
IJICIS, Vol.22, No.2, 126-136

DOI: 10.21608/ijicis.2022.98138.1124

International Journal of Intelligent

Computing and Information Sciences

A SURVEY ON AUTOMATED USER INTERFACE TESTING FOR MOBILE

APPLICATIONS

Amira Samir
*

Department of Information

Systems, Faculty of Computer

and

Information Sciences,

Ain Shams University

Cairo 11566, Egypt

amira_samir@cis.asu.edu.eg
https://orcid.org/0000-0003-4641-

0585

Huda Amin Maghawry

Department of Information

Systems, Faculty of Computer

and Information Sciences,

Ain Shams University

Cairo 11566, Egypt

huda_amin@cis.asu.edu.eg
https://orcid.org/0000-0001-

5550-5717

Nagwa Badr

Department of Information

Systems, Faculty of Computer and

 Information Sciences,

Ain Shams University

Cairo 11566, Egypt

nagwabadr@cis.asu.edu.eg

https://orcid.org/0000-0002-5382-

1385

Received 2021-09-26; Revised 2022-04-27; Accepted 2022-04-28

Abstract: Nowadays, smartphones play a remarkable role in our lives. Testing mobile applications is

significant to guarantee their quality. Automated testing is applied to minimize the cost and the interval

of time instead of manual testing. There are different testing levels which are unit testing, integration

testing, system testing and acceptance testing. Automated mobile application testing type methodologies

are categorized into white-box testing, black-box testing and grey-box testing. Besides, there are

several testing types such as functional testing and non-functional testing. Most of the existing studies

focus on user interface testing which is type of functional testing. In this paper, testing approaches for

user interface testing through different existing studies from 2013 to 2021 have been surveyed. Those

approaches are classified into model-based testing, model learning testing, search-based testing,

random-based testing, and record & replay testing. Several essential issues related to those approach

such as the optimization and redundancy for generation of test suites have been mentioned. Finally,

challenges in automated mobile applications user interface testing have been discussed.

Keywords: mobile application testing, user interface testing, functional testing, system testing, black-

box testing


 Corresponding author: Amira Samir

Department of Information Systems, Faculty of Computer and Information Sciences, Ain Shams University Cairo 11566,

Egypt

amira_samir@cis.asu.edu.egmail addresses: -E

0585-4641-0003-https://orcid.org/0000ORCID:

https://ijicis.journals.ekb.eg/

mailto:amira_samir@cis.asu.edu.eg
https://orcid.org/0000-0003-4641-0585
https://orcid.org/0000-0003-4641-0585
mailto:huda_amin@cis.asu.edu.eg
https://orcid.org/0000-0001-5550-5717
https://orcid.org/0000-0001-5550-5717
mailto:nagwabadr@cis.asu.edu.eg
https://orcid.org/0000-0002-5382-1385
https://orcid.org/0000-0002-5382-1385
mailto:amira_samir@cis.asu.edu.eg
https://orcid.org/0000-0003-4641-0585

127 Amira Samir et al.

1. Introduction

Today, technology has a great influence on the world. It has helped in the prediction and detection of

severe diseases as lung cancer [1, 2] and the diagnosis of Corona virus disease 2019 (COVID-19) [3]. It

has also helped in connecting the world through smartphones that have played a vital role in our daily

life. Their applications are used in different fields to make life easier for users. For example, mobile

payment is one of the quickest ways of electronic payment [4]. Another example is mobile learning that

helps in the effectiveness of education through simplifying the connection between teachers and

students [5]. Testing is essential when constructing a mobile application to guarantee its quality. It

requires too much time to be performed manually. That is the reason of the presence of automated

testing for mobile applications. It minimizes the cost and time interval of testing [6]. Mobile application

testing could be performed using testing environments which are emulators and real devices. Emulator

is a virtual machine simulating real device [7]. The same testing approach could use both emulator and

device. The studies at mobile application testing have focused on several points: Optimization of the

generated test suites to increase the performance to testing [8–10], redundant exploration of the

Application Under Test (AUT) [11–14], generation of user interface events only without support to

system events [12, 15].

In this paper, the automated user interface testing approaches for mobile applications have been

surveyed through different existing studies from 2013 to 2021. In the next section, the testing types

have been presented, they are divided into functional testing and non-functional testing. Then, existing

studies of the mobile testing levels have been surveyed, specifically at unit testing and system testing. In

section 4, the three testing type methodologies are presented, which are white-box testing, black-box

testing and grey-box testing. Then, the challenges in automated mobile applications User Interface (UI)

testing have been presented. Finally, the conclusion of this survey is presented.

2. Testing types

There are two types of testing. They are functional testing and non-functional testing. Functional

testing is concerned with the application’s functionalities. For mobile application testing, it is concerned

with testing application’s UI, service functionalities and Application Programming Interface (API) [7,

16]. UI testing is a type of functional testing. It executes events through application’s UI for testing the

application’s behavior [16]. Most of the studies focus on UI testing as there are lots of libraries

supporting UI mobile application testing, this could help researchers working at this point [17]. Service

is a functionality that could work in the application’s background. Service testing is concerned with

appropriate management of its life cycle [18]. API is a set of software functionalities that could run by

another application. API testing ensures that there is no error could happen as result of this integration

[19].

A SURVEY ON AUTOMATED USER INTERFACE TESTING FOR MOBILE APPLICATIONS
128

Non-functional testing is concerned with testing the application’s non-functional requirements. There

are several testing types of non-functional testing for mobile applications as performance testing, stress

testing, security testing, compatibility testing, usability testing and accessibility testing. Performance

testing is concerned with checking the application’s performance behavior when it is used by several

users. It checks its response, time it could take for executing, the usage of mobile resources such as

memory, network, and power [16, 18]. Stress testing is concerned with checking the application’s

performance behavior when it is used by a huge number of users or at high usage of mobile resources. It

checks when the application could crash and its capability for restoration [18]. Security testing tests the

application’s capability of rejecting access of unauthorized users and protecting the user’s data. It

assures that the application is invulnerable to any attacks could happen. It also detects the weak points

of the application that could result into security breach in order to be solved [18]. Compatibility testing

finds out the mobile devices that could support the AUT. There are several configuration profiles at the

market, so it is important to check the devices that would fail to run the AUT. Emulators have decreased

the cost of compatibility testing [18]. Usability testing assures that the AUT is easy to be used, that the

user will not face any difficulties while dealing with AUT. The AUT should respond quickly to user’s

actions. However, this could be hard when there are more than one activity running at the same time

[18]. It checks that AUT’s UI design is usable to prevent any confusions for users [16, 20].

Accessibility testing is a type of usability testing. It tests the application’s behavior with disabled users.

There are some features at mobile operating systems that could help, as text-to-speech in android [18].

3. Testing Levels

Testing levels are classified into unit testing, integration testing, system testing and acceptance testing

[16, 21]. Unit testing is concerned with verifying the smallest component of AUT. It focuses on finding

out any error at the application’s code [16, 21]. Integration testing targets revealing the bugs that happen

after combining different application’s units [18]. It could be performed using different ways such as

integrating independent components at the beginning as database then combining other system

functionalities which is bottom-up integration. Top-down integration is the opposite of the bottom-up

integration as the components are tested and integrated to the system dependent components. For many

applications those two ways are mixed and applied together [18, 22]. System testing is concerned with

checking that the application has completed all its requirements after integration [18]. Acceptance

testing checks that the application has reached the user’s trust by completing all his requirements. It also

checks that it does not have any problems using real data by the user. This testing is performed by the

testers and users [21, 22].

Most of the studies focus on unit testing and system testing. The following subsections review the

approaches proposed for each testing level of them.

129 Amira Samir et al.

3.1 Unit testing

Unit testing is usually done by the application’s developers. It is also called component testing. It

could assure the application’s behavior by testing the response to different types of events. Moreover, it

could be used for checking that the life cycle events are properly managed [18], as at [23, 24] and the

user’s events as at [25].

3.1.1 Model-based / Model learning testing

Several studies have focused on checking that the management of life cycle events. At MobiGUITAR

[23] some errors have been found as result of the inappropriate life cycle management of AUT’s

activities. It is a model-based / model learning approach that has enhanced its previous model that

worked on desktop applications. It could not work with mobile applications as it has no state and did not

consider security. The application’s UI state has been modelled through a reverse engineering approach.

Model-based testing approaches create test cases based on the extracted model of AUTs [26]. Model

learning testing approaches learn the model of AUT while testing [27]. At [24] a model-based approach

has been proposed for generating application’s life cycle test cases. The problem of ensuring the quality

of mobile application’s data has been addressed through different states of application’s activity life

cycle. A model of application’s activity life cycle has been constructed using source code, parsed, and

analyzed. Then, a graph has been created for each activity. Moreover, automated test cases have been

generated and executed using the constructed model. The status of each system resource has been

checked that it is either acquired or released in the suitable life cycle method, to detect any failure could

happen at system resources.

3.1.2 Record & replay testing

Record & replay testing is an approach for recording the interactions by testers with application’s UI

components to create a script. This script could be automatically replayed later for the testing process

[28]. ACRT [25] is a record & replay testing approach. It is implemented for minimizing the testing

effort. It captures the user’s events and input. Then, a script is created by obtaining the coordinates of

the event at the screen or the code of the pressed key. The script is replayed by Robotium [29] which is

an open source automated testing framework. Assertions are used to find out if there are any errors at

the application’s UI components.

3.2 System Testing

System testing is concerned with finding any errors that could happen when executing the complete

application. It has three steps, first the application runs on an emulator. Then, the environment changes

gradually towards real device. Finally, it runs on a real device [18]. Many applications have applied

system testing, as with search-based testing [8–10, 14, 30], model-based testing [11, 12], model learning

testing [15] and random-based testing [13, 31–33].

A SURVEY ON AUTOMATED USER INTERFACE TESTING FOR MOBILE APPLICATIONS
130

3.2.1 Search-based testing

Search-based testing approaches apply metaheuristic approaches for generating optimized test cases

by evaluating some solutions with a fitness function [34]. EvoDroid [10] has applied an approach for

solving the defects resulting from using genetic algorithm to find the best individuals affecting the

performance of the search. The application’s behavior has been analyzed and modelled for detecting the

source code dependencies. Then, search approach has been applied on the detected independent code

parts to find the appropriate crossing over between genes and going in depth at the code to increase the

coverage. AGRippin [8] is a search-based approach for handling the inefficiency of generation of test

suites by other approaches. Crossover has been applied to generate test cases (chromosomes). They

have been ensured that they could be executed by applying some heuristic criteria. A mutation approach

has been applied and ranked test cases based on fitness. Genetic algorithm has been merged with hill

climbing algorithm. Sapienz [9] applies a genetic algorithm with randomness for optimization of test

sequences and increasing coverage. If the input is an Android Application Package (APK), then it is

instrumented, to find out the coverage. Monkey++ [14] generates control flow graph for AUT and

traverses through it by using Depth First Search (DFS) strategy. The generated test cases achieved more

coverage results with less execution time than Monkey. ADAPTDROID [30] performs adaptation for

test cases of AUTs with common methods. It extracts their semantics though their APKs. Then, it

matches between the events of AUTs through the implemented evolutionary algorithm. Finally, it

produces effective related test cases with more similarity in semantics between the AUTs compared to

other approaches.

3.2.2 Model-based testing

Different model-based approaches for UI testing were proposed in literature, they have focused on

maximizing coverage and generating relevant events. However, the exploration strategy could be a

challenging issue. Stoat [12] is a model-based approach for UI testing. It has addressed several

problems, as the exhaustive derivation of tests from the models to validate an application, the

redundancy of randomly generated tests that results from the previous point, there are no models for

some applications and the generation of UI events only. Dynamic analysis for exploration and static

analysis have been combined for building a stochastic model. A guided search for finding the best

models has been applied. Generation of system events by using intents is also supported. CrawlDroid

[11] is model-based approach for the redundant exploration of an application that could get to the same

state multiple of times. A feedback exploration approach has been applied and scores have been given

to actions based on their ability to get to a new state in the application. That leads to an increasing in the

coverage and discovering more failures.

3.2.3 Model learning testing

As the limitations of previous approaches were the susceptibility of errors from manual testing,

requirement of source code of application and the generation of UI events only GATS [15] has been

proposed. It learns the model of AUT using finite-state machine. The first state is the application’s

131 Amira Samir et al.

installation. An unexplored transition is selected, then the model is updated. The target is to find more

bugs in the least time. It generates a report when a crash happens. It supports system and UI events.

3.2.4 Random-based testing

Random-based testing approaches depend on the randomness of selecting the events. Several studies

have focused on generating relevant and minimizing redundancy compared to monkey. Monkey [31] is

a testing tool at Android Software Development Kit (SDK). It generates pseudo-random events.

Monkey testing was used in the beginning for testing Macintosh (Mac) programs in 1983 [35].

Dynodroid [32] generates relevant events for testing an application. Three approaches have been

implemented for selecting an event which are frequency, biased random and uniform random.

Frequency selects the event with the minimum number of selections. Uniform random selects a random

event. Biased random keeps a history of events’ number of selections. Dynodroid’s performance is

better than monkey. At [33] an approach has been presented for handling the excessive time and effort

required for generation of test cases. It is based on statistical analysis from mining users’ usage. First,

the executed events have been recorded to get the usage logs. Then, a behavioral model from those logs

has been generated. An event will be randomly selected based on probabilistic calculations.

MonkeyImprover [13] enhances AUT through refactoring the GUI without affecting the functionalities

of AUT. It extracts GUI elements of AUT that a user could interact with. Then, it generates a weight for

each functionality based on its complexity. Then, GUI components would be resized based on their

weight. As the size increases, the chance of interacting with monkey increases.

4. Testing Type Methodologies

There are three testing type methodologies. They are white-box testing, black-box testing and grey-

box testing.

White-box testing is also called structure-based methodology. It considers the internal structure of an

application, as the testing process is based on the presence of the application’s source code [21]. There

are several white-box testing approaches as AGRippin [8], EvoDroid [10], MonkeyImprover [13],

Monkey++ [14], ACRT [25] and [24]. Their input is source code of android application.

Black-box testing is also called specification-based methodology, as it based on the application’s

requirements. It does not consider the presence of the source code of application. However, it considers

interfaces [21]. There are several black-box testing approaches as at CrawlDroid [11], Stoat [12], GATS

[15], MobiGUITAR [23], Monkey [31], Dynodroid [32], ADAPTDROID [30] and [33]. Their input is

the application’s APK.

Grey-box testing is a combination of both black-box testing and white-box testing. Testing is based on

the application’s structure and requirements [21]. At Sapienz [9], where the input is only application’s

APK, it is extracted to get the source code for instrumentation. However, the approach could also be

performed if the source code is present.A summary for existing studies is presented at Table 1. They are

sorted according to the year of publication ascendingly.

A SURVEY ON AUTOMATED USER INTERFACE TESTING FOR MOBILE APPLICATIONS
132

Table 1 - Summary of UI testing existing studies

Paper Name Year
Testing Type

Methodology

Testing

Level

Testing

Approach

Testing

environment
Advantages

Disadvantages

[31] Monkey 1983 Black-box System
Random-

based

Mobile device

and emulator
Fast execution time

Irrelevant events

[32] Dynodroid 2013 Black-box System
Random-

based

Android 2.3.5

emulator
Relevant events

Slow execution

time

[23] MobiGUITAR 2014 Black-box Unit

Model-

based /

Model

learning

Not specified
Enhanced model of

desktop applications

Simple exploration

strategy

[10] EvoDroid 2014 White-box System
Search-

based

Emulators in

parallel

Fast execution time with

increased coverage

Slow execution

time with complex

applications

[25] ACRT 2014 White-box Unit
Record &

replay
Mobile device Decreased time and effort

Not providing

coverage

[8] AGRippin 2015 White-box System
Search-

based

Android 2.3.3

emulator

Increased effectiveness

than applying hill

climbing solely

Same coverage at

successive

iterations

[9] Sapienz 2016 Grey-box System

Search-

based
Android 4.4
emulator and

mobile device

Optimization of test

sequences

Tested applications

may not cover all

existing fields

[12] Stoat 2017 Black-box System
Model-

based

Android 4.4.2

emulator
Relevant events

Incomplete

exploration of UI

[33]

Random GUI Testing

of Android

Application Using

Behavioral Model

2017 Black-box System
Random-

based

Android Nexus

5 emulator

Mining users’ usage and

increasing coverage

Complex events not

handled

[11] CrawlDroid 2018 Black-box System

Model-

based

Android 4.4

emulator and

mobile device

Increasing coverage and

discovering more failures

Tested applications
may not cover all

existing fields

[15] GATS 2019 Black-box System
Model

learning

Android 5.1

emulator

Supporting system and UI

events

Slow execution

time

[24]

A Model for

Generating

Automated Lifecycle

Tests

2020 White-box Unit
Model-

based

Android 11

mobile device

Detecting failures in

system resources

Failed resources are

released manually

[13] MonkeyImprover 2020 White-box System
Random-

based
Not specified

Minimizing redundant

events generated by

Monkey

Needs more

evaluation (one

AUT only)

[14] Monkey++ 2021 White-box System
Search-

based
Not specified

Relevant events,

increase coverage and fast

execution time

Tested applications

may not cover all

existing fields

[30] ADAPTDROID 2021 Black-box System
Search-

based

Android

emulators
Semantic test cases

High cost of

computation

133 Amira Samir et al.

5. Challenges in Automated Mobile Applications UI Testing

Several challenges in automated mobile applications testing approaches through UI testing have been

surveyed.

 Selecting the AUTs covering all existing fields is a challenging issue. As the approach’s

performance could change between different applications [9, 11]. Sapienz [9] and CrawlDroid

[11] could need to select more AUTs in different fields to ensure their effectiveness .

 The effectiveness UI testing at model-based approaches could be affected by applying simple

exploration strategies such as using breadth-first search approach in MobiGUITAR [23] or the

inability to extract the whole behaviors leading into incomplete exploration of UI of an

application as in Stoat [12].

 The slow execution time at some approaches as GATS [15] and Dynodroid [32] compared to

some existing tools as monkey. However, They have achieved higher performance results than

monkey [31], as monkey generates irrelevant events to the application.

 Most of the studies as [33] focus on simple events such as to click, long-click, text and scroll.

Since handling complex input events such as dragging is a challenging issue.

 Complex AUTs with many conditions could have lower performance than other AUTs when

applying the same testing approach. By applying EvoDroid [10], complex applications got

slower execution time.

 The need of providing information about testing metrics as code coverage when validating the

performance of an approach to ensure that it has covered as much as possible of AUT’s code.

ACRT [25] does not provide information about code coverage. Maximizing the coverage is a

challenging issue for any approach as for EvoDroid [10]. For search-based approaches as

AGRippin [8], the ratio of crossover and mutation could lead into that some test suites could

have the same coverage at successive iterations. This could lead to decreasing the coverage.

 Detecting errors in system resources when using an application could be challenging issue, as

there are multiple resources that could be assessed. This approach [24] has focused on 3

resources only which are drive, camera and location.

 Extraction of GUI elements of AUT that a user could interact with could be a challenging issue.

As there are different formats of implementation for event handlers either by using particular

annotations or by declaring their names in layout files or by using specific functions as in

MonkeyImprover [13]. Moreover, common callback functions names could lead to inability of

detection of control and its related callback function as in Monkey++ [14].

A SURVEY ON AUTOMATED USER INTERFACE TESTING FOR MOBILE APPLICATIONS
134

6. Conclusion

Every day, the importance of smartphones increases. Testing mobile applications has become

essential to assure their quality. In this paper, a survey about automated UI testing for mobile

applications has been presented. Mobile testing types, testing type methodologies and testing levels

have been discussed. Existing studies have focused on the several issues such as discovering more

failures in AUTs, generating relevant events with minimized redundancy, the non-generation of

system events when testing AUT and optimization of test suites. Different existing UI mobile

application testing studies from 2013 to 2021 have been presented. Those studies have been

classified according to their year, testing type methodology, testing level, testing approach, testing

environment, their advantages, and disadvantages. Testing approaches that have been presented in

these studies are random-based testing, model-based testing, model learning testing, search-based

testing, and record & replay testing. Most of the existing mobile testing studies are about UI testing,

which is a type of functional testing, due to the presence of libraries supporting it. Moreover, the

challenges that could happen at automated mobile applications UI testing have been discussed. As

future direction, researchers can start by tackling those challenges.

References

1. Numan N., Abuelenin S., Rashad M.: Prediction of Lung Cancer Using Artificial Neural

Network Int. J. Intell. Comput. Inf. Sci., 16, pp. 1–19 (2016)

2. Aouf M.: Application of K-MTh Algorithm for Accurate Lunge Cancer Detection Int. J. Intell.

Comput. Inf. Sci., 19, pp. 1–20 (2019)

3. Ukaoha K., Ademiluyi O., Ndunagu J., Daodu S., Osang F.: Adaptive Neuro Fuzzy Inference

System for Diagnosing Coronavirus Disease 2019 (COVID-19) Int. J. Intell. Comput. Inf. Sci.,

20, pp. 1–31 (2020)

4. Nasr M., Farrag M., Nasr M.: E-Payment Systems Risks, Opportunities, and Challenges for

Improved Results in E-Business Int. J. Intell. Comput. Inf. Sci., 20, pp. 1–20 (2020)

5. Amasha M.: Using Actionscript 3.00 To Develop an Android Application for Mathematics

Course Int. J. Intell. Comput. Inf. Sci., 16, pp. 67–79 (2016)

6. Kaur A.: Review of Mobile Applications Testing with Automated Techniques Int. J. Adv. Res.

Comput. Commun. Eng., 4, pp. 503–507 (2015)

7. Gao J., Bai X., Tsai W.-T., Uehara T.: Mobile Application Testing: A Tutorial Computer (Long.

Beach. Calif)., 47, pp. 46–55 (2014)

8. Amalfitano D., Amatucci N., Fasolino A.R., Tramontana P.: AGRippin: A novel search based

testing technique for android applications 3rd Int. Work. Softw. Dev. Lifecycle Mobile,

DeMobile 2015 - Proc., pp. 5–12 (2015)

9. Mao K., Harman M., Jia Y.: Sapienz: multi-objective automated testing for Android applications

Proc. 25th Int. Symp. Softw. Test. Anal. - ISSTA 2016, pp. 94–105 (2016)

10. Mahmood R., Mirzaei N., Malek S.: Evodroid: Segmented evolutionary testing of android apps

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering. pp. 599–609 (2014)

135 Amira Samir et al.

11. Cao Y., Wu G., Chen W., Wei J.: Crawldroid: Effective model-based gui testing of android apps

Proceedings of the Tenth Asia-Pacific Symposium on Internetware. pp. 1–6 (2018)

12. Su T., Meng G., Chen Y., Wu K., Yang W., Yao Y., Pu G., Liu Y., Su Z.: Guided, Stochastic

Model-Based GUI Testing of Android Apps Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering. pp. 245–256. Association for Computing Machinery, New

York, NY, USA (2017)

13. Paydar S.: Automated GUI Layout Refactoring to Improve Monkey Testing of Android

Applications Proc. RTEST 2020 - 3rd CSI/CPSSI Int. Symp. Real-Time Embed. Syst. Technol.,

(2020)

14. Doyle J., Saber T., Arcaini P., Ventresque A.: Improving mobile user interface testing with

model driven monkey search Proc. - 2021 IEEE 14th Int. Conf. Softw. Testing, Verif. Valid.

Work. ICSTW 2021, pp. 138–145 (2021)

15. Chen T., Song T., He S., Liang A.: A GUI-based automated test system for android applications

Adv. Intell. Syst. Comput., 760, pp. 517–524 (2019)

16. Mostefaoui G.K., Tariq F.: Mobile apps engineering: design, development, security, and testing,

CRC Press, (2018)

17. Tramontana P., Amalfitano D., Amatucci N., Fasolino A.R.: Automated functional testing of

mobile applications: a systematic mapping study Softw. Qual. J., (2018)

18. Amalfitano D., Fasolino A.R., Tramontana P., Robbins B.: Testing android mobile applications:

Challenges, strategies, and approaches Advances in Computers. vol. 89. pp. 1–52. Elsevier

(2013)

19. Jorgensen A., Whittaker J.A.: An api testing method Proceedings of the International Conference

on Software Testing Analysis \& Review (STAREAST 2000) (2000)

20. Bruegge B., Dutoit A.H.: Object-Oriented Software Engineering. Using UML, Patterns, and Java,

(2009)

21. Homès B.: Fundamentals of Software Testing, (2013)

22. Sommerville I.: Software Engineering, Pearson Education, (2006)

23. Amalfitano D., Fasolino A.R., Tramontana P., Ta B.D., Memon A.M.: MobiGUITAR:

Automated Model-Based Testing of Mobile Apps IEEE Softw., 32, pp. 53–59 (2014)

24. Motan M., Zein S.: Android App Testing: A Model for Generating Automated Lifecycle Tests

4th Int. Symp. Multidiscip. Stud. Innov. Technol. ISMSIT 2020 - Proc., (2020)

25. Liu C.H., Lu C.Y., Cheng S.J., Chang K.Y., Hsiao Y.C., Chu W.M.: Capture-replay testing for

android applications Proc. - 2014 Int. Symp. Comput. Consum. Control. IS3C 2014, pp. 1129–

1132 (2014)

26. Dias Neto A.C., Subramanyan R., Vieira M., Travassos G.H.: A survey on model-based testing

approaches: A systematic review Proc. - 1st ACM Int. Work. Empir. Assess. Softw. Eng. Lang.

Technol. WEASELTech 2007, Held with 22nd IEEE/ACM Int. Conf. Autom. Softw. Eng., ASE

2007, pp. 31–36 (2007)

27. Choi W., Necula G., Sen K.: Guided gui testing of android apps with minimal restart and

approximate learning Acm Sigplan Not., 48, pp. 623–640 (2013)

28. Börjesson E., Feldt R.: Automated system testing using visual GUI testing tools: A comparative

study in industry Proc. - IEEE 5th Int. Conf. Softw. Testing, Verif. Validation, ICST 2012, pp.

350–359 (2012)

29. GitHub - RobotiumTech/robotium: Android UI Testing,

https://github.com/robotiumtech/robotium

30. Mariani L., Pezze M., Terragni V., Zuddas D.: An Evolutionary Approach to Adapt Tests across

Mobile Apps Proc. - 2021 IEEE/ACM Int. Conf. Autom. Softw. Test, AST 2021, pp. 70–79

A SURVEY ON AUTOMATED USER INTERFACE TESTING FOR MOBILE APPLICATIONS
136

(2021)

31. UI Application Exerciser Monkey - Android Developers,

https://developer.android.com/studio/test/monkey

32. Machiry A., Tahiliani R., Naik M.: Dynodroid : An Input Generation System for Android Apps

Proc. 9th Jt. Meet. Found. Softw. Eng. ACM,pp. 224–234., (2013)

33. Muangsiri W., Takada S.: Random GUI Testing of Android Application Using Behavioral Model

Int. J. Softw. Eng. Knowl. Eng., 27, pp. 266–271 (2017)

34. Afzal W., Torkar R., Feldt R.: A systematic review of search-based testing for non-functional

system properties Inf. Softw. Technol., 51, pp. 957–976 (2009)

35. What is Monkey Testing_ Features, Types With Examples - Testbytes,

https://www.testbytes.net/blog/monkey-testing/

