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ABSTRACT

Aims: The scope of the model lies in its applicability in the management inventories of
time-quadratic demand. It is also seen that large pile of goods displayed in a supermarket
will motivate the customer to buy more. So the presence of inventory has a motivational
effect on the people around it. Also there may be occasional shortages in inventory due to
many reasons. Therefore, we develop an EOQ model for the inventory of a deteriorating
item, taking demand rate and allowing shortages in inventory.
Study Design: This paper presents an inventory model for deteriorating items with
quadratic demand. In the model, shortages are allowed and partially backordered. The
backlogging rate is a variable and dependent on the waiting time for the next
replenishment. A numerical example is taken to illustrate the model and the sensitivity
analysis is also studied.
Methodology: Our purpose is to devise a mathematical model on inventory management
taking all these factors into consideration.
Results: Convexity condition of the cost function is established to ensure the existence of
unique point of minimum.
Conclusion: The proposed model can be extended in several ways. For instance, we may
extend the demand function to stochastic fluctuating demand patterns or stock-dependent
demand rate. Finally, we could extend the model to incorporate some more realistic
features such as quantity discounts, permissible delay in payments, time value of money
and inflation etc.
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1. INTRODUCTION

The effect of deterioration of physical goods cannot be disregarded in many inventory
systems. In daily life, the deterioration of goods is a common phenomenon. Deterioration is
defined as decay, spoilage, damage, evaporation, obsolescence, pilferage, loss of utility or
marginal value of a commodity that results in decreasing usefulness from the original one.
For example pharmaceuticals, chemicals, foodstuff etc. deteriorate significantly. The
deterioration rate of inventory in stock during the storage period constitutes an important
factor, which has attracted the researchers. Whitin (1957) is the first author who studied an
inventory model for fashion goods deteriorating at the end of a prescribed storage period. An
exponentially decaying inventory was developed by Ghare and Schrader (1963). Emmons
(1968) established a replenishment model for radioactive nuclide generators. Shah and
Jaiswal (1977) established an order-level-inventory model for perishable items with a
constant rate of deterioration. The deterioration occurs as soon as the retailer receives the
commodities that have assumed in all inventory models for deteriorating items. But in real
life situation, most of goods would have a span of maintaining quality or the original
condition. During that period, there was no occurrence of deterioration. These items are fish,
fruit, meat, vegetables, alcohols, blood and gasoline. This phenomenon is termed as “non-
instantaneous deterioration”. Jeyaraman and Sugapriya (2008) developed an ELSP for non-
instantaneous deteriorating items using price discount.

In practice, some customers would like to wait for backlogging during the shortage period,
but the others would not. Consequently, the opportunity cost due to lost sales should be
considered in the modeling. Many researchers (Murdeshwar, 1988; Goyal et al., 1992;
Hariga, 1996; Chakrabarti and Chaudhuri, 1997; Hariga and Alyan, 1997) assumed that
shortages are completely backlogged. Chang and Dye (1999) argued that the backlogging
rate should be dependent on the length of the waiting time. They were the first to give a
definition for the time-dependent partial backlogging rate. Wee (1995) developed an article in
the field of deteriorating items with shortages has revealed the economic order quantity with
a known market demand rate. Researchers like Sana (2010a) and Roy et al. (2011a, 2011b,
2011c) considered the case of partial backlogging rates in their models. However, in some
inventory system, for many stocks such as fashionable commodities, the length of the
waiting time for the next replenishment becomes main factor for determining whether the
backlogging will be accepted or not. The longer the waiting time, the smaller would be the
backlogging rate. Therefore, the backlogging rate is variable and is dependent on the waiting
time for the next replenishment. In this paper, the backlogging rate was assumed to be a
fixed fraction of demand rate during the shortage period.

Goyal and Giri (2001) provided a detailed review of deteriorating inventory literatures. They
indicated: the assumption of constant demand rate is not always applicable to many
inventory items like fashionable clothes, electronic goods etc. As they experience
fluctuations in the demand rate. Many products experience a period of rising demand during
the growth phase of their product life cycle. Time-varying demands were first considered by
Silver and Meal (1969). In this model, they established the Heuristic solution procedure.
Many research articles by Ritchie (1980, 1984, 1985); Deb and Chaudhuri (1986); Dave
(1989a, 1989b, 1989c); Hariga (1993); Chung and Ting (1993); Kim (1995); Jalan and
Chaudhuri (1999b); Lin et al. (2000) etc., analyzed linear time-varying demand. Aggarwal
and Bahari-Kashani (1991); Hollier and Mak (1983); Hariga and Benkherouf (1994); Wee
(1995); Jalan and Chaudhuri (1999a) etc., developed inventory models in which exponential
time-varying demand has been taken. With the progress of time, researchers developed
inventory models with time-dependent demand rates. Later, Ghosh and Chaudhuri (2004);
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Khanra and Chaudhuri (2003) etc., established their models in which quadratic time-varying
demand was considered. Sana (2010b) considered the case of ameliorating items and
deteriorating items in a multi-item EOQ model where the demand is being influenced by
enterprises. Recently Begum et al. (2010) has developed an EOQ model with quadratic
demand with Weibull distribution deterioration.

During the first three decades, many marketing researchers observed that in some retailer
systems like supermarket, the demand of goods might be influenced by the on-hand
inventory. For example, Levin et al. (1972) pointed out that at times, the presence of
inventory has a motivational effect on the people around it. It is a common belief that a large
pile of goods displayed in a supermarket will lead the customer to buy more. Dave and Patel
(1981) developed an inventory model for deteriorating items with time-proportional demand.
This model was extended by Sachan (1984) to cover the backlogging option. Donaldson
(1977) discussed the classical no-shortage inventory policy for linear, time-dependent
demand for the first time. Sana (2011a, 2011b, 2011c) considered the case of price sensitive
demands in his models. In the opinion of many authors, an alternative or perhaps more
realistic approach is to consider quadratic time-dependence of demand. This demand may
represent all types of time-dependence depending on the signs of the parameters of the
time-quadratic demand function. Khanra et al. (2010) considered an EOQ model with stock
and price dependent demand rate. Sana and Chaudhuri (2004) developed production policy
for a deteriorating item with time-dependent demand and shortages. The present work
attempts to model the situation where the demand rate is a continuous function of time and
items deteriorate at a constant rate. Here shortages are allowed and the backlogging rate is
variable and dependent on the waiting time for the next replenishment. In the present paper,
we have extended the work of Sahu et al. (2007) by taking the demand rate to be quadratic
function of time. The purpose of the present paper is to give a new approach to the inventory
literature or time-dependent demand patterns. Quadratic function of time is the best
representation of accelerated growth (or decline) in the demand. An analytical solution of the
model is discussed and it is illustrated with the help of a numerical example. Sensitivity of
the optimal solution with respect to change in different parameter values is also carried out.
The model ends with a suitable conclusion.

2. ASSUMPTIONS AND NOTATIONS

The assumptions are as follows:
1. The lead time is zero.
2. Replenishment rate is infinite.
3. The demand rate )(tD at any time '' t is given by









0)(,

0)(,
)(

2

ti

tictbta
tD


where cba ,,  0,0,0  cba and  are positive constants and )(ti is the
inventory level at time t .

4. Shortages are allowed. For convenient, a fraction of demand is backlogged. If the
waiting time longer, then the backlogging rate will be smaller. Let’s assume )(tB be
the fraction where t is the waiting time up to the next replenishment. We
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consider
t

tB



1

1
)( , where is known as the backlogging parameter which is a

positive constant.
5. dt is the length of time in which the product has no deterioration. (i. e. fresh product

time). A constant fraction )10(  of the on-hand inventory deteriorates after

this period and there is no replacement of the deteriorated units. dt and  are
given constants.

6. 1t is the length of time in which the inventory has no shortages. The length of order
cycle and the order quantity per cycle is given by T and Q respectively. Thus the

decision variables are 1t , T and Q .

7. )(1 ti is the inventory level at time t )0( dtt  in which the product has no

deterioration. )(2 ti is the inventory level at time t )( 1tttd  in which the product

has deterioration. )(3 ti is the inventory level at time t )( 1 Ttt  in which the
product has shortage.

Notations

 A is the constant ordering cost per order
 1c is the constant inventory holding cost per unit time

 2c is the constant deteriorating cost per unit

 3c is the constant shortage cost for backlogged items

 4c is the constant lost sale cost per unit

 ),( 1 TtTVC is the total relevant inventory cost per unit time of inventory system.

 ***
1 ,, QTt and *TVC is the optimal values of length of time, length of order cycle,

order quantity and total relevant inventory cost.

3. MATHEMATICAL DEVELOPMENT

This paper is developed by the consideration of the replenishment problem of a single non-
instantaneous deteriorating item with partial backlogging. The inventory model runs as
follows:

Let maxi be the units of item arrive at the inventory system at the beginning of each cycle.

The inventory level decreases to quadratic demand rate during the time interval ],0[ dt . The
inventory level decreases both due to demand and deterioration till it becomes zero in the
interval  1, ttd . The shortage interval keeps to the end of the current order cycle. The total
process is repeated. The inventory level at different instants of time is shown in figure 1.
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Fig. 1. Graphical presentation of inventory system

As described above, the inventory level decreases owing to quadratic demand rate during
the time interval  dt,0 . The inventory level  ti1 is governed by the following differential
equation:

   21 ctbta
dt

tdi
 , dtt 0 (3.1)

having the boundary condition   max1 0 ii  . The solution of equation (3.1) is:
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t
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The inventory level decreases not only due to the quadratic demand rate but also due to the
deterioration during the interval  1, ttd . The inventory level is governed by the differential
equation:

     2
2

2 ctbtati
dt

tdi
 , 1tttd  (3.3)

having the boundary condition   012 ti . Soling equation(3. 3) for  ti2 , which yields
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Considering continuity of  ti at dtt  , it follows from equation (3. 2) and (3. 4) that
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The maximum inventory level for each cycle is given by,
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Substituting equation (3. 5) in equation (3.2), it becomes
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During the shortage interval  Tt ,1 , the demand at time ‘ t ’ is partially backlogged at

fraction  tT  1

1
. The differential equation governing the amount of demand backlogged

is given by,
     tT

tTB
dt

tdi








1

3 , Ttt 1 (3.7)

having the boundary condition   013 ti . Soling equation (3. 7), which yields
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1ln1ln 13 , Ttt 1 (3.8)

Putting Tt  in equation (3. 8), we obtain the maximum amount of demand backlogged per
cycle as,

    13 1ln tTTiS  



(3.9)

Let Q be the order quantity per cycle and is obtained from equation (3. 5) and (3. 9) as
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The total relevant cost per cycle consists of five different costs. The total relevant inventory
cost per unit time is the sum of all costs per order cycle. Thus, the total relevant cost per unit
time is given by,



British Journal of Applied Science & Technology, 2(2): 112-131, 2012

118

 






















saleslost toduecyclepercostyopportunit

costOrderingbacklog toduecyclepercostshortage

cyclepercostiondeteriorat thecyclepercostholdinginventory
1

,1 T
TtTVC

 OCSCDCHCA
T


1

          

  




































































 
T

t

T

t

t

t

d

t t

t

dttTBc

dtticdttDticdttidtticA
T

d

d

d

1

1

11

1

1

4

3322

0

211



 

  

           

 

          








 







 


































 























 

























 













 




























 























 














































 



























1
14

333
1

22
11

32

2

232
1

2
1

2
1

2

3
1

2

22
1

33
1

2
1

22
1

1

32
1

2
1

2
1

232

2

2

432

32
1

2
1

2
1

1

1ln

32

221221

2

32

1
221221

432

2211

1

1

1

tT
tTc

c
tt

c
tt

b
tta

tt
c

t
b

a
e

tt
c

t
b

a
c

tttttt
c

tttt
btt

a

e
ttctbatt

c
t

b
a

t

t
c

t
b

t
ae

tt
c

t
b

a
tcA

T

ddd

dddtt

ddddd
d

ttddd
d

dddtt
d

d

d

d

(3.11)
For convenience,

0
221

32

2

2



























 


ddd tt

c
t

b
a

M , 04
3 






  c

c
N


 ,

0 dMtR , 0
432

432 





  ddd t

c
t

b
t

a
P



British Journal of Applied Science & Technology, 2(2): 112-131, 2012

119

Thus, equation (3.11) yields
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The total relevant inventory cost per unit time which is found in equation (3. 12) is a function
of the two variables 1t andT . Therefore, the total relevant cost per unit time will be
minimum if

0
),(
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),( 1 
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(3.13)

From equation (3. 12) and (3. 13), we get the equation
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and
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4. NUMERICAL EXAMPLE

Let 5,20,10,25,15,30,7,6,4,100 4321  cccccbaA ,

5.0dt and 5.0 , in appropriate units. Solving the non-linear equations (3.14) and

(3.15); we obtain the optimum values of *
1t and *T are 601055.0*

1 t and 05244.1* T .

Substituting the values of *
1t and *T in (3.10) and (3.11), the optimal order quantity per

cycle 75578.8* Q and the minimum total relevant cost per unit time

  652.486,1
* TtTVC respectively. It is numerically verified that this solution satisfies the

convexity condition for  TtTVC ,1
* which is established in Appendix.

5. SENSITIVITY ANALYSIS

We now study the effects of changes in the value of system parameters ,,,,,, cbaA

dtcccc ,,,,, 4321 on the optimal length of inventory *
1t , the optimal length of order

cycle *T , the optimal order quantity per cycle *Q and the minimum total relevant cost per

unit time *TVC of the Example 1. The sensitivity analysis is performed by changing each of
the parameter by %25%,10%,10%,25%,50  and - %50 , taking one parameter at a time
and keeping the remaining parameters unchanged. The results are shown in Table 1.
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Table 1. Effect of changes in the parameters of the inventory

Parameter %
Change in the
parameter

% Change in
*

1t
*T *Q *TVC

A +50
+25
+10
-10
-25
-50

4. 9473
-0. 6957
-2. 1344
1. 3482
2. 4799
3. 6254

-0. 91406
-9. 02134
-8. 8631
5. 9594
11. 7944
18. 9708

0. 9882
-4. 87186
-7. 6020
4. 6991
8. 9736
13. 6644

11. 3555
8. 7917
7. 4285
-4. 8001
-9. 8721
-16. 3800

 +50
+25
+10
-10
-25
-50

19. 6331
11. 0326
4. 9336
-5. 9247
-9. 6902
-26. 2074

19. 5118
12. 8976
6. 5609
-9. 9366
-7. 5122
-0. 1719

52. 3633
28. 1713
12. 3148
-14. 2740
-21. 4277
-38. 6903

1. 5230
-0. 9892
-1. 3796
4. 2817
-2. 0228
-11. 7361

a +50
+25
+10
-10
-25
-50

-7. 4603
-3. 9069
-1. 5743
1. 6163
-4. 1267
-8. 5349

-4. 7081
-2. 4219
-0. 9891
1. 0195
2. 6110
5. 4606

7. 0669
3. 6413
1. 4813
-1. 5147
-3. 8486
-7. 9026

9. 9892
4. 9248
9. 9517
-1. 9350
-4. 7999
-9. 4780

b +50
+25
+10
-10
-25
-50

-5. 8087
-3. 0630
-1. 2674
1. 3281
3. 4449
-7. 3509

-1. 5468
-0. 7933
-0. 3221
0. 3297
0. 8371
1. 7188

2. 6126
1. 3793
0. 5717
-0. 6009
-1. 5660
-3. 3786

-8. 6396
-4. 2011
-1. 6402
-1. 6068
-3. 9313
-7. 5532

c +50
+25
+10
-10
-20
-50

-3. 8716
-2. 0364
-0. 8410
0. 8791
2. 2754
4. 8311

-0. 2489
-0. 0988
-0. 0313
0. 1710
0. 0855
-0. 1539

1. 1907
0. 6494
-1. 1982
-0. 3011
-0. 8111
-1. 8837

32. 9888
16. 4859
5. 8549
-6. 5940
-16. 4920
-33. 0342

1c +50
+25
+10
-10
-25
-50

-14. 3311
-7. 9415
-3. 4041
3. 7756
10. 3170
24. 6974

-5. 9588
-3. 2448
-1. 3815
1. 5269
4. 1902
10. 3388

-8. 1881
-4. 7175
-2. 0854
2. 4377
7. 0117
18. 9499

35. 7284
17. 5299
6. 9258
-6. 7970
-16. 7107
-32. 1722

2c +50
+25
+10
-10
-25
-50

-0. 8320
-0. 4254
-0. 1725
0. 1750
0. 4450
0. 9089

0. 4237
0. 2232
0. 0921
-0. 0959
-0. 2489
-0. 5301

0. 0376
0. 0244
0. 0111
-0. 0132
-0. 0380
-0. 0951

1. 1786
0. 6047
0. 2457
-0. 2511
-0. 6376
-1. 3087
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Table 1 continues……………….

3c +50
+25
+10
-10
-25
-50

7. 7688
4. 1831
1. 7856
-2. 1272
-5. 3311
-7. 7144

9. 8200
5. 8587
2. 7174
-3. 8748
-10. 0878
-9. 0491

9. 9449
5. 7185
2. 5921
-3. 5812
-9. 3837
-9. 0693

-1. 3977
-1. 2996
-0. 7654
1. 5524
4. 6906
2. 5171

4c +50
+25
+10
-10
-25
-50

-14. 0692
-7. 7705
-3. 4110
-4. 9795
-7. 7144
-14. 0494

15. 4384
9. 8200
4. 8990
-10. 2842
-10. 0491
-5. 8545

16. 7434
9. 9460
4. 7456
-9. 4691
-9. 0693
-8. 0533

-0. 3028
-1. 3973
-1. 1776
5. 0845
2. 5171
3. 1655

 +50
+25
+10
-10
-25
-50

-1. 1464
-0. 7020
-0. 3219
0. 3941
1. 1717
3. 3031

-4. 0087
-2. 3051
-1. 0119
1. 1620
3. 2619
8. 1743

-11. 6710
-6. 6920
-2. 9379
3. 3826
9. 5510
24. 4492

2. 8759
1. 5900
0. 6781
-0. 7428
-1. 9944
-4. 5108

dt +50
+25
+10
-10
-25
-50

9. 2339
4. 1793
1. 8607
-1. 9212
-4. 8128
-9. 4809

-6. 0287
-3. 8377
-0. 7639
0. 2964
0. 1738
-1. 0024

-2. 5446
-2. 3156
-0. 3286
0. 06395
0. 05619
0. 3786

12. 9862
8. 1877
3. 1067
-3. 2937
-8. 8498
-20. 3757

 +50
+25
+10
-10
-25
-50

-1. 7371
-0. 9082
-0. 0379
+0. 0379
0. 9900
2. 0558

0. 8190
0. 4522
0. 0199
-0. 0199
-0. 5739
-1. 3273

0. 2067
0. 1328
0. 0067
-0. 0067
-0. 2257
-0. 6021

-41. 0761
-29. 1127
-1. 8952
1. 8962
89. 7931
-----

On the basis of the results shown in Table 1, the following observations can be made:

a) *Q decreases while *TVC increases with increase in the value of the parameter A .

The obtained results show that **
1 ,Tt are moderately sensitive to change in the

value of A . But *TVC is highly sensitive to changes in A .

b) ***
1 ,, QTt and *TVC increase with increase in the value of the parameter .

c) **
1 ,Tt decrease with increase in the value of ba, and c . Moreover, it is seen that

with increase in parameter ba, and c , the value of ** ,TVCQ increases. So
****

1 ,,, TVCQTt is insensitive to changes in ba, and c .
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d) With increase in value of ; **
1 ,TVCt decreases while ** ,QT increases.

**
1 ,Tt and *Q are less sensitive to  where as *TVC is highly sensitive.

e) With increase in the parameter 21 ,cc ; **
1 ,Tt and *Q decreases. But, *TVC

increases and decreases with rise in parameter 21 ,cc .

f) **
1 ,Tt and *Q increase while ** ,QT decrease while *TVC decreases with increase

in the value of the parameter 3c and 4c .

g) QT ,* decrease while *TVC increases with increase in the value of the parameter

,dt . *
1t increases and decreases with increase in the value of the parameter

,dt . *TVC are more sensitive to changes in the value of ,dt .

6. CONCLUSION

In this paper, an optimal replenishment policy has been considered for non-instantaneous
deteriorating items with quadratic demand. Here shortages are allowed and the backlogging
rate is variable. The backlogging rate is dependent on the waiting time for the next
replenishment. A complete rate or a constant partial rate was used in many studies to
describe the backlogging rate. But it is more realistic to assume the backlogging rate to be
time proportional with waiting time of backlogging. We have considered here the backlogging

rate as
t1

1
, which seems to be better from the exponential backlogging rate.

It is a common belief that, a large pile of goods displayed in a supermarket will motivate the
customer to buy more. So the presence of inventory has a motivational effect on the people
around it. The quadratic time-dependence of demand of the
form 2)( ctbtatD  , 0,0,0  cba .This type of demand has a better
representation of time-varying market. If we compare the other two types of time-dependents
like linear and exponential, it is seen that linear time-dependence demand leads to uniform
change in the real market. At the same instant, exponential time-dependence demand also
seems to be unrealistic because an exponential rate of change is very high and it is in doubt
that the market demand of any product may undergo a high rate of change like exponential
function. Thus the alternative and probably more realistic approach is to consider the
quadratic time-dependence of demand which may represent all types of time-dependence
depending on the signs of the parameters of the time-quadratic demand function.

We have ctb
dt

tdD
2

)(
 and c

dt

tDd
2

)(
2

2

 . If
c

b
to

dt

tdD

2
)(

 , which is positive

only if b and c are of opposite sign. In this case the demand rate gradually rises to a

maximum 









c

b
a

4

2

and then gradually decreases. This type of demand is quite appropriate

for seasonal products like winter cosmetics. As the season progress, the demand rate
begins to rise attains a highest level in the middle and then gone away towards end of the
season.
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If both b and c are negative, the demand rate )(tD decreases at a deceasing rate which we
may call as ‘accelerated decline’ in demand. This usually happens to the spare parts of an
obsolete aircraft model or the microcomputer chip of high technology products which is being
substituted by another.

If both b and c are positive, the demand rate )(tD increases at a increasing rate which we
may call as ‘accelerated growth’ in demand which is mainly visible in new computer chips,
spare parts of new aeroplane etc.

Thus, we may have different types of realistic demand patterns from the demand rate
2)( ctbtatD  depending on the signs of b and c . Depending on the values of b and

c , we have all the types of growth like positive, negative, accelerated decline, accelerated
growth which might be suitable to this model. This advantage of the time-quadratic demand
has motivated the researchers to adopt it in the present model. Therefore, of the view that
quadratic time-dependence demand is more realistic than linear and exponential time-
dependence demand.

The proposed model can be extended in several ways. It used in inventory control of certain
non-instantaneous deteriorating items such as food items, electronic components,
fashionable commodities and others. For instance, we may extend the demand function to
stochastic fluctuating demand patterns or stock-dependent demand rate. Finally, we could
extend the model to incorporate some more realistic features such as quantity discounts,
permissible delay in payments, time value of money, a finite rate of replenishment, inflation,
and probabilistic demand etc.
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APPENDIX

Convexity condition of the cost function  TtTVC ,1 is established here to ensure the

existence of unique point of minimum for  TtTVC ,1 .
We have,
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Now the function  TtTVC ,1 will be convexity if the Hessian determinant,
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(A4) and (A5) respectively. Considering the relation (A4), the condition (A7) is obvious.
_________________________________________________________________________
© 2012 Begum et al.; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


