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Abstract: In this article, the control of a DC/DC converter was carried out using the proposed meth-

ods of conventional PI, PSO-based PI, PSO-based FOPI, GA-based PI, and GA-based FOPI control-

lers in order to improve the performance of PEMFCs. Simulink models of a PEMFC model with two 

inputs—hydrogen consumption and oxygen air flow—and with controllers were developed. Then, 

the outputs of a system based on conventional PI were compared with the proposed methods. IAE, 

ISTE, and ITAE were employed as fitness functions in optimization algorithms such as PSO and GA. 

Fitness function value, maximum overshoot, and rising time were utilized as metrics to compare the 

performance of the methods. PI and FOPI parameters were optimized with the proposed methods 

and the results were compared with traditional PI in which the optimum parameters were deter-

mined by an empirical approach. This research study indicates that the proposed methods perform 

be�er than the conventional PI method. However, it becomes apparent that the GA-FOPI approach 

outperforms the others. The simulation result also shows that the PEMFC model with conventional 

PI and FOPI controllers in which the controller parameters are tuned using PSO and GA has an 

acceptable control performance. 
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1. Introduction  

Fuel cells are an electrochemical system that directly converts the chemical energy of 

fuel into electrical energy. With their numerous benefits, including high efficiency, low 

gas emissions, and adaptable modular structure, they hold considerable potential as a 

significant distributed power source in the future. Fuel cells employ proton-exchange 

membranes (PEMs), which are a type of ion-conductive substance. A PEM is a thin, selec-

tively permeable material that allows for the transport of protons (H+ ions) while prevent-

ing the flow of electrons and other ions [1]. Various types of fuel cells have been devel-

oped, often using hydrogen as fuel. These include proton-exchange membrane fuel cells 

(PEMFCs) and their important features are as follows: they are compact and lightweight; 

they have high output power density at low temperatures; they have low environmental 

impact; and they have good start-up/shutdown performance [2]. These advantages have 

led to the use of PEMs in many applications. Some of these applications are power sup-

plies in transportation vehicles, compact cogeneration constant power supplies, portable 

power supplies, and emergency backup power supplies. However, problems such as sub-

standard performance, uncontrolled voltage, and high fuel consumption are parameters 

that prevent the widespread use of PEMFCs in commercial applications [3]. Therefore, it 
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is necessary to obtain an appropriate control design for PEMFCs. With this in mind, in 

this study, in order to improve the performance of PEMFCs, simulink models of conven-

tional PI, particle swarm optimization (PSO)-based PI, PSO-based fractional order propor-

tional and integral (FOPI), genetic algorithm (GA)-based PI, and GA-based FOPI control-

lers were developed and the performance rates of these methods were compared. 

It can be seen in the literature that studies related to the optimization problems of 

PEM fuel cells or different systems have been carried out. In order to solve the targeted 

problems throughout the studies, various parameters were determined for different opti-

mization methods. In this context, various case studies and findings seen in the literature 

are briefly explained below. 

It is seen that conventional PID (proportional–integral–derivative) or PI controllers 

are used in the optimization of various parameters in PEMFCs. A PID controller is a kind 

of feedback control system that is frequently used to regulate a process or system in in-

dustrial and engineering applications. Proportional (P), integral (I), and derivative (D) 

components are used to reduce the difference between the desired setpoint and the actual 

system response by adjusting the control output [4]. More precisely, an adequate design 

of a system with conventional integer-order PID is possible by optimizing the parameters 

of the controller. In determining these parameters, apart from the Ziegler–Nichols 

method, which was developed to find PID coefficients experimentally, heuristic methods 

and artificial intelligence techniques are also widely used [5]. However, these methods are 

incapable of inspecting real-world objects or performing fractional operations optimally. 

The reason for this is that the variables to be controlled have a non-linear characteristic 

[3]. Because of these drawbacks, studies often choose fractional-order controllers because 

they are more flexible, more robust, and make more accurate findings. 

Various approaches are used to optimize parameters in conventional PID and frac-

tional-order PID (FOPI) controller-based PEMFC studies. Some of these methods are heu-

ristic optimization approaches such as genetic algorithm (GA), ant colony optimization 

(ACO), particle swarm optimization (PSO) and artificial bee colony (ABC). With such in-

tuitive optimization approaches, it is not guaranteed that the optimum solution will be 

found, but the optimal result is achieved within the capability of the method. Various im-

provements have been made in PEMFCs with PID controllers whose parameters are de-

termined by intuitive optimization methods. Some of these studies are listed in Table 1. 

Table 1. PEMFC studies using PID controllers with optimized parameters. 

Ref. Method Aim of the Paper 

[6] 
PID using the Ziegler–Nichols 

method 

PID controllers are used to regulate the pressure change of hydrogen and oxy-

gen to the desired value despite changes in fuel cell current. 

[7] FO-PID 

To increase the optimal dynamic performance of PEMFC. In addition, the pa-

rameters of the FO-PID controller were adjusted with heuristic optimization 

methods and the gain of the controller was optimized. 

[8] 
PSO-tuned FOPI & Smith pre-

dictor controller 
To design a controller for a nonlinear PEMFC.  

[9] 
Robust loop shaping and AI 

optimized FOPI controllers 

To improve the dynamic performance of PEMFC system. The paper explores 

various AI-based techniques to optimize the performance of control schemes. 

[10] 
PSO, FV-PSO, FP-PSO, FVFP-

PSO 

To improve the performance of the PSO algorithm. The proposed method is 

compared with standard PSO and three other optimization algorithms (FV-

PSO, FP-PSO, FVFP-PSO). Fractional-order differentiation is implemented us-

ing fractional-order velocity, position, and composite fractional-order velocity-

position.  

[11] GA-based FOPI 

To design a fractional PID controller for non-linear PEMFC for pressure control 

based on a GA. The development of a 7.-order model is also discussed, which 

can be used to design and develop control strategies for the PEMFC system.  
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[12] 
GA-based higher-order model 

reduction technique 

To propose a GA-based higher-order model reduction technique for PEMFC 

systems. This technique aims to provide a suitable reduced model order trans-

fer function from the higher-dimensional model, significantly reducing the 

complexity of the PEMFC system. 

[13] FOPID 

To introduce a new technique for maximum power point tracking (MPPT) of a 

fuel cell using the FBI algorithm and optimizing the FOPID controller. It also 

presents simulation results and compares the proposed technique with other 

existing MPPT methods. 

[14] 

Traditional PI controller and 

Active Disturbance Rejection 

Control (ADRC) 

The paper compares the performance of the traditional PI controller with the 

proposed ADRC approach. Both controllers were used in the simulations and 

experiments to evaluate the disturbance rejection and temperature tracking 

performance of a PEMFC system. 

The difficulty of theoretical analysis of the ACO, the uncertainty of the required con-

vergence time, and the change in probability distribution in each iteration are important 

parameters taken into consideration in the studies. On the other hand, the gray wolf opti-

mization (GKO) algorithm is taken into consideration in studies because it is less reliable, 

has low error tolerance, and is an extremely complex technique at low speed. Unlike the 

aforementioned optimization methods, the PSO optimization method is simple, effective 

and easily applicable. Therefore, the PSO method was preferred in this study. 

This article presents the implementation of several controllers, including conven-

tional PI, PSO-based PI (PSO-PI), PSO-based FOPI (PSO-FOPI), GA-based PI (GA-PI), and 

GA-based FOPI (GA-FOPI), to improve the performance of PEMFC. The fitness function 

value, maximum overshoot percent (MP%), and se�ling time (Ts) were all factors consid-

ered when comparing the methods. 

The rest of this paper is organized as follows: Section 2 presents the PEM fuel cell, 

the conventional PI-controlled DC/DC converter, FOPI, PSO and PSO-FOPI, GA and GA-

FOPI, fitness functions such as ITAE, ISTE, and IAE, and the proposed model. Section 3 

presents the results obtained with IAE, ITAE, and ISTE. Finally, Section 4 presents the 

conclusions.  

2. Material and Methods 

The methodologies employed in this research are outlined within this section. The 

utilized methodologies encompass the PEM fuel cell and the conventional PI-controlled 

DC/DC converter, as well as the PSO, PSO-based FOPI, and GA-based FOPI approaches 

employed for the optimization of PI parameters. The model proposed in this research and 

its details are also explained in this section. Additionally, the performance of the overall 

system was examined through simulation in MATLAB/SIMULINK software. Specifically, 

the Simscape module was used for PEMFC.  

2.1. PEM Fuel Cell 

The PEM fuel cell has the highest energy density among fuel cells. This situation 

arises from the characteristics of the structure and materials that make up the fuel cell. 

The chemical reaction process taking place in a fuel cell is the reverse of electrolysis. Figure 

1 illustrates the configuration and operational principles of the PEM fuel cell, which has 

two metallic electrodes: a negative electrode known as the anode, and a positive electrode 

known as the cathode. Hydrogen and oxygen, as shown in the figure, utilize the anode 

and cathode inputs, respectively. Hydrogen atoms are split into protons and electrons in 

the anode section by the action of a catalyst (such as compounds containing platinum). 

The anode reaction in a PEM fuel cell: 

�� → 2�� + 2�� 
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While the separated protons pass through the proton-conducting electrolyte called 

the membrane, the electric current generated by the movement of electrons is passed 

through the electrical circuit located outside the system. Protons passing through the elec-

trolyte recombine with electrons passing through the electrical circuit and combine with 

oxygen, producing heat along with pure water vapor [9]. Heat is important because high 

temperatures can cause thermal stresses that can damage the device and reduce its ex-

pected lifetime. Accurately modeling and controlling the temperature of power devices 

used in inverters can help improve their performance and reduce their susceptibility to 

damage. Hence, it is evident that the literature has presented real-time temperature con-

trol models [15,16]. 

The cathode reaction and total reactions in the PEM fuel cell are respectively: 

�� + 4�� + 4�� → 2��� 

2�� + �� → 2��� + ���� + ���������� ������ 

It is widely recognized that this technology has potential applications in both current 

and future contexts. It is capable of functioning at low operating temperatures ranging 

from 60 to 80 °C, has quick start-up time, promptly adapts to fluctuations in power de-

mand, is lightweight and requires minimal hardware, and exhibits high power density 

[17]. 

 

Figure 1. Fuel cell structure and working mechanism. 

The characteristics of a fuel cell are typically represented by the polarization curve, 

which denotes the loss curve of the PEM fuel cell (Figure 2). As can be seen from the figure, 

the V/I change of the cell has a non-linear characteristic. Nonlinearity depends on factors 

such as current density, cell temperature, membrane humidity, and reactant partial pres-

sure [18]. 

 

Figure 2. Polarization curve of PEM fuel cell [19]. 
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2.2. The Conventional PI-Controlled DC/DC Converter 

Nowadays, it has become necessary for the power sources that provide the electrical 

energy needed in the industry to be stable. Addressing this requirement can be achieved 

with switching power supply [19]. DC-DC converters are preferred for their benefits, in-

cluding smooth speed control, high efficiency and dynamic response. 

A DC-DC converter is employed for the dual purpose of voltage regulation and volt-

age amplitude reduction. The output voltage of the DC-DC converter is controlled by ad-

justing the duty ratio of the input pulse and turning the converter switch on and off during 

each cycle. 

Regardless of any variations in the load value or input voltage of DC-DC converters, 

it is imperative for the output values to stay consistent [20,21]. PID control approaches are 

commonly preferred at this level [22]. Studies have focused on obtaining the best perfor-

mance by adjusting the stability and controller coefficients of the control system in order 

to get the best performance from the PID controller. The most basic methods known in 

the literature are Ziegler–Nichols, the Cohen–Coon rules, the Ǻström–Häggland method, 

and advanced Ziegler–Nichols method [23]. 

In this study, a PI-controlled DC-DC converter was employed at the output of the 

PEMFC. The PI coefficients were determined using PSO, PSO-FOPI, GA, and GA-FOPI 

approaches. The Matlab-Simulink model of the converter used in this study is discussed 

in the following sections. 

2.3. Fractional Order Proportional and Integral (FOPI) 

The fractional order PID (PIλDµ) controller, initially developed by Pudlobny [19,23], 

has demonstrated remarkable performance in recent years when applied to the control of 

nonlinear systems [23,24]. 

It is stated in the reference that the PIλDµ controller provides be�er control perfor-

mance and stability for control systems. The difference of the classical PID method com-

pared to the PIλDµ type fractional order method; in fractional order controllers, the deriv-

ative and integral order can be any real number [24]. The Dµ controller is commonly ex-

pressed as shown in Equation (1). 

�(�) =  ���(�) + ������(�) + �����(�)  (1)

The transfer function obtained by the Laplace transformation of the above equation 

is given in Equation (2).  

�(�) = �� + ����� + ���� (2)

where �, � ∈ � and �, � ≥ 0 express the fractional degree of the derivative and integral 

terms, respectively. The gain coefficients ��, �� , and �� represent the proportional, inte-

gral, and derivative gain, respectively. 

In this study, a PIλ-controlled DC-DC converter was employed at the output of the 

PEMFC. The PIλ coefficients were optimized using PSO and GA approaches. 

2.4. Particle Swarm Optimization (PSO) and PSO-Based FOPI (PSO-FOPI) 

Particle swarm optimization is a method discovered in the mid-1990s by transform-

ing the foraging behavior of flocks of birds or fish into an algorithm, and it was developed 

by Kennedy and Eberhart [25]. The most important advantage of the PSO method is that 

it is a simple method for solving complex systems. 

It is assumed in the PSO approach that every particle in the swarm represents a po-

tential solution for the optimization problem and that every particle wanders in the solu-

tion space. The position of the particle is affected by two parameters. These parameters 

refer to the optimal location that each individual has ever visited (�����) and the optimal 

position visited by any individual in the whole group (�����). The performance of each 

particle is evaluated using the predetermined cost (fitness) function. 
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The position (��
�) and velocity (��

�) of each particle are calculated as stated in Equa-

tions (3) and (4) [25]. 

��
��� = � ∙ ��

� + ������� ∙ �������
− ��

��  + ������� ∙ (����� − ��
�) (3)

��
��� = ��

� + ��
��� (4)

where ����� and ����� terms are random numbers chosen in the range [0, 1] and the 

term � represents the inertia weight. �� and �� are acceleration constants. Additionally, 

the terms ��
��� and ��

� in the equation refer to the current position and the new particle 

position, respectively. 

The particle’s velocity is constrained to specific boundaries to prevent it from enter-

ing into uncontrollably oscillations. Currently, Equation (5) is employed. 

���� = (���� − ����)(10%~20%) (5)

���� = −����  

In many applications, the PSO approach is used to optimize parameters. The use of 

the PSO method is often preferred in optimizing the (��, ��, ��) parameters for classical 

PID and (��, ��, ��, � and �) parameters for FOPI (PIλDµ). 

The determination of the c1 and c2 coefficients in PSO plays a crucial role in optimiz-

ing parameters. That is, the c1 parameter in the conventional PSO approach pulls the par-

ticle to its own local best position, while the c2 parameter drives the particle to the global 

best position. On the other hand, altering the values of c1 and c2 in the PSO-FOPI approach 

produces four distinct situations: the exploration, the useful, the convergence, and the ex-

clusion. Table 2 explains how to alter the c’s in these situations. 

Table 2. The approach followed for c’s in different situations in PSO-FOPI [26–30]. 

Situations Strategy Followed 

the exploration situation c1 is increased, c2 is decreased 

the useful situation c1 is slightly increased, c2 is slightly reduced 

the convergence situation c1 and c2 are slightly increased 

the exclusion situation c1 is decreased, c2 is increased 

In the present study, conventional PI and FOPI (PIλ) approaches are utilized to con-

trol DC-DC converters. The (Kp, Ki) and (Kp, Ki, and �) parameters are optimized for PI 

and FOPI (PIλ), respectively. The PSO method is commonly favored when investigating 

the optimization of these parameters. 

2.5. Genetic Algorithm (GA) and GA-Based FOPI (GA-FOPI) 

The genetic algorithm (GA) is a widely used method in solving multivariate optimi-

zation problems and is a rather complex algorithm that is considered quite difficult among 

conventional optimization methods based on genetic logic. GA optimizes functions 

through the modeling of biological processes [31,32], utilizing an evolutionary algorithm. 

In the field of biology, GA parameters symbolize genes, and the chromosome is composed 

of the assembled set of parameters. Every chromosome is encoded with binary or decimal 

number sequences and has a fitness in the solution space. The fitness of the population is 

maximized or minimized within certain rules. Each new generation is formed via the com-

bination of surviving sequences, which are randomly altered through information 

changes [32,33]. In executing GA, first the copying process is performed according to the 

observed performance of the chromosomes in the population. Thus, be�er chromosomes 

have a greater chance of producing copies, and these chromosomes are more likely to 

contribute to the new population [34]. Then, in each generation, GA creates a new popu-

lation using genetic operators such as crossover and mutation. After a few generations, 
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the population contains members with be�er fitness. GA involves coding solutions, cal-

culating fitness, and applying proliferation, crossover, and mutation operators [35]. GA 

starts the optimization process with a randomly generated population containing chro-

mosomes that could be a possible solution to the problem [36]. As in other optimization 

methods, the objective function, parameters, and limits are defined in GA. The algorithm 

ends by checking convergence in the same way [37].  

In this study, conventional PI and FOPI (PIλ) approaches are utilized to control DC-

DC converters. The (Kp, Ki) and (Kp, Ki, and �) parameters are optimized for PI and FOPI 

(PIλ), respectively. In this study, the GA method was preferred for optimization of param-

eters.  

2.6. Fitness Functions (ITAE, ISTE, and IAE) 

For the optimizer, the integral of square time error (ISTE), integral of absolute error 

(IAE), and integral of time absolute error (ITAE) were chosen as the fitness/objective func-

tions. The most ideal values were determined by minimizing the errors for the deviation 

in the route. The theoretical expressions of the objective functions are given in Table 3.  

Table 3. Expression of the fitness/objective functions used in this study. 

Fitness/Objective Function Formula 

Integral of square time error ���� = � ����(�)��
�

�

 

Integral of absolute error ��� = � |�(�)|��
�

�

 

Integral of time multiplied absolute error ���� = � �|�(�)|��
�

�

 

As can be seen from Table 3, �(�)  is the error and can be expressed as �(�) =

����� − �����, where ���� denotes the reference voltage and ���� represents the output 

voltage of the DC/DC converter. 

2.7. Proposed Model  

In this article, the control of the DC/DC converter was carried out using conventional 

PI controllers, PSO-based PI controllers, PSO-based FOPI controllers, GA-based PI con-

trollers, and GA-based FOPI controllers in order to improve the performance of PEMFC. 

The simulink model proposed in this study is given in Figure 3. As seen in figure, hydro-

gen consumption [L/min] and oxygen air flow [m3/s] are taken as the input for the PEMFC. 

The parameter values and V/I characteristic of the PEMFC model employed in this study 

are depicted in Figure 4. 
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Figure 3. The simulink model proposed in this study.  

Maximum efficiency is achieved when a fuel cell is loaded with a load in the range of 

70% to 80% [32]. For that reason, a 6 kW fuel cell was used in this study and the system 

load was selected as 4.5 kW with a 75% loading rate. A constant RL load is taken as ZR = 

4.5 kΩ and ZL = 4500 Ω.  

 

Figure 4. PEMFC model parameters and V/I characteristic used in this study. 

The DC voltage value obtained at the output of the PEMFC was applied to the input 

of the DC/DC converter. Figure 5 illustrates the simulink sub-model that was used for the 

DC/DC converter. As can be seen from the figure, two types of controllers such as PI and 

PIλ are employed for a DC/DC converter and the parameters of them are optimized with 

PSO and GA methods. In determining the optimum values, the process steps shown in 

Figure 6 are repeated for each fitness function such as IAE, ITAE, and ISTE. 
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Figure 5. PI- and PIλ-controlled DC/DC converter simulink sub-model. 

 

Figure 6. Process steps applied for each fitness function in determining optimum values. 
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3. Results 

In this paper, the control of a DC/DC converter was carried out using conventional 

PI, PSO-PI, PSO-FOPI, GA-PI, and GA- FOPI controllers in order to improve the perfor-

mance of PEMFC. This section presents the results of the applications.  

For the conventional PI application, the empirical technique was used to determine 

the parameters of PI values, resulting in Kp = 0.001 and Ki = 0.15.  

PSO-PI application: The PI coefficients (Kp, Ki) were determined via the PSO method 

in this application. It has been observed in our PSO studies that changing the position of 

the particles in the swarm with 100 iterations increases the potential for producing the 

optimum solution. Therefore, in our entire article, all PSO applications were executed with 

100 iterations. The other parameter values chosen in the PSO algorithm for each fitness 

function are acceleration constants such as c1 and c2 being 2 and inertia weight (w) being 

1. The PSO method was employed with these parameters for the swarms having 5, 10, 20, 

50, and 100 particles.  

PSO-FOPI application: In this application, the DC/DC converter was controlled with 

a fractional-order PIλ controller and the parameters of the controller were determined with 

PSO. The parameter values used in the previous PSO application were repeated here as 

well. Only three parameter values (Kp, Ki, and λ) were optimized in this application, not 

just two. 

GA-PI and GA-FOPI applications: The (Kp, Ki) and (Kp, Ki, and ) parameters were 

optimized for PI and FOPI (PIλ), respectively, in MATLAB. In this study, the GA method 

was preferred for the optimization of parameters and the chosen parameters/functions are 

as follows: crossover fraction is 0.8, mutation function is Gaussian, selection function is 

@selectionstochunif, population size is 50, and migration direction and fraction are for-

ward and 0.2, respectively. 

In this study, we tried to determine the lowest values of the fitness functions (IAE, 

ITAE, and ISTE). Parameter values corresponding to the minimum value obtained were 

accepted as optimum values. Since three different fitness/object functions (IAE, ITAE, 

ISTE) were used in this study, the results obtained are explained under three different 

subheadings. 

3.1. Results obtained with IAE 

The procedures outlined in Figure 6 were used for obtaining the findings with the 

IAE fitness function. The results obtained with the specified steps are shown in Figure 7. 

As seen in the figure, PSO-PI and PSO-FOPI applications were tested with 5, 10, 20, 50, 

and 100 particles in 100 iterations. The particles with the lowest fitness function were de-

termined. In the PSO-PI study, the lowest fitness function value was obtained with 100 

particles, while in the PSO-FOPI study, the lowest fitness function value was obtained 

with 20 particles. In the next stage, the optimum values obtained with PSO-PI and PSO-

FOPI were compared with the optimum values obtained with other approaches (conven-

tional PI, GA-PI, and GA-FOPI). Using the optimum controller coefficients determined by 

the proposed methods, the output voltage changes of the system were observed and com-

pared. 
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Figure 7. Results obtained with fitness function IAE. 

The optimum parameter values determined using the proposed methods (PSO-PI, 

PSO-FOPI, GA-PI, and GA-FOPI) for the controllers were determined using the fitness 

function IAE. As shown in Figure 7, determined optimum parameters were also listed 

with fitness function, maximum overshoot percent (MP%), and se�ling time (Ts) for each 

method. It can be observed that the suggested approaches outperform the conventional 

PI method when taking into account the MP% and Ts values. Specifically, it was noted 

that the GA-FOPI approach yielded the best performance, with MP% = 39.68.  

The voltage changes that were achieved at the system output with determined opti-

mal parameters are shown in Figure 8. As seen from the figure, two points stand out in 

the voltage changes obtained using the methods. These are the MP% value and voltage 

oscillations at the initial stage. The overshoot value at system startup is directly propor-

tional to the power consumption. According to this correlation, while a power consump-

tion much higher than the nominal value is observed with the conventional PI approach 

at the initial stage, it is seen that the power consumption is lower with other proposed 

methods. The MP% values obtained at the end of the study are as follows: 159.61 V for 

conventional PI, 47.60 V for PSO-PI, 47.74 V for PSO-FOPI, 47.76 V for GA-PI, and 39.68 V 

for GA-FOPI. On the other hand, when we consider the change in output voltage, the 

largest oscillation was seen in the traditional PI approach (var 898.22, std 29.97). The ob-

served values of the proposed methods are: (var 26.29, std 5.13) for PSO-PI, (var 85.80, std 

9.26) for PSO-FOPI, (var 85.80, std 9.26) for GA-PI, and (var 55.59, std 7.46) for GA-FOPI. 

The presence of fluctuation might be read as the determined parameters not being at the 

optimal value but having reached a certain point. While the best performance according 

to MP% value was obtained with the GA-FOPI method, the best performance according 

to (var, std) values was obtained with the PSO-PI method.  
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Figure 8. Comparison of voltages based on fitness function IAE. 

While the coefficient of variation (�� = ��������_���������/����) itself may not be 

a direct indicator of robustness in a control system, variations in system parameters or 

disturbances could influence the performance of the system. In some cases, a system with 

low CV may be more robust to variations in parameters or disturbances, as it suggests a 

more consistent performance. So, the CV could be used as a measure of the relative mag-

nitude of variability in the system’s response or output [38]. In this context, the CV values 

obtained are as follows: CV = 27.99 for traditional PI, CV = 5.09 for PSO-PI, and CV = 7.29 

for GA-FOPI.  

Figure 9 illustrates the voltage–current–power relationship, allowing for a clearer 

distinction between conventional PI and GA-FOPI. The changes in the conventional PI 

and GA-FOPI method are shown in Figure 9a,b, respectively. As seen in Figure 9a, since 

the voltage change at the system output obtained with conventional PI is in a wide band, 

the band range of the required power according to the change of current is wide. On the 

other hand, the proposed GA-FOPI method ensured that the voltage change at the system 

output was in a narrow band (Figure 9b). It is desirable for the voltage change to be in a 

narrow band range. This condition appears to be successfully achieved with GA-FOPI. In 

Figure 9c, for example, the voltage changes are displayed in different colors on the same 

graph to compare IAE-based approaches (conventional PI and GA-FOPI). It has been ob-

served that, due to overshoot, the conventional PI works in a wide voltage band such as 

[73.52 259.40], while the GA-FOPI method operates in a narrow band such as [97.5 140.3]. 
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Figure 9. Voltage–current–power relationship based on IAE (a) for conventional PI, (b) for GA-FOPI, 

(c) for both conventional PI and GA-FOPI. 

3.2. Results obtained with ITAE 

The procedures described in Figure 6 were employed to acquire the results using the 

ITAE fitness function. Figure 10 presents the outcomes a�ained by following the given 

procedures. As in the previous analysis, PSO-PI and PSO-FOPI applications were tested 

with 5, 10, 20, 50, and 100 particles in 100 iterations. Particles with the lowest fitness func-

tion were determined. In the PSO-PI study, the lowest fitness function value was obtained 

with 100 particles, while in the PSO-FOPI study, the lowest fitness function value was 

obtained with 20 particles. Subsequently, the optimum findings from PSO-PI and PSO-

FOPI were compared with the optimum outcomes from the other methods (conventional 

PI, GA-PI, and GA-FOPI).  
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Figure 10. Results obtained with fitness function ITAE. 

The optimum parameter values for the controllers were determined using the fitness 

function ITAE. As shown in Figure 10, it can be observed that the suggested approaches 

outperform the conventional PI method when taking into account the MP% and Ts values. 

Specifically, it was noted that the GA-FOPI approach yielded the best performance, with 

MP% = 46.98.  

The voltage changes that were achieved at the system output with these optimal pa-

rameters are shown in Figure 11. The MP% and oscillation parameters considered within 

the scope of the IAE fitness function are also taken into account in this section. While a 

power consumption much higher than the nominal value is observed with the conven-

tional PI approach in the initial stage, it is seen that the power consumption is lower dur-

ing the system startup with other proposed methods such as PSO-PI, PSO-FOPI, GA-PI, 

and GA-FOPI. The MP% values at system startup associated with ITAE are as follows: 

conventional PI 159.61V, PSO-PI 48.99V, PSO-FOPI 48.99V, GA-PI 48.99V, and GA-FOPI 

46.98V. As in the previous application, when we consider the output voltage change, the 

observed values of the proposed methods are: (var 898.22, std 29.97) for traditional PI, (var 

89.60, std 9.46) for PSO-PI, (var 89.62, std 9.47) for PSO-FOPI, (var 89.62, std 9.47) for GA-

PI, and (var 81.03, std 9.00) for GA-FOPI. The best performance according to MP% and 

(var, std) criteria was obtained with the GA-FOPI method. However, if we consider the 

issue in the context of robustness, the best-performing GA-FOPI approach yielded a CV 

of 8.80, while the traditional PI method produced a CV of 27.99. Based on these parame-

ters, the optimal outcome, however marginally, was once again achieved with GA-FOPI. 

To illustrate the distinction between conventional PI and GA-FOPI, Figure 12 depicts the 

relationship of V-I-P parameters for the PEMFC system. In Figure 12a,b, the alterations 

produced by the conventional PI and GA-FOPI approaches are illustrated, respectively. 

The voltage range seen in fitness function IAE was seen in ITAE. Precisely as a result of 

overshoot, the conventional PI operates within a broad voltage range, as illustrated in 

[73.52 259.61], whereas the GA-FOPI method operates within a more limited range, as 

demonstrated in [98.83 146.94]. For the purpose of comparing ITAE-based methods (Con-

ventional PI and GA-FOPI), the voltage changes are shown in Figure 12c in different colors 

on the same graph. As can be seen from the figure, the voltage change in a narrower band 

range is obtained with the proposed GA-FOPI method compared to the conventional PI 

method.  



Energies 2024, 17, 890 15 of 20 
 

 

 

Figure 11. Comparison of voltages based on fitness function ITAE. 

 

Figure 12. Voltage–current–power relationship based on ITAE (a) for conventional PI, (b) for GA-

FOPI, (c) for both conventional PI and GA-FOPI. 
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3.3. Results obtained with ISTE 

As in previous applications, the procedure described in Figure 6 was used to obtain 

results using the ISTE fitness function. The results obtained by following the specified 

procedures are shown in Figure 13.  

 

Figure 13. Results obtained with fitness function ISTE. 

The optimum parameter values for the controllers were determined using the fitness 

function ISTE. The ISTE fitness function was used to calculate the optimum parameter 

values for the controllers. Figure 13 shows that the proposed alternatives outperform the 

conventional PI method when MP% and Ts values are considered. Specifically, the GA-

FOPI technique produced the greatest results, with MP% = 39.84. 

The voltage changes that were achieved at the system output with these optimal pa-

rameters is shown in Figure 14. The overshoot and oscillation parameters mentioned in 

the previous IAE and ITAE fitness functions are also taken into account in this section. In 

the early stage, the conventional PI methodology is seen to have a power consumption 

substantially higher than the nominal value; nevertheless, proposed approaches such as 

PSO-PI, PSO-FOPI, GA-PI, and GA-FOP show a lower power consumption. The overshoot 

values at system startup determined via ISTE are as follows: conventional PI 159.61V, 

PSO-PI 47.65V, PSO-FOPI 47.65V, GA-PI 47.65V, and GA-FOPI 39.84V. As in the previous 

applications, when we consider the change in output voltage, the observed values of the 

proposed methods are: (var 898.22, std 29.97) for traditional PI, (var 84.01, std 9.16) for 

PSO-PI, (var 84.06, std 9.16) for PSO-FOPI, (var 84.06, std 9.17) for GA-PI, and (var 56.11, 

std 7.49) for GA-FOPI. The best performance according to MP% and (var, std) criteria was 

obtained with the GA-FOPI method. However, if we consider the issue in the context of 

robustness, the best-performing GA-FOPI approach yielded a CV of 7.33, while the tradi-

tional PI method produced a CV of 27.99. According to these values, GA-FOPI once again 

produced the best results, but only marginally be�er than the others. As in the previous 

sections, the voltage–current–power relationship is shown in Figure 15 to be�er see the 

difference between conventional PI and GA-FOPI. The changes in the conventional PI and 

GA-FOPI method are shown in Figure 15a,b, respectively. In Figure 15c, the changes are 

shown together to see the difference more clearly. As can be seen from the Figure 15c, the 

voltage change in a narrower band range is obtained with the proposed GA-FOPI method 

compared to the conventional PI method. Due to overshoot, conventional PI operates in a 

wide voltage band [73.52 259.61], but GA-FOPI works in a tight band [97.42 140.46]. The 



Energies 2024, 17, 890 17 of 20 
 

 

voltage range that was seen in fitness functions IAE and ITAE was observed in ISTE as 

well.  

 

Figure 14. Comparison of voltages based on fitness function ISTE. 

 

Figure 15. Voltage–current–power relationship based on ISTE (a) for conventional PI, (b) for GA-

FOPI, (c) for both conventional PI and GA-FOPI. 
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3.4. Interpretations of the Findings 
When we examine the system outputs obtained using optimum parameters, possible 

inferences are listed below. 

- This study consists of roughly two stages. The proposed methods (PSO-PI, PSO-

FOPI, GA-PI, and GA-FOPI) were applied in the first stage, and the fitness function 

was utilized to identify the optimum parameters. In the second stage, the best of the 

proposed method was determined by using maximum overshoot percent (MP%) and 

time se�ling (Ts) criteria. It has been observed that the overshoot parameter is effec-

tive in determining the best-performing method. 

- While the se�ling time (Ts) values of the proposed methods for all three fitness func-

tions were observed in the [230 233] band range, a value of 820 was found using the 

conventional PI method. 

- It has been shown that the GA-FOPI method performs slightly be�er than the other 

approach while taking into account the fitness function, maximum overshoot percent 

(MP%) and se�ling time (Ts) criteria. 

- Applying the proposed methods to the system produced voltage oscillations at the 

output, allowing variance and standard deviation calculations. It was determined 

that the GA-FOPI method, which showed the best performance, had the lowest MP% 

for all three fitness functions. Namely, MP% = 39.68 for IAE, MP% = 46.98 for ITAE, 

and MP% = 39.84 for ISTE. 

- The findings indicate that the performance achieved through the implementation of 

the PSO-PI, PSO-FOPI, GA-PI, and GA-FOPI methodologies is much be�er com-

pared to that of the conventional PI approach for fitness functions such as IAE, ISTE, 

and ITAE.  

- The overshoot value at system startup is directly proportional to the power consump-

tion. According to this correlation, while a power consumption much higher than the 

nominal value is observed with the conventional PI approach during system startup, 

it is seen that the power consumption is lower with other proposed methods such as 

PSO-PI, PSO-FOPI, GA-PI, and GA-FOPI. 

- The CV value, an indicator of the relative magnitude of variability in the system’s 

response or output, was computed for the conventional PI method and the highest-

performing model before being contrasted. Thus, it is possible to conclude that the 

proposed method has the potential to be more robust. 

4. Conclusions  
In this article, the control of the DC/DC converter was carried out using conventional 

PI, PSO-PI, PSO-FOPI, GA-PI, and GA- FOPI controllers in order to improve the perfor-

mance of PEMFC. IAE, ISTE, and ITAE were employed as fitness functions in the devel-

oped simulink models and the system outputs with optimum parameters were compared.  

Fitness function value, maximum overshoot percent, and se�ling time were utilized 

as metrics to compare the performances of the methods. This study consists of roughly 

two stages. The proposed methods (PSO-PI, PSO-FOPI, GA-PI, and GA-FOPI) were ap-

plied in the first stage, and the fitness function was utilized to identify the optimum pa-

rameters. In the second stage, the best of the proposed method was determined by using 

maximum overshoot percent and time se�ling criteria. In the second stage, when the max-

imum overshoot percent and se�ling time criterion were taken into consideration, the fit-

ness functions obtained from IAE and subsequently ISTE demonstrated the highest level 

of performance. The research outcomes indicate that the performances of the PSO-PI, 

PSO-FOPI, GA-PI, and GA-FOPI approaches, which were proposed, are higher than that 

of the conventional PI approach. When considering the overshoot parameter, it is evident 

that the conventional PI methodology results in a power consumption significantly 

greater than the nominal value during system startup. Conversely, the proposed methods 

provide reduced power consumption. The observed result is consistent with the findings 
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reported in the literature. In addition, it is confirmed in this study that the PSO, GA, and 

FOPI methods preferred in the literature exhibit good performance in optimization stud-

ies. The simulation result also shows that the PEMFC model having two inputs, hydrogen 

consumption and oxygen air flow, with conventional PI and FOPI (PIλ) controllers where 

the controller parameters are tuned using PSO and GA has acceptable control perfor-

mance. 

Future research will involve the development and application of the methodologies 

that were provided in this study to a variety of diverse systems. 
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