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A Meta-analysis on Classification Model Performance in
Real-World Datasets: An Exploratory View
David Gómez Guillén and Alfonso Rojas Espinosa

Telematics Engineering Department, Polytechnical University of Catalonia, Barcelona, Spain

ABSTRACT
The No Free Lunch (NFL) Theorem imposes a theoretical
restriction on optimization algorithms and their equal average
performance on different problems, under some particular
assumptions. Nevertheless, when brought into practice, a per-
ceived “ranking” on the performance is usually perceived by
engineers developing machine learning applications.
Questions that naturally arise are what kinds of biases the
real world has and in which ways can we take advantage
from them. Using exploratory data analysis (EDA) on classifica-
tion examples, we gather insight on some traits that set apart
algorithms, datasets and evaluation measures and to what
extent the NFL theorem, a theoretical result, applies under
typical real-world constraints.

Introduction

The No Free Lunch (NFL) theorem (Wolpert 1996a, 1996b) states, in short,
that under some particular circumstances (e.g. homogeneous loss functions),
all algorithms perform equally well, averaging over all possible datasets (with
a fixed length). In other words, if one algorithm performs remarkably well in
one dataset, there exists another dataset that such algorithm would have
remarkable trouble with.

Despite the prevalence of the NFL theorem, there are significant and
obvious differences between the performances of different machine learning
classification algorithms on real-world datasets. In our last publication, we
provided a qualitative overview on the most common traits of these and
contrasted them with a few popular datasets used as a preliminary bench-
mark. These traits were studied as part of a post factum analysis on results
gathered on previous unrelated experiments (Gómez and Rojas 2015), so a
more rigorous and extensive approach was needed.

The next step is to quantify and summarize similar classification results
into conclusions useful for predictive modeling purposes. More than a
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hundred datasets were collected from public repositories to study possible
similarities, their statistical and information-theoretic traits and the perfor-
mance we obtain with different algorithms. Similar research has been con-
ducted before (Ali and Smith 2006), including more specialized research
areas such as automatic image description (Bernardi et al. 2016), (Hodosh,
Young, and Hockenmaier 2013), but our particular interests in this project
are threefold: the algorithms, the dataset structural properties and the rela-
tionship between both.

First, we intend to examine the algorithms themselves and the circum-
stances under which they display good performance. Many informal heur-
istics and rules of thumb exist when a data analyst needs to choose which
model to use for prediction, often obtained through empirical, trial-and-error
approaches, such as the helpful diagram on the popular python library scikit-
learn’s website (Pedregosa et al. 2011). An exploratory analysis can provide
additional insight and become a tool to evaluate future classifiers as well.

Using a similar reasoning but considering the datasets this time, we find
substantial structural properties of widely available and studied data worth
exploring. By summarizing the whole statistical complexity of a full dataset to
a handful of carefully chosen metrics, we can find out which of these include
relevant and concise information that can potentially be used to improve our
learning efforts. Moreover, different sets of evaluation metrics will be con-
sidered to explore the relationships between them and to provide informa-
tion on how useful they can be in different situations.

This document will proceed with a more detailed explanation of the
experimental setup in Section 2, followed by the results in Section 3.
Finally, in Section 4 we will present our conclusions and we will discuss
the impact these ideas have for data analysis.

Methodology

The setup for this first section consists of the study on 101 classification
datasets, gathered from the UCI and KEEL repositories (Alcalá-Fdez et al.
2011; Bache and Lichman 2013). These datasets have been considered as a
representative sample of a common (but not unique) real-world use case in
data analysis: modest-sized sets with many more examples than features
(commonly known as p<< n case) with no trivial problems (otherwise we
wouldn’t be using machine learning). Moreover, there has been no prior
filtering mechanism, relying instead on the judgment of the sources in order
to minimize any kind of selection bias on the subsequent statistical analysis.
Lastly, no customized preprocessing or modification of any kind was made
on any individual dataset to ensure the data is representative of the original
sources. However, we performed a series of steps to ensure the integration of
our analysis.
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(1) Remove features with null entropy.
(2) Impute missing values of a feature as the median of the known values.
(3) For calculations requiring numeric values, transform nominal features

using dummy coding.
(4) For calculations requiring nominal values, transform numeric features

by discretization using the Freedman–Diaconis rule.

With this homogeneous dataset collection, we developed a set of metrics with
the intention of summarizing each set in a few values. These metrics were
chosen with some considerations in mind: being relevant, inexpensive to
compute and as few in number as possible. This last parsimony constraint is
necessary in order to carry out a sound statistical analysis; with many
variables and/or interactions between them, the chances increase of finding
some spurious structure that would invalidate the conclusions. In particular,
we chose the metrics detailed in Table 1.

Developing a new meta-dataset with these metrics allows us to conduct an
exploratory data analysis (EDA) to identify relations between them. Note that
this step involves only the data; we are not accounting for the algorithms at
this stage.

As a follow-up experiment, these metrics are compared to the results of
different algorithms for each set. In particular, five classifiers (from the
sklearn library implementation) are tested: naive Bayes, k-nearest neighbor
(kNN), linear kernel support vector machines (SVMs), random forests and
neural networks. The hyper-parameters for the training of these models are
found via grid search, and in the case of neural networks we use a single
hidden layer with #features þ #classes

2 units using logistic activation functions,
trained via BFGS quasi-Newton back-propagation.

To allow a fairer comparison between datasets, we chose Cohen’s kappa
(κ) instead of the absolute error since our interest lies in finding out how the
classifiers are able to improve on the baseline accuracy.

If we define the baseline, B, as the fraction of the most populated class and
a as the accuracy of a model in that set, kappa is defined as κ ¼ a�B

1�B . A κ ¼ 0

Table 1. Metrics computed for each classification dataset.
Metric Description

log n Logarithm of the number of instances
log f Logarithm of the number of features
pmaj Percentage of majority class

Ri Mean feature autocorrelation

Ric Mean feature-class correlation

HðXiÞ Mean feature entropy
HðCÞ Class entropy
IðXi; CÞ Mean mutual information between features and class
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means that the model is unable to provide further insight than a simple
educated guess (e.g. choosing always the most probable answer a priori). A
positive value indicates the magnitude on such insight, whereas a negative
value means that it is worse than an educated guess. Such a metric is more
reasonable than accuracy to evaluate algorithms: for example, a 50% accuracy
on biometric authentication is drastically different than a 50% accuracy in
predicting the next winning lottery number.

One consequence of choosing kappa is the impossibility of the NFL
theorem to strictly hold if we consider this measure instead of the loss
function. Using the definitions in Table 2, we have the following.

LðmðxiÞ; tiÞ ¼ 1� δðmðxiÞ; tiÞ
�Lðm; dÞ ¼ 1

dj j
P

ðxi;tiÞ2d
LðmðxiÞ; tiÞ

�LðmÞ ¼ 1
Dj j
P
d2D

�Lðm; dÞ ¼ constant ¼ �L

�κðmÞ ¼ 1
jDj

X
d2D

κðm; dÞ ¼

¼ 1
jDj

X
d2D

½1� Lðm; dÞ� � BðdÞ
1� BðdÞ ¼

¼ 1
jDj

X
d2D

1� Lðm; dÞ
1� BðdÞ �

X
d2D

BðdÞ
1� BðdÞ

" #
¼

¼ 1
jDj

X
d2D

½1� Lðm; dÞ� �
X
d2D

BðdÞ
1� BðdÞ Lðm; dÞ

" #
¼

¼ 1
jDj 1� L�

X
d2D

BðdÞ
1� BðdÞ|fflfflfflfflffl{zfflfflfflfflffl}
Baseline odds

LðmÞ

2
6664

3
7775

Table 2. Mathematical notation and definitions.
Metric Description

mðxiÞ Output (hypothesis) of the model m with input x
δ Kronecker delta
D : d1; d2; :::; dnf g Set of all possible datasets (given a fixed length)
d : ðx1; t1Þ; :::; ðxnd ; tnd Þf g Dataset with inputs xi and associated targets ti
LðmðxiÞ; tiÞ Loss for input xi and target ti using model m
�Lðm; dÞ Average loss for dataset d using model m
�LðmÞ Average loss for model m over D

κðm; dÞ Cohen’s kappa for dataset d using model m
�κðmÞ Average Cohen’s kappa for model m over D
BðdÞ Baseline for dataset d (proportion of most populated class in d)
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The NFL applies on the loss function and its average, but on kappa we see
that the value depends on the classifier, m, and, therefore, is not constant.
Furthermore, such value is not well defined, since the baseline, BðdÞ, can be
equal to one (and, thus, the baseline odds remain indeterminate) if all
training examples belong to the same class.

With that consideration in mind, the objective is to model the algorithm
outcomes as a function of the different metrics we implemented in the
previous stage.

As we mentioned in the introduction, two different models will be con-
sidered. First, an explanatory model will be constructed for each algorithm to
determine any kind of significance in the parameters. This will aid us in
understanding which traits have the most impact on each algorithm; the NFL
theorem states that we can’t make any (statistically significant) a priori
distinction between them, but once we start breaking down datasets in
relevant measures, we may start to observe differences.

Our second objective will be to explore how accurate a predictive model
can be in representing an algorithm’s performance. It is fair to say that this is
no trivial task, so a high variance model is expected, but some intuition can
be gained on how much we can improve on trivial guessing (i.e. averaging)
and possible paths of improvement.

Results

Before the exposition of our results, a caveat must be considered: since our
meta-dataset is small, we are forced to use the entirety of it in order to be able to
extract any meaningful conclusions. That, in turn, means that the subsequent
modeling can, and will probably, be contaminated by hypothesis suggested by
the data. Therefore, any insight obtained from the modeling performed has to
be interpreted mostly as working hypotheses for future research.

Dataset metrics

The NFL theorem works under the assumption of a uniform prior over all
datasets: to understand how much we deviate from uniformity on the chosen
datasets, figures with descriptive statistics are included in this section, start-
ing with Figure 1. These shed some light on the kind of assumptions under
which the conclusions of this analysis will hold, namely the following.

● Compared to many practical uses in the industry, the datasets reviewed
are small. The number of instances (n) is on average (�n ¼ 3637) higher
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than the number of attributes ( f , where �f ¼ 27:7) by two orders of
magnitude.

● There is a fairly uniform distribution on class balance, ranging from 0.3
bits of entropy to 4.7. The only exception is a sharp peak slightly under 1
bit entropy distributions, representing (nearly) balanced binary class
datasets. These are very common particular cases in practice that will
have an important representation in the study.

● The inter-attribute correlation is low (Rij ¼ 0:182), matching the expec-
tation that, in practice, redundant attributes are usually avoided.

● Both the attribute–class correlation and their mutual information are
low as well (Ric ¼ 0:178), indicating that useful datasets don’t usually
include trivial relationships between attributes and class. Thus, multi-
collinearity and its detrimental effects will be avoided.

● Both the class and the average attribute have relatively low entropy:

HðcÞ ¼ 1:61 and HðxiÞ ¼ 0:56 bits, respectively.

These traits are usually found in many datasets used in practical applica-
tions, so the conclusions should be applicable to many particular real-world
cases. Not all usual problems are represented, though, since recent machine
learning studies are performed on very large datasets (e.g. millions of examples
or more) using big data infrastructures and state-of-the-art techniques such as
deep learning, which are usually not as effective in more memory-manageable
sets prone to over-fitting. Applications in these cases usually require some
customized fine-tuning to perform well (Ruiz-Garcia et al. 2016).

The dataset uniform distribution required by the NFL theorem holds
partially, as seen in the scatterplots in Figure 2, even if almost all contour
plots (and density estimates) resemble more a radial distribution. The

Figure 1. Boxplot of the different dataset metrics.
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exception is the evident correlated relationship between pmaj and HðCÞ (a
highly populated class implies a more imbalanced dataset and, thus, lower
entropy).
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Figure 2. Scatterplots, density estimation and contour plots of the dataset metrics.
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Evaluation metrics

Besides the metrics we defined for the datasets disregarding the target values,
and since the interest of the study lies in the aggregated performance of
different algorithms on multiple datasets, it is worthwhile to compare differ-
ent alternative measures.

As established before, the “gold standard” measure (for this paper’s pur-
poses) will be the kappa coefficient to evaluate how much the classifiers
improve on random guesses. This kappa needs an implicit “baseline” to be
defined; a popular choice, used here, is to consider the loss of the most
populated class in the dataset, but there are others (Powers 2012). This
measure is considered alongside seven more measures: accuracy, precision,
specificity, F1 score, Youden’s (Youden 1950):

TP : True positive cases; TN : True negative cases
FP : False positive cases; FN : False negative cases
J ¼ TP

TPþFN þ TN
TNþFP � 1

and Matthews Correlation Coefficient (MCC) (Matthews 1975):

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ

p
;

with the last five measures weighted according to each class’s weight.
A class-weighted recall score is not necessary to consider, since it can be

quickly seen that it is equivalent to accuracy. Let C be the set of classes in the
data and fij be the number of instances belonging to class i, classified as class j :

accuracy ¼
P
i2C

fiiP
i2C

P
j2C

fij

recallbin ¼ TP
TPþ FN

recall ¼
X
i2C

fiiP
j2C

fij
wi ¼

X
i2C

fiiP
j2C

fij

P
j2C

fijP
i02C

P
j02C

fi0j0
¼

X
i2C

fii
1P

i02C

P
j02C

fi0j0
¼ accuracy

The algorithms’ evaluation uses the usual classification or zero-one loss, so
the homogeneity required by the NFL theorem applies.

No drastic differences can be observed among algorithms, even if some
subtleties emerge. As a global note for all classifiers, a high correlation is
obvious between almost all of the evaluation measures, sensibly enough.
Later on in this section, we will discuss how these measures are related.
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Moving on to the evaluation metric analysis, the green (highest-scoring)
sets form a denser cluster than the other groups, especially in the random
forest and neural network algorithms. On the other extreme, the red (lowest-
scoring) sets have a very high dispersion among a large range, especially in
the naive Bayes classifier. These observations make sense since there are
more ways to be “wrong” than to be “right,” but that makes it more difficult
to further characterize low-performance datasets.

Among the different classifiers, we can identify three groups comparing
point dispersion and density estimation overlap, most notably in the red and
green dots: naive Bayes as the least defined cloud of points, followed by the
kNN and SVM with a more compact distribution and lastly the random
forest and neural network having the sharpest distinctions.

From a different point of view, a Principal Component Analysis (PCA)
analysis can shed some light on how these measures are related. By reducing
the dimensionality of these seven measures, we are able to project them into
two principal components while being able to explain more than 95% of the
variance of the original points. The results are plotted in Figure 3, and they
are reasonably unanimous on all five algorithms. There are three perfectly
separate groups of evaluation measures, correlation-wise:

(1) Accuracy, precision, F1
(2) Specificity
(3) Kappa, Youden’s J, MCC

Accuracy, precision and F1 all take into account the true positive rate,
ignoring the true negative rate. On the other hand, specificity considers the
true negative rate, while ignoring the true positive rate. Of the third group,
Youden’s J and the MCC take both rates into consideration, explaining their
middle ground between the first and second groups. Less trivial and more
surprising is the fact that the kappa score fits in this third group consistently
among algorithms too. This reinforces the idea that kappa is a better and
more useful metric to evaluate classifiers than accuracy or other single-
faceted estimates.

Dataset metrics grouped by kappa

In this section, we will break down Figure 2 by kappa ranges, in a similar
manner to the analysis performed in the previous section. Just like in the
previous plot, the (pairwise) distributions are much more difficult to analyze
as well. There is not much apparent insight in the point clouds, showing no
clear patterns. In most cases, the Kernel Density Estimation (KDE) for each
of the three kappa ranges (green, blue, red) within the same variable pairs
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Figure 3. Bi-plots of the first two principal components for the evaluation metrics for each
algorithm. The red vectors are the projections of the original metrics onto these components,
and each label represents a dataset in these new coordinates.
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follows very similar marginal distributions, suggesting that no significant
difference exists between the groups.

A dimensionality reduction approach does not work as well here as it did
before. A PCA applied in this case reduces the number of variables from
eight to an average of around six if a significant percentage of explained
variance is desired ( � 95%). This data cannot be meaningfully represented
in a single two-dimensional figure without missing a considerable amount of
information.

A noticeable difference in the pair plot is the correlation KDE for naive
Bayes; unlike the rest of the classifiers, it is shown how naive Bayes is able to
obtain a flatter distribution for the first quartile datasets, implying better
results with higher inter-attribute correlations due to its attribute-indepen-
dence assumption. This contrasts with the rest, which follow a high peak on
low correlations (especially seen in the random forests and neural networks)
and low density on high values.

Datasets

Focusing now on the datasets themselves, an evocative ranking emerges
when comparing the kappa scores individually. Figure 4 plots the intervals
between the minimum and maximum kappa scores for each dataset. It is
remarkable to note the smooth slope followed by the (ordered) means of the
different kappa scores; there are no significant gaps on the whole positive
semi-axis, so we might conclude that the (randomly chosen) sets cover the
whole range of “difficulty.”

A small adjustment had to be made in the particular case of the naive
Bayes classifier. Five outliers were found within the original set of datasets
where the kappa scores were extremely negative; these datasets were called
ThoraricSurgery (actual spelling), hypothyroid, thyroid, sick, coil2000. To find
out the reason for these extreme results, a decision tree (C4.5) was fit: it
turned out that a clear difference of these offending sets was both a high class
imbalance (major class accumulating � 85% of instances) and a very low
mean attribute correlation (< 0.07). According to these results, in these
circumstances, the naive Bayes performs exceptionally poorly, even though a
more comprehensive list of datasets should be compiled to confirm this
conclusion.

It should be noted that this outlier removal was performed on all classifier
simulations in order to preserve comparable results among algorithms.

Outliers aside, another metric of interest for a classifier might be an
estimation on how many datasets perform worse than random chance, that
is, how many sets score lower than zero. Figure 5 shows that the proportion
of such datasets is small, but noticeably different among algorithms. As in
other parts of this analysis, once again two groups can be identified: naive
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Bayes and kNN (12–18%) and SVM, random forests and neural networks
(,5–7%).

With this ranking, one can go further and check, for each dataset, not only
the highest-scoring classifier but also the worst, as in Figure 6. For each
classifier, a count on the number of datasets on which the said classifier scored
the highest over the five models is considered. Moreover, the same is performed
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Figure 4. Dataset ranking, as intervals with the minimum, mean and maximum kappa scores
among the five algorithms used.
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Figure 5. Density estimation for accuracy and kappa for the datasets. In the case of kappa, the
red area represents the proportion of datasets with negative kappa, that is, the times that the
model is unable to outperform a trivial educated guess.
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on the lowest scores and, finally, a ratio highest/lowest (H/L) can be calculated
as the global “reliability” (within the studied sample) of a classifier.

As in previous sections, three separate clusters can be observed this time,
judging by this ratio.

(1) Neural networks and, specially, random forests have excellent global
results, with only a minority of bad cases, obtaining high H/L ratios
( � 1).

(2) Naive Bayes and kNN have a majority of lowest-scoring cases, achiev-
ing low H/L ratios (< 1).

(3) Even though we could group the SVMs under the previous group, it is
interesting to note that SVMs have a significant number of both
highest- and lowest-scoring cases. The end result, though, is a low
H/L ratio as well.

Considering all of these points, we can see that even the globally “worst”
classifiers are still the best in some datasets. This is true even when three of
the models belong to the same expresiveness hierarchy: linear SVMs are
strictly less expressive than random forests, and these are less expressive
than neural networks. However, with the increased degrees of freedom, the
complexity of fitting the model rises as well, so it is less likely to find the

0%

10%

20%

30%

40%
P

ro
po

rt
io

n 
of

 d
at

a 
se

ts

Highest score Lowest score

0

5

10

15

Naive bayes kNN SVM Random forest Neural network Random forest Neural network SVM kNN Naive bayes
R

at
io

Ratio highest/lowest score

Figure 6. Number of highest/lowest kappa scores for each classifier. The left figure indicates the
number of times (normalized to one) a classifier has been the highest (green) and lowest (red)
scoring model. The right figure shows their highest/lowest ratios.
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optimal parameters. That is the reason why, in some cases, linear SVMs
outperform random forests or neural networks: it is a limitation of our
stochastic training procedure. It is almost a certainty that, for each of the
included datasets, there exists a set of weights and biases that would make a
neural network the best-performing classifier in all cases, even if it might be
hard to find using standard back-propagation. Figure 6 (right) suggests that
our training procedure for neural networks is not sophisticated enough to
take advantage of its inherent expressiveness.

The minimums and maximums of Figure 4 have been mentioned, but the
variance between algorithms for each dataset can explain something about
their global performance too. If one interprets this dispersion as the “agree-
ment” on the inference difficulty, it might be worthwhile to explore the
circumstances and reasons for the disagreement. Ordering the datasets by
this variance and estimating the density (weighted by the total number of
cases) of highest- and lowest-scoring results for each of them, we get Figure 7.

Starting with the highest-scoring densities, a clear negative skew is evident
in the random forests, indicating that they work better than the rest on
disputed datasets. This has been observed in other studies (Niculescu-Mizil
and Caruana 2005) of ensemble classifiers: the votes of different trees are
more helpful to reach a decision on a difficult dataset than a single classifier.
On the other hand, SVMs seem to be skewed the other way, while the rest
seem fairly uniform.
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Figure 7. Representation of the (weighted) distribution of the worst (left figure) and best (right
figure) performing algorithms according to the variance between the results of the five of them:
the datasets with more accuracy/kappa agreement between algorithms lie on the left, whereas
the ones with more disagreement are on the right side of the horizontal axis.
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Moving to the lowest-scoring cases, the most peculiar aspect is how the
naive Bayes and the kNN complement each other. Being the classifiers with
the lowest average performance, it is interesting to see that naive Bayes has a
worse result when there is a very low or very high disagreement, whereas
kNN is more problematic with a medium amount of variance. SVMs remain
mostly flat, whereas both random forests and neural networks have too few
points (five) to extract meaningful conclusions.

Predictive modeling

One final way that we can determine the impact of each metric into the result
is by modeling each algorithm’s evaluation measure as a function of the
dataset metrics. In the first place, the focus will be on figuring out the
statistically significant coefficients (α ¼ 0:05) and, second, consider the effect
by examining the 95% confidence interval.

A total of 40 models (eight evaluation metrics for each of the five algo-
rithms) will be trained, so in order to keep a fair bound on false positives, a
multiple comparison p-value adjustment, Holm–Bonferroni correction
(Holm 1979), will be applied. A common, yet unsurprising, theme among
all classifiers (with the arguable exception of random forests) is the signifi-
cance of the mean attribute–class correlation for all evaluation metrics.
Accuracy, precision, specificity, recall and F1 for all classifiers have Ric

around 0.6, whereas kappa, Youden’s J and MCC roughly double that
value. This is consistent with the fact that the former metrics have values
ranging from 0 to 1, whereas the latter range from –1 to 1, twice as large.

Since correlation has a range of 1, assuming linearity we can say that for
each 0.1 change in Ric in average, we can obtain an increment of 0.06 in the
evaluation. That is not an insignificant improvement, but a 0.1 increase in
correlation is no small change either.

Another recurring significant dataset metric is logn. It is significant in all
evaluation metrics in kNN and random forests, as well as in some measures
of neural networks. The effect is questionable, though, as an increase of 1 in
logn (i.e. increasing the number of instances tenfold, an increasingly difficult
task to achieve) produces an average increase of 0.13. This is an interesting
conclusion to note, but probably impractical for real applications. As for
naive Bayes and SVMs, this metric is not really significant in any case.

Other effects are more surprising. For example, the intercept for almost all
models is nonsignificant except for specificity. This fact occurs in all classi-
fiers, so it is unlikely to be a coincidence. In addition, the metric on class
imbalance, pmaj, appears as significant in some cases too, impairing the
model the more imbalanced it is. This is especially observed in the kappa
evaluation on naive Bayes classifiers, with a coefficient of 1.8, large when
compared to the rest.
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Conclusions and future work

We have discussed five widely used classifiers, which were tested on a decent
variety of datasets in order to learn more about the optimal circumstances
under which they should be used, all by using EDA. A follow-up experiment
was also carried out to perform a statistical characterization of real classifica-
tion practices, with some insight on some differences between algorithms.

Further predictive models were also developed, but results imply that,
unfortunately, the available data are not sufficient to extract significant
conclusions this way, differing little from random guessing. To be able to
narrow down the variance on the output, and thus obtain accurate predic-
tions, more sophisticated models and more data to feed these models would
be necessary.

A further development along the lines of this analysis would be to come up
with novel ways to describe the dataset with other summarizing metrics.
Desirable properties these metrics should have include density of informa-
tion, lightweight computation and easy interpretation, among others.

Another evident extension to this work is the opportunity to replicate
these results with more and/or larger datasets. A more extensive sample
would increase the statistical power of a regression model to describe the
relationship between evaluation metrics, whereas larger datasets would be
representative of other kinds of widely used applications such as big data
environments.

This is not only a mere matter of scale; some classification algorithms,
particularly ensembles, usually don’t have a stellar performance unless
trained with a sufficient amount of data. The differences are not only of
magnitude, but new behaviors can also emerge for these sets, which can
drastically change the output.
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