding up the simulation process: In modeling by ANFIS, if the number of
inputs is shown by N and the number of membership functions (MFs) of each input
is shown by P, then the number of rules is obtained by PN. If the number of inputs is
increased, not only will the simulation speed decrease, but a limited number of
membership functions can be used for each input. It follows that the lower the
number of inputs, the higher will be the speed of simulation and the more will be the
number of membership functions used for each input.

3. High performance of ANFIS in forecasting: The high performance of this model in
forecasting compared to other models is well proven [27-32].

Performance of the models is evaluated against Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and coefficient of determination (R2). The MAE measures the average
magnitude of the errors in a set of forecasts without considering their direction; it measures
accuracy for continuous variables. The RMSE is a quadratic scoring rule which measures
the average magnitude of the error. The MAE and the RMSE can be used together to
diagnose the variation in the errors in a set of forecasts. The RMSE will always be larger
than or equal to MAE; the greater the difference between them, the greater the variance in
the individual errors in the sample. If the RMSE=MAE, then all the errors are of the same
magnitude. Both MAE and RMSE can range from 0 to . They are negatively-oriented
scores: Lower values are better.
The structure of the ANFIS model developed for the first stage with different MFs is
presented in Table 3. The model with nine triangular MFs and 500 iterations was the
simplest model yielding good results and was, therefore, selected for the first stage.
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Table 3. The structure of different models used for the first stage

ErrorEpochNum. of MFMF type
R2MAE (%)RMSE
0.879.2510.755009Gaussian
0.899.0011.4010005Gaussian
0.898.9311.365007Gaussian
0.689.7317.9910005Bell MF
0.908.7810.705007Bell MF
0.918.249.505009Triangular MF
0.928.3710.095007Triangular MF
0.7010.3516.475005Triangular MF

Validation of selected model
ErrorEpochNum. of MFMF type

R2MAE (%)RMSE
0.7216.2516.725009Triangular MF

Table 4 shows the specifications of the different models developed for the second stage.
According to the results, the model with five triangular MFs and 500 iterations is the simplest
yielding good results.

Table 4. The results of different models used for the second stage

ErrorEpochNum. of MFMF type
R2MAE (%)RMSE
0.955.279.485009Gaussian
0.955.279.475007Gaussian
0.984.465.585007Bell MF
0.984.235.345005Triangular MF
0.984.036.445007Triangular MF

Validation of selected model
ErrorEpochNum. of MFMF type

R2MAE (%)RMSE
0.927.2111.155007Triangular MF

The third stage determines the kinds of crops to cultivate. This model is based on FIS.
Based on the rainfall data for the period from 1972 to 2010 obtained from the station
upstream the Zayandeh-Rud Dam, it is clear that the study area experiences different
climate conditions. While the minimum annual rainfall is around 82.5 mm, its maximum and
average values are 367 and 223 mm, respectively. Fig. 9 illustrates the annual rainfall at the
Zayandeh-Rud Dam station. The amount of precipitation in wet seasons is around 300 mm
but around 120 mm in drought conditions. We may, therefore, conclude that while there are
obvious differences in the amount of precipitation under different climate conditions, the total
rainfall does not change dramatically under Dry and Wet climates when each one is
considered on its own. This means that the amount of rainfall at this station is around
120mm in drought conditions, and it is around 300 mm in wet situations. Focusing on
seasonal rainfall, however, we may note changes in the climate conditions in this area. Fig.
10 shows seasonal rainfalls monitored at the Zayandeh-Rud Dam station. Clearly, the winter
rainfall (dashed line with triangular signs) follows a steady trend which is less than the
maximum and minimum recorded values of 200 mm and around 50 mm, respectively. The
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amount of rainfall in the fall (cross signs), however, has a decreasing trend from 180 mm to
125 mm, falling within the maximum range. What complicates the situation is the fact that
neither the maximum nor the minimum rainfalls occur simultaneously in the same year. For
instance, in the years 1980, 1988, 1993, 1996, 2004, and 2006 when rainfall is in its
maximum range in winter, it is in its minimum range in the fall of the same year. In addition,
the amount of rainfall does not greatly change in spring when it ranges between 75 and 100
mm. When considered on a monthly basis, rainfall in the area during the months of
November, December, March, and April is found to have greater values than it has in other
months.

Fig. 9. Annual rainfall

Fig. 10. Seasonal rainfall

Fig. 11 shows the quantities of rainfall recorded at the Zayandeh-Rud Dam station for those
months with greater impacts. The points in the figure indicate that not only does the climate
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of the area change from month to month, but that its impact on the climate conditions in the
area also follows an increasing trend.

Fig. 11. Monthly rainfall

This state of affairs leads farmers to concentrate on certain crops such as wheat since they
naturally adapt their crops and cropping area to predictable climate conditions. If they can
predict undesirable weather/climate conditions, they will then plan for crops with lower
irrigation requirements and reduce their cropping area. Thus, relationships exist between
climate conditions and cropping pattern in the area which are expressed in rules most of
which are expressed in linguistic terms and can be stated as If-Then rules by FIS. For
example, "If the climate condition is good, farmers will cultivate more rice". Some words such
as “good” in these linguistic rules are fuzzy sets that must be quantified by some
membership function.

In this paper, the Mamdani approach is used to quantify the input and output membership
functions and also to develop the rules governing their relations. The annual release from
the Zayandeh-Rud Dam is used as the input for predicting or determining climate or water
conditions. The sets range over 500 to 2600 (MCM). Expert views expressed by the
manager of the Zayandeh-Rud irrigation system are considered in deriving the membership
functions. In order to initialize the fuzzy membership functions, two specific approaches are
introduced which draw upon the fuzzy clustering and the expert knowledge methods. While
the latter can only be used in Mamdani model, the former is usually used in Takagi-Sugeno-
Kang model. On the one hand, an adequate range of data was required for clustering the
needs. On the other, qualified and experienced professionals at Isfahan Regional Water
Company are in charge of water resources management in the region. The authors,
therefore, decided to develop the fuzzy membership functions of the FIS model based on
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expert knowledge. Further details on this are provided in Safavi and Alijanian [12]. Using this
approach, questionnaires were prepared in which experts were asked to define their views of
"bad", "normal", and "good" water conditions in Isfahan region. Based on their views,
“normal” referred to conditions in which the annual water released was predicted to be about
1350 MCM. The difference between 500 and 1350 MCM was regarded as undesirable, or
bad, conditions and when the water released varied from 1350 to 2600 MCM, conditions
were regarded as better than “normal”. Since these two intervals are not equal, the divisions
by odd membership functions will not be symmetrical. Thus, another division with eight
membership functions is compared with divisions having odd membership functions. In this
division, the first and the last membership functions are trapezoidal, which are the
extensions of two triangular membership functions. Table 5 compares the results of each
model with field data and shows that the statistical parameters are better for FIS models with
eight membership functions.

Table 5. FIS models with different numbers of membership functions (MFs)

Number of MFs Interval R2 RMSE MAE
3 MFs 1991 - 2006 0.75 1187 37
5 MFs 1991 - 2006 0.77 1050 32
7 MFs 1991 - 2006 0.78 971 27
9 MFs 1991 - 2006 0.69 1937 49
8 MFs 1991 - 2006 0.88 513 12

Accordingly, the input set is divided into eight different linguistic terms defining water
conditions based on annual water release from the Zayandeh-Rud Dam reservoir. These
linguistic terms are: “very bad”, “bad”, “fairly bad”, “normal”, “fairly good”, “good”, “very good”,
and “excellent”.

The results comprise the total annual cropping area and the farmers’ preference for major
crops to be grown. These sets are studied by both considering expert knowledge and
analyzing a database of crops covering the period from 1991 to 2006. Thus, the sets are
represented by eight fuzzy sets. Fig. 12 shows the MFs for releases from the dam as the
input parameter while Figs. 13 and 14 show the cropping area and the percentages of wheat
and rice, the two most important crops, as outputs.

Fig. 12. Climatic conditions in linguistic terms on the basis of estimated yearly water
release from the Zayandeh-Rud Dam (MCM)

500 800 1000 1200 1350 1500 1700 2000 2300 2600

V.B B F.B N F.G G V.G Ex1

MCM
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Fig. 13. Cropping area in linguistic terms (ha)

Fig. 14. Cropping area allocated to each of two crops (wheat and rice) in linguistic
terms

Table 6 shows the characteristics of each crop. Clearly, some crops, such as wheat, rice and
orchards, have fuzzy characteristics and the farmers’ preference for growing them is
different under different climatic conditions. These characteristics are derived from expert
views and the databases available at Isfahan Regional Water Company. This is while
farmers show the same tendency to grow other crops and the percent of area allocated to
them is the same under different climate conditions. However, we should note that the total
cropping area allocated to each crop is different under each climate condition and the effect
of climate condition on each crop is accounted for in the total area allocated to that crop.

Table 6. Cropping percent for all crops

Crop Wheat Barely Corn Rice Potato Onion Green Provender Orchards
Percent Fuzzy 8 4 Fuzzy 7 4 6 12 Fuzzy

Using FIS, we can improve some rules for predicting the total cropping area and the farmers’
tendency to grow each crop based on climate conditions. The results of this prediction are
different for different releases from the Zayandeh-Rud Dam. The rules governing input and
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output sets are improved based on these membership functions. For instance, one such rule
states that "if the climate condition is "fairly bad" (which is equal to a release between 1000
to 1350 MCM), then the cropping area is "fairly bad" (which is equal to a cropping area
between 19000 (ha) and 22000 (ha)). Table 7 shows the results for three different annual
releases from the dam (namely, 850, 1550, and 2150 MCM), which are defined as bad,
normal, and excellent water conditions, respectively.

Table 7. Results of FIS for predicting cropping area and percent of each crop for
different water conditions

Annual
release (MCM)

Cropping
area (ha)

Cropping
percentage of rice

Cropping
percentage of wheat

Percentage
of orchards

850 17578 21 18.5 29.8
1550 24061 29 16.9 18.3
2150 27615 31.2 14.3 19.2

It may be inferred from these results that if the water conditions get better, the cropping area
increases and the farmer’s preference for rice rises but preference for fruits and wheat will
decline. One reason for this is the fact that wheat is cultivated in the fall and harvested in the
spring. So, based on the change in the climate conditions of the area and the fact that
precipitation in the area increases in the months of November, December, March, and April,
the farmers would prefer to cultivate wheat in normal conditions. But when the conditions
become better, farmers prefer to cultivate rice instead of wheat. This is because the orchard
area is nearly constant and preference for orchard fruits, therefore, decreases when the total
cropping area increases.

The net irrigation demand of each crop in each month can be calculated. These values are
calculated using the FAO-CROPWAT method based on a ten-year average database and by
considering the usual growing periods as shown in Fig. 2.

Finally, the total net irrigation demand including all crops can be calculated using the
following relation:

 
c ici dcPerAND

(1)

where, NDi is the total monthly net demand, A is the total annual cropping area obtained by
the Fuzzy Inference System, Perc is farmer preference for each crop, and dci is the net
irrigation demand of each crop in each month calculated by FAO-CROPWAT.

4. RESULTS AND DISCUSSION

In this paper, a three-stage model was used for operating the Zayandeh-Rud Dam to
develop an optimized plan for cultivation of downstream farms under diverse climate
conditions. The first 2 stages were developed by ANFIS and the 3rd stage was developed by
FIS. Two ANFIS models were used because the available periods of statistical data were not
equal while it would also speed up the simulation. The output from these two stages of
simulation was regarded as the annual release of the reservoir in the next year, representing
the input to FIS.
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Table 8. Comparison of observed and FIS predicted data

Year Yearly
release of
water (MCM)

Cropping area
(ha)

Percentage of
wheat

Percentage of
rice

Percentage of
orchard

Demand (MCM)

Observed FIS Observed FIS Observed FIS Observed FIS Observed Model
1999-2000 1102.1 21729.3 21057 22.0 22.3 13.6 13.5 25.1 24.5 242.8 226.9
2000-2001 567.5 16737.2 16705 17.2 17.0 8.4 8.0 29.6 30.0 182.3 185.0
2001-2002 1186.7 19617.8 20452 22.5 22.0 15.0 14.7 21.2 24.1 226.3 238.5
2002-2003 1549.4 22232.0 23055 17.5 16.9 24.3 23.1 18.6 18.3 264.8 284.7
2003-2004 1545.4 22964.0 23011 16.9 17.0 22.1 23.1 18.5 18.4 276.0 284.2
2004-2005 1678.1 25049.5 24954 15.1 16.0 23.8 23.7 17.3 18.1 297.2 294.4
2005-2006 1837.6 25719.0 25656 15.1 14.9 23.3 24.0 18.1 17.8 293.2 300.8
R2 0.97 0.97 0.99 0.94 0.93
RMSE 512.92 0.46 0.68 4.36 40.05
MAE 1.72 2.17 3.01 3.73 3.92
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The water demand calculated by Eq. 1 is different for each water condition. Based on this
equation, water demand will change in response to changes in cropping area and farmer’s
preference for each crop. The cropping area and preference for basic crops are different
under different climatic conditions. Table 8 shows the values for cropping areas, preferences
for basic crops (wheat, rice, and orchard fruits), and water demand. Clearly, cropping area
has improved by increasing the amount of water released from the Zayandeh-Rud Dam. On
the other hand, by increasing the amount of water released, farmer’s preference for the
crops with lower irrigation demand (wheat in this case) reduces compared to those with
higher water demands (rice in this case). This means that FIS can be used to develop a
cropping plan based on changing climate conditions as it takes into account farmers’
decisions and that the model can adequately predict farmers’ decisions. The last column in
Table 8 compares the observed values of annual water demand and the same value
calculated by Eq. 1. The comparison shows that the results are sufficiently acceptable.
According to this Table, the values for the statistical parameters (R2, RMSE, and MAE) are
acceptable for all the water demand values predicted by FIS and calculated by Eq. 1. For
example, the average error, MAE, in calculating the demand is lower than 4.0 percent.
These results show that the observed values and their estimations are close to each other.
The same can be inferred from the results for observed percentages of three diverse crops
(wheat, rice and orchard) and their estimations in the relevant years.

5. CONCLUSION

This paper satisfies two objectives. The first involves simulating the operation of the
Zayandeh-Rud Dam in a two-stage process. In the first stage, the inflow into the reservoir
during the March is predicted on the basis of the amount of water in the three preceding
months and the SOI parameter of the last month. These two values are then used as inputs
to an ANFIS model. The second stage consists in developing another ANFIS model whose
inputs are the inflow into the reservoir, i.e. the output from the model developed in the first
stage, and the amount of snow water equivalent of the last month. The output of the second
stage is the annual release for the following year, which is our first objective. The second
objective is achieved through a third stage which is meant to develop a cropping schedule by
taking into account different climate conditions and their influence on water conditions using
expert knowledge and experience. This objective is realized by using FIS. Another corollary
of the approach adopted in this paper is the calculation of net monthly water demand by FIS
based on the cropping schedule developed.

In this paper, SOI was used for considering climate conditions. Other parameters can be
suggested for considering climate conditions and the associated effects on reservoir
operation. Also, the conjunctive use of surface and groundwater and their effects on the
Zayandeh-Rud Dam operation may be suggested for future study. Another interesting area
will be the study of climate change and its effects on reservoir operation using hybrid models
and downscaling methods.
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