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Abstract
In many cases, the determination of the measurement uncertainty of complex nanosystems 
provides unexpected challenges. This is in particular true for complex systems with many 
degrees of freedom, i.e. nanosystems with multiparametric dependencies and multivariate 
output quantities. The aim of this paper is to address specific questions arising during the 
uncertainty calculation of such systems. This includes the division of the measurement 
system into subsystems and the distinction between systematic and statistical influences. 
We demonstrate that, even if the physical systems under investigation are very different, the 
corresponding uncertainty calculation can always be realized in a similar manner. This is 
exemplarily shown in detail for two experiments, namely magnetic nanosensors and ultrafast 
electro-optical sampling of complex time-domain signals. For these examples the approach for 
uncertainty calculation following the guide to the expression of uncertainty in measurement 
(GUM) is explained, in which correlations between multivariate output quantities are captured. 
To illustate the versatility of the proposed approach, its application to other experiments, 
namely nanometrological instruments for terahertz microscopy, dimensional scanning probe 
microscopy, and measurement of concentration of molecules using surface enhanced Raman 
scattering, is shortly discussed in the appendix. We believe that the proposed approach 
provides a simple but comprehensive orientation for uncertainty calculation in the discussed 
measurement scenarios and can also be applied to similar or related situations.
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1.  Introduction

The Guide to the Expression of Uncertainty in Measurement 
(GUM) was published in 1995 to provide a well defined and 
mathematically sound procedure for the determination of mea-
surement uncertainty as an essential part of every measurement 
result in general [1]. It has become the standard procedure 
for all measurements performed in metrology institutes and 
accredited calibration laboratories and is increasingly in use 
in research institutes, universities and industry. It serves as 
well as the basis for accurate process control and thus quality 
management in industrial production. In the meantime it has 
been extended by two supplements to clarify and extend its 
methodology for situations where Monte Carlo simulations 
are applied for the propagation of probability distributions 
(Supplement 1) [2] or a larger number of output quantities is 
dealt with (Supplement 2) [3].

Although the GUM and its supplements cover many 
experimental scenarios, uncertainty propagation for complex 
nanosystems is still challenging. This is mainly because the 
measurement system, consisting of the instruments and the 
investigated nanosystem, provide a huge number of input 
and output parameters and are very difficult to model [4]. 
Moreover, correlations in such multivariate problems might 
significantly influence uncertainty propagation and, thus, need 
to be considered during data analysis.

Yet, complex multiparametric measurement scenarios 
where correlations play an important role can often be sim-
plified such that uncertainty propagation can be performed 
with an acceptable effort. This will be demonstrated in this 
paper. This work is the result of discussions in the Research 
Training Group GrK1952/1 ‘Metrology for Complex 
Nanosystems’ of the Deutsche Forschungsgemeinschaft 
(DFG), where all participating projects deal with the 
determination of the measurement uncertainty of complex 
nanosystems.

The remainder of this paper is structured as follows. In 
section 2 we outline the methodical approach which includes 
the discussion of the modified Ishikawa diagrams and the 
propagation of uncertainties following the GUM. After that, 
we describe a detailed application of the aforementioned 
method for magnetic nanosensors and ultrafast electro-optical 
sampling of complex time-domain signals in section 3. This 
includes a full analysis of the uncertainty propagation. Finally, 
conclusions are given in section 4. To explain the presented 
approach in more detail, we discuss three additional appli-
cations (nanometrological instruments for THz microscopy, 
dimensional scanning probe microscopy and measurement 
of concentration of molecules using surface enhanced Raman 
scattering) in the appendix, where we schematically describe 
important parameters for uncertainty propagation.

2.  Methodic approach for uncertainty calculation  
of complex systems

Conventional methods to determine measurement uncer-
tainty may only be applied to a certain set of problems. If a 
measurement system reaches a certain degree of complexity, 
the methods need to be modified or a completely different 
approach must be chosen. In order to be able to judge the com-
plexity of a system a number of measures and criteria will be 
introduced here.

As a very basic definition, a complex system is something 
that is neither easy to model, nor easy to manufacture. This 
places it somewhere between completely ordered (easy to 
model, possibly difficult to manufacture) and completely dis
ordered (easy to manufacture, difficult to model adequately) 
[5]. General criteria that are also relevant in the determination 
of measurement uncertainty are described in more detail in the 
literature [6]:

	 •	A property requiring a novel approach is the nonlinearity 
of a system. Nonlinearity means that the superposition 
principle for input and output quantities on which the 
classical approach of the GUM relies is no longer valid. 
If a nonlinear system can not be sufficiently linearized 
in its operating point, a Monte Carlo approach must be 
chosen [2].

	 •	Another criterion is the consideration of feedback mech
anisms, which means that output quantities not only rely 
on input quantities, but also on output quantities of pre-
vious states of the system. In this case the dependence of 
the output parameters on the input parameters of a system 
cannot be described in an analytical way.

	 •	A related property of complex systems which can com-
plicate uncertainty calculations, is called emergence and 
essentially describes complex properties that a system 
exhibits caused by a high number of physically describ-
able processes. An example of this is magnetic hysteresis 
resulting from the behaviour of magnetic domains. While 
a model, which gives a sufficient accuracy for the desrip-
tion of the magnetization of a macroscale (ferro-)magnet 
exists, the microscale structure of magnetic domains 
is never the same during different magnetization and 
demagnetization cycles of a given material.

2.1.  Modified Ishikawa diagrams

Ishikawa diagrams were created in 1968 by Kaoru Ishikawa, a 
Japanese organizational theorist, as cause-and-effect diagrams 
which describe the causes of a specific event [7]. They are 
commonly applied in product design and quality defect pre-
vention to identify potential factors causing an overall effect. 
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The standard ISO 9004-4 gives the following description: ‘A 
cause-and-effect diagram is used to analyze cause-and-effect 
relationships; to communicate cause-and-effect relationships; 
and to facilitate problem solving from symptom to cause to 
solution’ [8].

Ishikawa diagrams start with a horizontal arrow, the main 
bone. Major categories of possible causes are represented 
using new arrows pointing to the main bone to identify the 
influences of the causes on the event. Factors to be consid-
ered in this process include data and information systems, 
environment, equipment, materials, measurements, methods, 
and observer [8].

From a metrology point of view, Ishikawa diagrams are a 
compact way to identify, illustrate and structure the effects 
of input quantities on an output quantity, which usually is 
the measurand of interest, and then facilitate the creation of 
the uncertainty budget for the measurement result.. Also the 
expression of system equations in mathematical form is facili-
tated. However, for a complex system, an Ishikawa diagram 
may have a large number of causes. Many contributing input 
parameters exist, for which the uncertainty propagation is typ-
ically very complicated. In order to simplify such systems and 
to gain a better understanding of such systems, a breakdown 
of the system into independent subsystems is desirable.

With the separation of the block diagram (figure 1) into 
systematic influences (subsystems above the main bone) 
and statistical influences (subsystems below the main bone), 
uncertainty propagation can be performed in a straightforward 
way. Error sources can be distinguished by their observed or 
expected behaviour. While statistic errors behave in a non-
deterministic way and can not be predicted, systematic errors 
are expected to be the same for a specific set of input condi-
tions. Statistical influences can be identified through repeated 
measurements, systematic errors through comparison meas-
urements with different setups or devices. The systematic influ-
ences are captured by the system equation  (see section 2.2) 
and the statistical influences are captured by assigning a best 
estimate and an uncertainty (or probability density function) 
to the input quantities. The uncertainty can either be obtained 
from repeated measurements (Type A uncertainty) or from 

scientific judgment based on other information, such as man-
ufacturer’s specifications or calibration certificates (Type B 
uncertainty) [1].

2.2.  System equation

To propagate uncertainties from input variables to an output 
quantity, an equation  for the system is needed. This system 
equation  is also referred to as measurement model and 
describes the influence of all uncertainties of the input vari-
ables on the output quantity in an analytical way. For most 
systems this equation can be derived from the Ishikawa dia-
gram. Yet, for complex systems this approach cannot be made 
intuitively because of the many parameters which have to be 
taken into account.

In the approach described in section 2.1 it is necessary to 
modify the Ishikawa diagram in a way that its subsystems are 
independent of each other. Under this condition it is possible 
to calculate the uncertainty of every subsystem hi indepen-
dently and combine these uncertainties to the uncertainty of 
the main output quantity Y  being related to the input variables 
Xi through the system equation

Y = f ′ (h) = f (X)� (1)

with

Y = (Y1, . . . , YN)
T

h =
(
hT

1 , . . . , hT
K

)T

f ′ = ( f ′1, . . . , f ′N)
T

X = (X1, . . . , XM)
T

f = ( f1, . . . , fN)
T .

� (2)

Hereby, f  describes the system equation as a function of the 
input quantities, while f ′ is a function of the uncorrelated sub-
systems (see figure 1).

The division of the whole system into independent subsys-
tems makes the calculation less complex and less time con-
suming. Yet, it still captures the main influencing factors and 
preserves the calculation of correlations in the output quantity 
since the best estimate of Y  and its covariance matrix will be 
obtained. The calculation can be executed in two ways. Both 
of these techniques will be briefly described in the following.

2.3.  Propagation of measurement uncertainty using  
covariance matrices

The algebraic method using covariance matrices poses some 
demands on the model [1]. The first condition is that the model 
is either linear or can be linearized in the working point using 
a Taylor series. Usually, the latter condition requires small 
uncertainties for the input parameters. The other requirement 
focuses on the probability density function (PDF). This func-
tion is restricted to symmetric and common PDFs [1].

The best estimate of Y  is obtained from (1) using the best 
estimates of the input variables. The covariance matrix of Y  
is given by

Figure 1.  Block diagram with different subsystems and separation 
into systematic and statistical influences. The system equation  f  is 
a vector function which maps the multivariate input quantities (X) 
onto the multivariate output quantities (Y). The hi represent the 
system equations of the subsystems having systematic influences 
on Y .
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UY =




u(Y1, Y1) · · · u(Y1, YN)
...

. . .
...

u(YN , Y1) · · · u(YN , YN)


� (3)

with the diagonal and the off-diagonal elements denoting the 
variances u(Yi, Yi) and covariances u(Yi, Yj), respectively, of 
the variables of Y . The covariance matrix can be calculated 
with the following generalized expression [3]

UY = CXUXCX
T� (4)

where CX is the sensitivity matrix with the dimension (N × M) 
and is given by

CX =




∂f1
∂X1

· · · ∂f1
∂XM

...
. . .

...
∂fN
∂X1

· · · ∂fN
∂XM


 .� (5)

The covariance matrix of the input variables UX  will be 
obtained from repeated measurements of the input variables. 
In this way the statistical influences on the measurement pro-
cess will be captured. For the special case of non-correlated 
subsystems, UX  can be separated into a block-diagonal form, 
where the diagonal matrices correspond to the covariance 
matrices of the subsystems:

UX =




Uh1 0 · · · 0
0 Uh2 · · · 0
...

...
. . .

...
0 0 · · · UhK


 .� (6)

An example for uncertainty propagation using this tech-
nique will be given in section 3.1. Yet, to better visualize cor-
relations we will focus on the correlation matrix RY  rather 
than the covariance matrix UY. The indices of the correlation 
matrix are obtained from

RY i,j =
UY i,j

σiσj
� (7)

with σ denoting the standard deviation of Y . The values of the 
correlation matrix always lie in the interval [−1,1].

For multivariate output quantities the specification of 
coverage intervals is not as easy as for a single scalar output 

quantity [3]. This is because a region RY  in the N-dimensional 
space of the output quantity Y  is required such that the prob-
ability that Y  lies in RY  is equal to the specified coverage 
interval. Once the PDF of Y  is known, the coverage prob-
ability for a specified coverage interval can be obtained. This 
is straightforward for a Gaussian PDF, but numerical methods 
such as Monte Carlo calculations are required for other PDFs 
[3].

2.4.  Propagation of measurement uncertainty using Monte 
Carlo simulations

In general, the Monte Carlo method describes a numerical 
procedure to solve equations  by utilizing large numbers of 
computer generated random samples. In the field of uncer-
tainty analysis, the Monte Carlo method is applied to calculate 
the probability density function of model systems (gY) from 
the probability density functions (gX1 , . . . , gXM ) of the asso-
ciated input parameters, see figure  2. The advantage of the 
Monte Carlo method is that it is applicable for arbitrary input 
probability distributions even in cases of nonlinear system 
equations.

The procedure to employ the Monte Carlo method is 
described in GUM Supplement 1 [2] and extended in GUM 
Supplement 2 [3] for an arbitrary number of output param
eters including a full correlation treatment [9, 10] and can be 
summarized in the following five steps:

	 (i)	Definition of model equation and input quantities.
	(ii)	Derivation of a multivariate probability distribution for 

all input quantities (X1, …, XM).
	(iii)	Drawing a certain number of trials from the joined PDF.
	(iv)	Evaluate the model equation for each sample.
	(v)	Calculate the expectation values, uncertainties, etc.

The disadvantage of this method is that it requires exten-
sive number of evaluations of the system equation (e.g. GUM 
Supplement 1 advised 200 000 Monte Carlo trials for 95% 
confidence). Especially for cases which include numerical 
expensive algorithms or for complex systems with many cor-
related input quantities, Monte Carlo simulations will not 
easily converge after a practicable period of time. One way 
to overcome this is by utilizing more adaptive methods [11] 
to determine the required number of Monte Carlo trials and 
effectively reduce the number of Monte Carlo runs.

The expanded uncertainties are typically specified by the 
corresponding coverage intervals (i.e. 95% coverage interval) 
derived directly from the PDF of the output quantity.

3.  Applications

In this section, we demonstrate two detailed applications for 
the methods which were presented in the previous section. The 
starting point for both applications is the Ishikawa diagram 
which describes the influences of all input quantities on the 
multivariate output quantities. We explicitly discuss the sim-
plification of the Ishikawa diagrams to block diagrams which 
have a considerably reduced complexity and are separated 

Figure 2.  Scheme for the propagation of the probability density 
function. Here, gX1 , . . . , gXM and gY1 , . . . , gYN  correspond to the 
probability density functions of the input quantities and the output 
quantities, respectively.
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into systematic and statistical influences. From this, we cal-
culate the best estimate, its uncertainty and the associated cor-
relation matrix of multivariate output quantities for the two 
methods. Hereby, the required system equations  to account 
for systematic influences are derived from the corresponding 
block diagrams. In the first subsection, we demonstrate the 
method for a magnetic nanosensor as an example of a sensor 
in frequency-domain. We linearize the derived system equa-
tion in order to directly utilize equation (4) for the propaga-
tion of the covariance matrix. Second, we illustrate results for 
ultrafast electro-optical sampling of complex time-domain 
signals using Monte Carlo simulations. In this case, no linear-
ization of the system equation is required but the multivariate 
PDF of the input quantities, which might include correlations, 
have to be known. In addition, three more applications for dif-
ferent sensors are discussed in the appendix.

In the following, lower- and upper-case variables denote 
time- and frequency domain signals, respectively, with the 
time and frequency dependence being taken as implicit. This 
differs from the notation used in section 2, where only upper-
case variables have been used.

3.1.  Magnetic nanosensor

The magnetic noise versus frequency of a magnetic nano-
sensor is analyzed as the output quantity, which is also referred 
to as magnetic flux density noise. Magnetic nanosensor is a 
term for miniaturized magnetoresistive (MR) sensors. MR 
sensors, like anisotropic magnetoresistance (AMR), giant 
magnetoresistance (GMR) and tunneling magnetoresistance 
(TMR) are types of magnetic field sensors that are widely 
used and commercially available. This is because of their low 
price, small dimension and—compared to hall sensors—the 
high signal-to-noise ratio [12, 13]. In spite of that, the noise 
characteristics of these sensors and also the dependence of 
the noise characteristics on the manufacturing process are not 
completely known. Especially the 1/f-noise characteristics are 
rather unexplored, but very important, because the magnetic 

noise S1/2
B  determines the detection limit [12]. The measure-

ment unit is T/
√

Hz . It is a combination of a sensitivity mea-
surement (V/T) and a voltage noise measurement (V/

√
Hz). 

A high sensitivity and a low intrinsic voltage noise are desir-
able and lead to a high signal-to-noise ratio. In particular, the 
1/f noise of GMR and TMR sensors are severe limitations, 
which influence the application significantly.

A very sensitive characterization system for AMR, GMR, 
and TMR sensors was developed in [14]. It facilitates the 
opportunity of noise measurements of different temperatures 
and magnetic bias fields. Thus it is possible to increase the 
knowledge about 1/f noise sources in MR sensors. But noise 
measurements themselves are a very complicated and critical 
measurement task. It is not possible to measure the intrinsic 
noise alone. The noise measurement always contains a combi-
nation of different noise sources: the noise of the sensor itself, 
the noise of the measurement electronics and environmental 
influences. It should be ensured that the intrinsic sensor noise 
is much higher than the other influences. Therefore, much 

experience about noise and intrinsic noise sources in elec-
tronics is necessary. Additionally, the sensor noise depends on 
the working point and the condition of the sensor. Parameters 
like temperature, thin film magnetization and bias field have 
to be taken into account and to be controlled very carefully. 
Typically, the sensor behaviour is nonlinear. In the working 
point, the sensor behaviour can be linearized and many non-
linear dependencies are negligible.

Also, the 1/f noise measurement result is difficult to eval-
uate. It is not generally possible to predict the influences of the 
manufacturing on the result with magnetic and electric simu-
lations. In addition, there is no 1/f noise standard available, 
which could be used at low frequencies to quantify the results 
of the measurement system.

Therefore, it is a very important task to elaborate the meas-
urement uncertainty of magnetic noise measurements with the 
aid of the GUM. The measurements are influenced by many 
other factors like temperature, offset, input noise sources etc 
[14]. Influencing quantities of the corresponding measure-
ment are collected in an Ishikawa diagram, see figure 3(a). In 
this figure it is shown that the magnetic noise is a combination 

Figure 3.  (a) Ishikawa diagram and (b) block diagram for the 
magnetic noise of the magnetic nanosensor.
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of a sensitivity measurement and a noise measurement. These 
measurements are separated in subsystems and are evaluated 
independently. This is possible, because the noise measure-
ment and the sensitivity measurement are analyzed in the 
same working point (bias field, temperature) and the sensi-
tivity behavior is assumed to be linear in this working point. 
The sensitivity measurement can be separated into the magn
etic field generation and the sensor output measurement. 
These systems are also independent.

The noise measurement can be separated into four sub-
systems. The external spectrum analyzer (Agilent 35670A) is 
assumed to be negligible because of the high input impedance, 
the intrinsic calibration system and the dynamic range adjust-
ment. The influence of the environment is suppressed signifi-
cantly with the aid of the temperature and shielding system. 
It can also be modeled as an independent system. A problem 
is the interaction between the sensor and the first amplifier 
stage. The intrinsic noise sources of the amplifier (voltage and 
current noise) superimpose the intrinsic noise of the sensor. In 
spite of that, the systems are separated into different and inde-
pendent subsystems. This is possible, because there are good 
models to distinguish the influences very accurately [15].

Our formulated method presents not only the separation 
of the whole system into different subsystems, but also the 
Ishikawa diagram is simplified to a smaller diagram (section 
2.1) which is used to derive the system equation. Therefore, a 
first approach can be the determination of the largest system-
atic and statistical influences.

These quantities are shown in the block diagram in 
figure 3(b). At first view, it seems curious that noise is arranged 
at systematic influences in the upper area of the diagram. Here, 
the systematic frequency characteristics of noise is meant, 
which is contained in the measurement result. It can be meas-
ured independently of the sensor sensitivity because of the 
previously explained measurement condition. Additionally, 
the intrinsic noise sources of the amplifier are systematic influ-
ences with a strong contribution to the output quantity. These 
different input quantities are used to deduce the output equa-
tion. The statistical influences are collected in the lower side 
of the diagram. These influences are difficult to capture and to 
model. The influences of these quantities were suppressed with 
the aid of the measurement system. The remaining uncertain-
ties are captured by repeated measurements.

The output quantity of interest is the magnetic noise versus 
frequency, which is also referred to as magnetic flux density 

noise S1/2
B  and is given by

S1/2
B =

√
Smeas,V − SAmp,V − SAmp,RI

SSens
.� (8)

The system equation  is deduced from the block diagramm 
(figure 3(b)). Here, Smeas,V  is the voltage noise of the nano-
sensor and the scalar SSens denotes a frequency independent 
sensitivity factor. The amplifier used to amplify the nanosen-
sor’s signal has two noise contributions which need to be 
accounted for SAmp,V  is the input voltage noise and SAmp,RI  
is the noise resulting from the input current. The frequency 
dependent values are taken from the datasheet [15] (Type B).

3.2.  Uncertainty propagation for the magnetic nanosensor

We now present a way to calculate the best estimate and the 
corresponding uncertainty for magnetic nanosensors utilizing 
the covariance matrix formalism introduced in section  2.3. 
The measurements were performed on an AMR sensor of 
Sensitec GmbH [16].

The best estimate of Smeas,V  and its covariance matrix 
were obtained from repeated noise measurements in the 
frequency range from 10 Hz to 3.2 kHz. Thirty noise traces 
(each averaged 100 times) and 30 sensitivity measurements 
were recorded and analyzed. Therefore, the corresponding 
uncertainty contributions are Type A contributions. This data 
was merged in the covariance matrix of the subsystems using 
equation (6).

The semitransparent color in figure 4(a) denotes the best 
estimate  ±  the expanded uncertainty [1] with a coverage 
factor k  =  2 such that a 95% confidence level is obtained. 
The white noise characteristic is observable in the higher 
frequency region. In the lower frequency band, the 1/f noise 
dominates and a frequency dependent characteristic of the 
sensor noise is obtained. It is known that the uncertainty of 

Figure 4.  (a) Best estimation of voltage noise and magnetic noise 
of an AMR sensor (Sensitec AFF755 [16]) in dependence of 
frequency. The semitransparent color denotes the 95% confidence 
interval. (b) Corresponding correlation matrix.
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voltage noise measurements increases for lower frequencies 
which is caused by the time scale. For low frequencies, only a 
few values contribute to the result. Usually, a further measure-
ment with a smaller frequency limit would be recorded and a 
merged spectrum would be shown. Then frequencies smaller 
than 100 Hz would be replaced with a more representative 
measurement. We decided to renounce on this since this is not 
required for the general discussion of noise measurements.

The covariance matrix was calculated from (6) and the 
covariance matrix of the output quantity was obtained with 
equation (3). This matrix was normalized (correlation coeffi-
cient) by a division with the product of the standard deviation. 
Here, the correlation coefficient matrix is a good concept to 
evaluate the noise measurement (figure 4(b)). The white noise 
which is located in the high frequency range is not correlated. 
The 1/f noise is dominating in the small frequency range. The 
correlation of 1/f noise is still an important research subject 
and not completely understood. But the mathematical model 
and the calculated cross correlation show a nonlinear and 
decayed behaviour [17]. So, a linear correlation would not 
be expected. In contrast, disturbing signals like drift signals 
and electromagnetic signals may be correlated. Altogether, the 
correlation coefficient matrix allows further evaluation of the 
result.

The correlations between the different frequency points are 
visualized by the correlation matrix in figure 4(b). While the 
frequency scale of the matrix is logarithmic, the color scale 
itself is linear. Although the diagonal elements of the correla-
tion matrix are always one, this relationship is not apparent 
from figure 4(b) due to the finite pixel width of the plot and the 
logarithmic frequency scale. Significant correlations are vis-
ible in the off-diagonal elements of the matrix with absolute 
values of up to 0.4 and a small systematic pattern is visible 
at low frequencies (where 1/f noise dominates). This is not 
caused by the correlation of the intrinsic noise of the sensor. 
It is a measurement artifact which is caused by the changing 
DC-level of the output signal in connection with the limited 
number of measurement points in the low frequency range. It 
is another indication for the complexity of noise measurement. 
Further measurements on larger time scales are necessary to 
replace this area as explained before. At higher frequencies 
(where white noise dominates) the correlation between the 
different frequency points is stochastically distributed.

3.3.  Ultrafast electro-optical sampling of complex signals in 
time domain

The laser-based sampling of complex time-domain voltage 
signals, representing the output quantity under study, is 
realized by employing a femtosecond laser and a so-called 
pump-probe technique. With this technique the voltage sig-
nals propagating on transmission lines such as coplanar 
waveguides and comprising several thousand data points 
can be detected with a bandwidth exceeding 1 THz [18, 19]. 
Uncertainty propagation for these signals requires elaborated 
signal processing algorithms [20]. In particular, the accurate 
consideration of correlations between the several thousand 
data points is a challenging task [21, 22]. This is obvious since 

a correlation matrix of 1000 input variables has 1 000 000 data 
points and several million measurements are required for a 
full-rank correlation matrix.

While the generation and detection of ultrashort voltage 
pulses can be accomplished without the involvement of nano-
structures, recent work focuses on the usage of semiconductor 
nanostructures for the quantitative detection of electric fields. 
This establishes the link between electro-optic sampling 
(EOS) and nanosystems.

The Ishikawa diagram of the electro-optic sampling tech-
nique is shown in figure  5(a). The output quantity is influ-
enced by systematic and statistic effects with three main 
causes: the femtosecond laser, optical components, and elec-
tronics. Starting from this Ishikawa diagram we separate influ-
encing factors contributing to the time trace of an ultra-short 
voltage pulse into systematic and statistical influences. Both 
groups can be divided into uncorrelated subsystems. This sim-
plified Ishikawa diagram is presented in the block diagram 
figure 5(b).

The stochastic uncertainty contributions may be quantified 
by multiple measurements while keeping the experimental 
configuration constant. The main systematic influences are 
the measured voltage pulses. This subsystem includes several 
measurements as noted below. Independent from that, we can 
identify a systematic error which arises from a varying time 
base and a varying intensity of the measurement signal for 
different sampling times. This influence forms the subsystem 

Figure 5.  (a) Ishikawa diagram and (b) block diagram for the time-
domain voltage pulse obtained from the electro-optical sampling 
technique.
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EOS-reference signal. The last subsystem (EOS-transfer func-
tion) is an error contribution which results from light-substrate 
interaction and a finite pulse width of the probe beam acting as 
a low-pass filter and, thus, leading to a broadening of the ultra-
short voltage pulse. This process is described by a convolution 
with an electro-optic transfer function.

These systematic influences can be corrected, if their influ-
ence on the output quantity is known (although the uncer-
tainty of the correction might have an influence on the output 
quantity). The associated system equation to remove the sys-
tematic influences and to calculate the time trace of an ultra-
short voltage pulse v as derived from the block diagram in 
figure 5(b) is given by

v = F−1
(
F(vmeas/vref) (ω)

HEOS · (1 + Γ)

)
(t).� (9)

A detailed derivation of the system equation and an explana-
tion of the input quantities is given in [19]. Here, we only 
briefly discuss the input quantities and the relation to the 
subsystems in the block diagram. First, the measured voltage 
pulse vmeas is normalized by the EOS-reference signal vref  in 
time domain.

After that the normalized pulse is deconvolved with the 
EOS-transfer function HEOS. This is done in frequency-
domain by utilizing the Fourier transformation (F ). Finally, 
we have to account for multiple reflections of the measured 
voltage pulse. The calculation of the reflection coefficient Γ 
requires the measurement of several voltage pulses and is 
presented in detail in [19]. Again, the deconvolution of the 
normalized voltage pulse with the reflection coefficient is exe-
cuted in frequency-domain.

3.4.  Uncertainty propagation for ultrafast electro-optical 
sampling

To obtain the time trace of an ultra-short voltage pulse prop-
agation on a coplanar waveguide the system equation  (9) is 
employed. The corresponding uncertainty propagation is per-
formed by the Monte Carlo simulation described in the sec-
tion 2.4. The reason for using the Monte Carlo algorithm is 
that the system equation  includes deconvolution operations 
utilizing the Fourier transformation. For this case a direct 
uncertainty propagation with the covariance matrix is more 
complex and demanding than the Monte Carlo approach.

The mean value and the standard deviation of the measured 
voltage pulse vmeas is calculated from multiple measurements 
under constant experimental conditions. From this, the PDF 
is estimated using a t-distribution. The reference signal vref  is 
measured by applying a constant external bias to account for 
intensity changes of the optical probe beam for different sam-
pling times. Since the temporal shape of vref  can be described 
using few parameters (see [19]) the complete covariance 
matrix can be estimated. Hence, the Monte Carlo realizations 
for vref  are drawn from a multivariate normal distribution.

To account for the electro-optical transfer function HEOS, 
we divide the normalized voltage pulse by the electro-optic 
transfer function in frequency-domain which acts as a decon-
volution operation. Correlations between HEOS and the 

measured voltage pulse are neglected so that we can treat 
the uncertainty of the transfer function in an independent 
subsystem.

Furthermore, we have to consider the multiple reflections 
of the measured voltage pulse with the help of the reflection 
coefficient Γ. The equation  to calculate the reflection coef-
ficient Γ (see [19]) uses voltage pulse measured at different 
positions on the coplanar waveguide. Therefore, the t-distrib-
uted Monte Carlo realizations from vmeas are used to calculate 
the PDF of the reflection coefficient.

Uncertainty contributions arising from instruments like 
lock-in amplifiers and signal generators are much smaller than 
the uncertainties described above and are therefore neglected. 
Thus, all uncertainty contributions are obtained from repeated 
measurements and only Type A uncertainties appear in the 
uncertainty analysis in this subsection.

As a result, we receive a multivariate PDF for the voltage 
pulse vector v. The mean value and correlation matrix of these 
output quantities can be directly calculated from this mul-
tivariate PDF, see figure  6. The best estimate in figure  6(a) 

Figure 6.  (a) Best estimate of the calculated ultrashort voltage 
pulse v according to equation (9). Systematic influences which alter 
the shape of the pulse have been removed. The semitransparent 
color denotes the 95% confidence interval. This interval is so small 
that it only becomes visible at the peak of the voltage pulse. (b) 
Corresponding correlation matrix.
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displays an ultrashort voltage peak at 25 ps with a pulse width 
of approximately 2 ps. The semitransparent color in figure 6(a) 
denotes the 95% confidence interval as directly obtained from 
the Monte Carlo calculations.

The corresponding correlation matrix is shown in 
figure 6(b). Again, we focus on the correlation matrix rather 
than on the covariance matrix to better visualize correla-
tions. Significant correlation values can be observed along the 
axes at 25 ps, emphasizing the influence of the main peak on 
voltage values at other time instances. This behavior can also 
be observed for smaller voltage pulses for example at 105 ps 
resulting in a certain pattern of the correlation matrix.

4.  Conclusions

In order to find a best estimate and the corresponding uncer-
tainty of a multivariate output quantity, it is often useful to 
reduce the level of complexity of the system, while simultane-
ously considering correlations in input and output quantities.

Here, we presented a new approach for the conversion of 
rather complex Ishikawa diagrams into simple block diagrams 
by dividing the system into subsystems and distinguishing 
between systematic and statistical influences. The block dia-
gram allows for the uncertainty calculation according to GUM 
and captures correlations in the output quantity.

It should be emphasized that correlations in multivariate 
output quantities are always important if the output quantity 
serves as an input quantity for other calculations, i.e. in case 
of uncertainty propagation. Another equally important issue is 
the calculation of single parameters from a multivariate output 
quantity. In such a case, correlations might have a significant 
influence on the resulting single parameter. An example for 
such a case is the temporal width of the voltage pulses dis-
cussed in section 3.2. Correlations in the covariance matrix of 
the voltage pulse might significantly change the uncertainty of 
the temporal width.

Despite the specific examples given in this work, the pre-
sented guidelines will also be applicable to other laboratory 
setups and experiments, three of such additional examples are 
shortly discussed in the appendix. Thus, we are confident that 
our work will be helpful for other groups working on uncer-
tainty evaluation of complex nanosystems for which correla-
tions in multivariate input and output quantities occur.
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Appendix

A.1.  Nanometrological instrumentation for THz-microscopy

The THz microscope [23, 24] uses a Josephson cantilever 
[25] together with a positioning system to measure the spatial 

power distribution of high-frequency electromagnetic radia-
tion up to the THz regime. The sensor is called a Josephson 
cantilever due to the fact that the Josephson effect of the high-
temperature superconductor YBa2Cu3O7 is used to generate 
unique IV-characteristics [26]. These IV characteristics are 
the output quantity for the determination of the measurement 
uncertainty. When high-frequency radiation couples into the 
cantilever, the IV characteristics change such that the power 
and the frequency of the radiation can be calculated [27].

An IV characteristic is recorded at each spatial position 
and three dimensional visualizations of the power distribution 
of the radiation can be generated [28]. Samples operated at 
high frequencies can be examined as well as passive elements. 
For this, a FIR laser can be used as THz source [29].

An overview of the influencing factors on the measure-
ment uncertainty of the IV characteristics is given in the 
Ishikawa diagram in figure  A1(a). The superconducting 
Josephson cantilever is not thoroughly describable by a single 
model as the effect of superconductivity for high temperature 
superconductors is not fully understood and many factors can 
have an influence on the IV characteristics. The Josephson 
cantilever is for example very sensitive to magnetic fields and 
temperature changes. The properties of the YBa2Cu3O7 thin 
layer vary due to the production process and due to aging. 
To enable traceable measurements with the setup, a deeper 
understanding and a quantification of the influencing factors 
is necessary.

The effects on the IV characteristic of many influencing 
factors can be described in the RCSJ model [30, 31]. A simu-
lation of these effects is possible by numerically solving the 
according differential equations. The effects can be separated 
into subsystems to simplify the calculations. The most rele-
vant subsystems are shown in figure A1(b). These subsystems 
are separated into systematic and statistical influences as pro-
posed in chapter 2.1.

A.2.  Dimensional STM-nanometrology based on atomic  
lattice constants

A metrological STM, which provides traceable measure-
ments of sub-nanometer lengths and step heights is cur
rently under construction. The projected field of application 
for this instrument is the undergoing development of new 
length standards in the nanometer regime, which are based 
on principles of self-assembly and invariants of nature. One 
of such invariant of nature is the 7 × 7 reconstruction of 
the Si(1 1 1) unit cell. With a lattice constant in the range 
of 5 nm [32] it is ideally suited as the base for calibration 
standards for scanning probe microscopes that cannot reach 
atomic resolution. In order to provide measurements of the 
aforementioned lattice constant as well as a method to con-
trol the manufacturing quality of newly developed nanostan-
dards, an ultra-high vacuum scanning tunneling microscope 
(STM) was upgraded with interferometers, which cover all 
six degrees of freedom.

The STM is an instrument that can easily achieve atomic 
resolution [33], while the interferometers provide direct trace-
ability of the length measurements to the international system 
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of units (SI) [34]. The interferometers are based on a hetero-
dyne interferometer design already existing and in use at the 
PTB, which has been modified with regard to operation under 
UHV conditions as well as the limited space available in the 
microscope assembly.

Sources of measurement uncertainty in the instrument 
are shown in the Ishikawa diagram, see figure  A2(a). They 
consist of errors caused by interferometric length measure-
ment together with those caused by the electronic devices and 
components used to analyze the output signals of the interfer-
ometers [35].

Other errors such as the cosine and Abbe errors are 
inherent to length measurement and can be influenced and 
magnified by instabilities and tolerances of the mechanical 
assembly. A first separation of major error sources into sys-
tematic and statistic influences is illustrated in the block dia-
gram (figure A2(b)) and can be used as a basis for an analysis 
of uncertainty.

Certain subsystems, most prominently the interferometers 
[36], exhibit nonlinear behavior and can thus not be analyzed 
by applying classical methods, as described in section  2. 
Separate analysis of the relevant subsystems by utilizing a 
Monte Carlo method can be a solution. Furthermore, setting 
up a complete system equation for a scanning probe micro-
scope is not feasible, making alternative methods for uncer-
tainty calculation necessary [37].

A.3.  Measurement of concentration of molecules by isotope 
dilution surface-enhanced Raman scattering

Generally speaking, in an isotope dilution surface-enhanced 
Raman scattering technique, intensity ratio of Raman peaks 
between target analyte and its isotopologue (as an internal 
standard) will be measured. With that, the unknown con-
centration of the target analyte can be determined from the 
intensity ratio and the known concentration of the reference 
isotopologue.

Raman spectroscopy is an optical technique that is based 
on inelastic scattering of monochromatic light. The so-called 
Raman shift is used in chemical analysis to identify materials 
via their molecular vibrations (‘fingerprint’ of a sample). 
When a sample is mixed with a isotopologue which is iden-
tical to the target molecule but isotopically enriched in at least 
one isotope. Due to the isotopic enrichment a slight increase 
in molar mass of the spike molecule leads a spectral shift of 
vibrational modes towards lower wavenumbers. Therefore, 
two techniques, Raman spectroscopy (RS) and isotope dilu-
tion, are combined allowing a sensitive, traceable and accu-
rate concentration measurement that could compete with the 
more expensive isotope dilution mass spectrometry (ID-MS) 
[4, 40]. In ID-RS case, both sample and internal standard are 
nearly equally affected by the complex contributions to the 
measurement uncertainty so that these contributions are being 
nearly eliminated in analogy to ID-MS.

Figure A1.  (a) Ishikawa diagram and (b) block diagram for the IV-
characteristics measured by the THz-microscope.

Figure A2.  (a) Ishikawa diagram and (b) block diagram for the 
length and step height measurements by the metrological STM.
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However, ordinary Raman scattering is a rather weak 
process compared to Rayleigh scattering and light intensity 
measurements are elaborate [38, 39]. In contrast, in case of 
surface-enhanced Raman spectroscopy (SERS), metal (e.g. 
Au or Ag) nanostructures on a substrate provide locally 
enhanced electromagnetic fields, so-called hot-spots, being 
capable of amplifying the Raman response by several orders 
of magnitude [41]. After adding molecules onto such a SERS 
substrate, each molecule will gain an enhancement factor 
k and the intensity contribution from each molecule would 
be kΩ, where Ω is the ordinary Raman cross section of one 
molecule.

Tiny variations of parameters of one single nano unit in 
principle will nonlinearly fluctuate the plasmonic property of 
the whole system and finally can change the SERS response 
[42]. In addition, the sample preparation to isolate the target 
molecule from the surrounding matrix for SERS measure-
ments, e.g. in clinical or environmental applications, has a tre-
mendous influence on Raman and SERS scattering processes, 

respectively [43]. Thus, it is neither easy nowadays to exactly 
model such a many-component system, nor easy to manufac-
ture ideal metallic structures at the sub-nanoscale in a well-
controlled manner.

Therefore, the breakdown of the system as shown in 
figure  A3(a) would be considered as a candidate approach 
to determine the efficiency and uncertainty related to SERS. 
With that we confine the most complexities into the ‘SERS 
substrate’ subsystem and deal with them for instance using 
the Monte Carlo method, clarifying the uncertainty analysis 
within the remaining subsystems [44]. In figure  A3(b) the 
simplified block diagram splits the many-component effects 
from the Ishikawa diagram into measurement uncertainties 
related statistic effects and to those that are related to correc-
tions for systematic effects.

The isotope dilution SERS (ID-SERS) can be used as an 
extended SERS technique for traceable concentration meas-
urements of a target molecule normally in its natural isotopic 
composition and is based on the principle that an isotopically 
enriched analyte (spike) is used as an internal standard [40]. 
Hence, considering ID-SERS measurements, the intensity 
ratio of the isotopologues is used in the Raman spectra for 
quantifying the concentration of the target molecule in com-
bination with multivariate data analysis [45]. The major con-
tributors to the uncertainty result from the knowledge of the 
isotopically labelled spike material (gravimetrically deter-
mined amount of substance, purity, etc). These spike material 
related effects, in turn, can be further reduced by applying 
double isotope dilution procedures as described in [4] and 
lead to similar measurement uncertainties as achieved by 
ID-MS as shown in [40].
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