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Abstract 
Spatial optimization as part of spatial modeling has been facilitated signifi-
cantly by integration with GIS techniques. However, for certain research top-
ics, applying standard GIS techniques may create problems which require 
attention. This paper serves as a cautionary note to demonstrate two prob-
lems associated with applying GIS in spatial optimization, using a capaci-
tated p-median facility location optimization problem as an example. The 
first problem involves errors in interpolating spatial variations of travel costs 
from using kriging, a common set of techniques for raster files. The second 
problem is inaccuracy in routing performed on a graph directly created from 
polyline shapefiles, a common vector file type. While revealing these prob-
lems, the paper also suggests remedies. Specifically, interpolation errors can 
be eliminated by using agent-based spatial modeling while the inaccuracy in 
routing can be improved through altering the graph topology by splitting the 
long edges of the shapefile. These issues suggest the need for caution in ap-
plying GIS in spatial optimization study.  
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1. Introduction 

Spatial optimization modeling involves the maximization or minimization of an 
objective function (or a set of objective functions) while satisfying certain con-
straints. It is an important research subject in operation research and a subspe-
cialty in geography [1]. Well-known spatial optimization topics include the fa-
cility location problem (i.e. location-allocation problem), routing, the transpor-
tation problem, etc. The last few decades have seen the application of Geograph-
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ic Information Systems (GIS) techniques to the study of spatial optimization [2]. 
While the integration of the two fields has advanced spatial optimization study, 
the possible pitfalls have not drawn much attention. This paper serves as a cau-
tionary note.  

In this study, we use a real-world research example to demonstrate two prob-
lems in applying GIS techniques in spatial optimization. The first problem 
involves large errors in modeling spatial variations of travel costs when using 
kriging interpolation, a common technique used in generating raster files. Spa-
tial interpolation involves using values at sampled sites to calculate values at un-
sampled sites. This process is based on a certain autocorrelation algorithm which 
derives global or local weights from the known values and assigns weighted val-
ues to the unknown sites. This is essentially a smoothing scheme which works 
well in continuous spaces but will generate large errors on spaces with unpre-
dictable and/or discontinuous interruptions. 

The second problem is inaccuracy in routing performed on a graph directly 
created from the polyline shapefile, a common vector file type. Routing refers to 
searching for the optimal travel paths with desired attributes such as the mini-
mum travel distance or cost, or the fastest travel time or the highest safety. While 
traditional spatial optimization modeling often obtains optimal travel paths from 
a distance matrix containing distances among origins and destinations, some 
optimization studies include routing as part of the algorithm where the routing 
is performed on road networks. At the heart of creating a distance matrix and a 
road network is a graph which uses nodes and edges to represent locations and 
roads connecting locations. With GIS being integrated in spatial optimization, a 
graph can be created from a polyline shapefile. This significantly changes the 
topology of a graph. Instead of one edge connecting an origin node and a desti-
nation node, there may be many edges in between. This occurs since a polyline 
shapefile uses separate sub-edges to create a line so that its geometry (i.e. the line 
curvature) resembles that of a road. On each end of a sub-edge is a new node. 
Thus, a graph created from a polyline shapefile contains more nodes and edges 
than a graph which only contains origins and destinations as nodes and roads 
connecting them as edges. The resultant networks, distance matrices, and routing 
for optimal travel paths may also differ. 

To demonstrate the above two problems, we solve a capacitated p-median 
location-allocation optimization problem as an example. While the paper also 
suggests remedies, these problems themselves are a reminder of the pitfalls when 
uncritically adopting GIS techniques and applying them to topics with unique 
characteristics. 

The remainder of the paper is organized as follows. The second section briefly 
reviews the literature involving the location-allocation problem, agent-based 
modeling, and the application of GIS in both. The third section discusses the re-
search method and workflow. The fourth section presents the results of model-
ing, along with detailed discussions of these two problems based on the results. 
The last section summarizes and concludes the study. 
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2. Literature Review 

In this section, rather than conducting a comprehensive review of all topics in-
volved, we mainly highlight the core issues this paper intends to address. The 
location-allocation problem locates business or public facilities and allocates 
customers to them. In the early 1900s, Weber set the problem in the context of a 
continuous space which had been operationalized by [3] [4]. In subsequent 
years, the facility location problem has been solved on networks [5] [6] [7]. Most 
facility location problems involve linear/integer programming. One type of loca-
tion-allocation problem is the p-median problem which locates a p number of 
facilities to serve customers distributed at certain locations. The objective is to 
minimize the total or average shipping cost [8] [9]. An example of the p-median 
problem is to set up the optimal locations of fire department units to cover dif-
ferent sub-areas within a community so that fire trucks can reach the fire sites as 
quickly as possible. Since fire events are rare and it is not often that all sub-areas 
simultaneously experience fire events, a p-median problem may suffice. For a 
problem where the optimal locations of hospitals or state vehicle offices are in-
volved, the service capacity at each site should be taken into consideration to 
avoid long lines or delated service from having the number of customers more 
than a hospital or an office can efficiently handle. This is the case of the capaci-
tated p-median problem. 

GIS techniques enhance solving facility location problems using spatial data 
processing tools such as data storage, queries, interpolation, and visualization 
[10] [11]. More importantly, overlaying features layers, identifying finite domi-
nate sets in a network, and skeletonizing polygons play key roles in transforming 
continuous location problems into discrete location problems [12]. While it is 
common to couple location search and spatial data processing techniques, the 
integration of GIS and spatial optimization aims at creating programs with built-in 
GIS and combinatorial computational capabilities [13]. 

In standard location-allocation studies, the outcome is often a set of feasible 
sites where the optimization criteria are met. Typical visual representations are 
desire lines connecting the facility locations with demand locations, as shown in 
Figure 1. One limitation of using desire lines is that they show a few optimum 
sites in isolation due to a lack of attention to spatial cost variations in the entire 
study area. [14] break new ground by bootstrapping a stochastic spatial point 
process while solving for optimization. Their approach generates contours with 
declining probability densities from the identified optimal location.  

[14] essentially interpolate the spatial variation of opportunities in the facility 
location problem. This is where GIS can contribute to spatial optimization study 
since spatial interpolations are standard techniques in modeling spatial varia-
tions. At the heart of spatial interpolation is a certain algorithm which specifies 
the pattern of spatial autocorrelation. In kriging interpolation, this is the cova-
riance function or kernel. Well-known spatial covariances are Matérn, Cauchy, 
Gaussian, Spherical, etc. (Figure 2). The pattern of each function in Figure 2  
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Figure 1. Desire lines. This map shows a standard display of a facility location solution 
which shows three facilities each connecting to several demand points. The width of the 
desire lines indicates supply quantities. 
 

 

Figure 2. Various spatial kernels can depict patterns of distance decay. The pattern from 
the same covariance function can vary when the parameters involved change, as seen in 
Matérn 1 and Matérn 2 where a smoothness parameter is set differently. 
 
can change when relevant parameters are set differently. For example, a smooth-
ness parameter in Matérn 2 is set much higher than in Matérn 1, leading to two 
different distance decay patterns. However, spatial covariance functions are only 
our best guesses about the pattern of spatial autocorrelation. They may generate 
satisfactory approximations in smoothly changing continuous spaces. When the 
landscape is much more disruptive and complicated than the spatial covariance 
function used, interpolation errors are inevitable. 

The last few decades have seen the rise of agent-based modeling (ABM) in 
spatial analysis, including the location-allocation problem [15]. More recent 
contributions include a study [16] which solves a model of charging station loca-
tions for electric vehicles. [17] uses a two-stage model to determine the optimal 
sites to set up printers on a university campus, minimizing the students’ travel 
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distance to the printing service. A study in [18] optimizes biophysically optimal 
land-use and then compares it with results from an ABM to determine better 
solutions. In yet another study [19], authors validate the retail distribution pat-
tern obtained from an ABM with that from conventional location-allocation 
modeling. [20] investigate the optimal vaccination center locations during the 
COVID-19 Pandemic in New Jersey, USA. 

The rising popularity of ABM in spatial modeling and optimization goes hand 
in hand with the integration of GIS [21] [22]. Most major ABM software pro-
grams today (Repast, NetLogo, MASON, GAMA Platform, etc.) have GIS func-
tionalities, including the use of polyline shapefiles to create graphs for routing 
and transportation assignment studies. Polyline shapefiles use nodes and edges 
and their arrangements to represent the road topology. The resultant graph should 
understandably have significant impacts on the outcome of routing. While mod-
ifying line features has been a common technique in typical GIS software, the 
purpose of doing so is mostly confined to creating connected planar networks or 
appropriate survey line segments [23]. It is surprising that there has been little 
discussion on how changing graph topology would affect the spatial optimiza-
tion modeling. 

In brief, GIS techniques have become integrated components in both opera-
tion research and agent-based modeling. There have been review papers that 
discuss the state and directions of spatial optimization and spatial agent-based 
modeling [2] [24]. However, attention to the pitfalls of applying GIS in loca-
tion-allocation optimization study, either through the operation research me-
thods or ABM, has been lacking. 

3. The Method 

As stated earlier, this study shows two problems in applying GIS in spatial opti-
mization and suggesting remedies. To achieve this, we will solve a capacitated 
p-median location-allocation optimization problem and then use the solution to 
model spatial variations of the travel cost. 

The location-allocation optimization problem presented in this paper is based 
on a real-world problem of setting up four electronic recycling item collection 
centers to serve 34 local communities in Madison County in southwestern Illi-
nois, USA (Figure 3). Customers from each community can bring in their elec-
tronic items to recycle twice a year on given days. The demand from each com-
munity is estimated proportionally to their population. On the supply side, four 
collection centers are sought, each with a capacity based on the number of vo-
lunteers available within the community. In other words, both demand quantity 
and supply capacity vary at the community level. The modeling comes in two 
stages: modeling location-allocation and simulating spatial variations.  

Stage 1. Modeling location-allocation. In this stage, a standard location-allocation 
problem is solved. Specifically, for a graph G(V, E), a subset of vertices I ϵ V are 
defined as the demand points, which implies that demand locations are on a 
road network. As in a standard facility location problem, this can be expressed as  
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Figure 3. All roads in Madison County, Illinois, USA. The 34 places are used as the de-
mand locations for four electronic recycling items pickup sites. 
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where Z is the total distance-weighted travel cost; dij is the distance on the net-
work between demand vertex i and supply vertex j; wij is an allocating variable 
equal to 1 if demand at i is allocated to j or 0 if not; qi is the quantity of demand 
at i; yj is a locating variable equal to 1 if a facility is located at j or 0 if not; Qyj is 
the facility capacity at j; and p is the number of facilities. Equation (2) guarantees 
each demand point is allocated to only one facility. Equation (3) makes sure the 
total demand allocated to j is within the capacity at j; and Equation (4) sets the 
total number of facilities to p. Equations from (1) through (4) show the typical 
representation and solution for a capacitated p-median process, as presented in 
[8] [9]. In this paper, the search is performed using an algorithm akin to the tabu 
algorithm [25]. 

Stage 2. Simulating spatial variations. In Stage 2, we design the following 
procedure to simulate the spatial travel cost variations based on results from 
Stage 1. 

The solution from Stage 1 identifies the p (4) number of optimal supply ver-
tices pv , each serving a set of demand vertices tv , (t = 34) This location-allocation 
pattern can be expressed as  

1:400,000

N
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 ( ), 1,2,3,4p tv v p⇒ ∈ , ( )1,2, ,34t∈   (6) 

Between p and t there can be u p tv v v=   meaning a node can be both a de-
mand and supply location at the same time based on [26]. 

Given the location-allocation solution in (6), values of the assignment variable 
wij are determined between pairs of i and j, and only those conforming to wij = 1 
remains in (1). Z can be written into four components each corresponding to 
one collection facility and the demand vertices it serves. That is,  

 
1 2 3 41 2 3 4ij ij i i i ii I j V i I i I i I i IZ d w d d d d

∈ ∈ ∈ ∈ ∈ ∈
= = + + +∑ ∑ ∑ ∑ ∑ ∑  (7) 

In (7), the four components correspond to the costs of four supply points 
serving those demand points allocated to them, respectively. Relabeling each 
component, we have 

 1 2 3 4Z Z Z Z Z= + + +  (8) 

In Stage 2, since demand point allocation (i.e., which demand point is served 
by which facility) is known, the network travel cost (distance) to them from all 
locations, all nodes, and all links can be calculated. Take Z1 in (8), which is the 
cost of the first supply point 1pv =  serving an n number of demand points allo-
cated to it ( )1 2 34t t t nv v v n= = = < . We simulate the cost of serving the n demand 
points from every location in the study area. This is as if the first facility 1pv =  
takes turns to be at every location. In this study, there are 14,847 locations or 
patches within the NetLogo space or grids within the GAMA Platform environ-
ment (a patch in NetLogo or a grid in GAMA Platform is like a pixel in raster). 
At any pixel, s, the first facility serves demand vertices 1 2t t t nv v v= = =  while the 
other three facilities remain at their optimal vertices vp, ( )2,3,4p∈ , the total 
distance cost is  

 ( )
11 2 3 4 1, ,14847s i si IZ d Z Z Z s

∈
= + + + ∈∑   (9) 

where ( )
11

, 1, ,14847i si I d s
∈

∈∑   denotes the spatial cost variation of the first 
facility serving the demand vertices 1 2t t t nv v v= = = , and sZ  the total cost of 
serving all demand vertices by all facilities. At the location where a patch geo-
graphically coincides with the first facility’s optimal location from the model 

1pv = , sZ Z= , where sZ  is the minimum total travel cost from the model solu-
tion. 

Using a similar procedure, simulations can be performed for the first facility 
to vary its location among all nodes (V) or all links (E) on the road network. To 
avoid cluttering, the paper will not introduce new equations. Since there are 1667 
(V) nodes and 1780 links (E) on the road network used in the study, Equation 
(9) represents the cost when the first facility varies its location among nodes with 
s being a node, ( )1, ,1667s∈   and, among links with s being a link,  

( )1, ,1780s∈  . The above simulation procedures can similarly be performed 
for the other three groups of demand vertices, giving spatial cost variations for 
all facilities. 

The Key Technical Details of Model Execution. The modeling is carried out 
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using NetLogo. To perform routing, a line shapefile is used to create a graph. 
While NetLogo can import a line shapefile though its GIS Extension, the roads 
created are just static images (a patch attribute) and do not function as a net-
work of nodes and links. Instead, in this study, we first extract node and edge 
attributes from the road shapefile and use them to create a graphml network in 
the Visone software. The Network Extension of NetLogo has the capability to 
import graphml networks where nodes turn into node turtles and edges into 
links within NetLogo. These nodes turtles and links form a functioning network. 

One problem is that NetLogo cannot handle very large shapefiles. The shape-
file in Figure 3 contains all roads in Madison County and needs to be signifi-
cantly simplified so that the program can perform routing efficiently. We con-
vert it into a minimum spanning tree polyline shapefile (a network connecting 
all nodes with the minimum total length), as seen in Figure 4. With some addi-
tional important improvements as discussed later in the next section, this sim-
plified line file is used in the modeling. 

During the modeling stage which searches for the optimal location set, the 
NetLogo Network Extension is used to move consumer turtles about the net-
work, and their travel distances to alternative supply nodes are calculated using 
the NetLogo Matrix Extension and Array Extension. Travel data are recorded in 
NetLogo lists. In addition, similar to performing statistical operations on a raster 
file, attributes of patches can be recorded and statistical analyses performed on 
them. 

One critical element in this study is the interaction between patches and tur-
tles. When simulating travel cost from every location (i.e., patch) in the study 
area, every patch “sprouts” (creates) a firm turtle. These firm turtles “wiggle” 
(move about but not on networks) to the nearest node on the network, from 
which they move further to demand vertices via the network. The travel data is 
recorded by each firm turtle and then passed back on to the patch which sprouts  
 

 

Figure 4. The road system in Madison County, IL, USA as a minimum spanning tree 
which allows NetLogo to perform routing efficiently. 

1:400,000

N
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it. This approximates the travel distance from each patch (as a supply site) to 
demand vertices via the road network. The patch level travel data is then used to 
create spatial cost variation at all locations in the study area.  

In post-simulation analysis, data (including imagery data) recorded by patches, 
nodes, and links can be exported and further processed for kriging in standard 
GIS software or for statistical analysis in other software.  

To focus on the main issues in the modeling, we assume away complicating 
factors such as road quality, road type, speed limits, one-way or two-way driving 
roads, gasoline prices, and business set-up costs. Bringing in these factors would 
make a facility location study realistic but would not allow us to distinguish 
whether the spatial cost variations occur due to the choice of supply locations 
(which is the focus of the study) or other factors.  

4. Results 

In this section, we will first present the results of optimization of the capacitated 
facility location problem, and the simulation of spatial variations of travel cost. 
Then we will discuss in detail the two problems based on the results.  

4.1. Results of the Optimization and Simulation 

Stage 1: Modeling the location-allocation. A capacitated p-median electronic 
recycling item collection model, as described earlier, is run with 1000 iterations 
in NetLogo. Here “1000 iterations” means that the model stops when there is no 
improvement within 1000 runs. If the model improves before 1000 runs are 
over, the tick is set back to 1 and the count starts over. In the end, the model 
runs 1188 iterations, with 365 iterations generated that meet the capacity con-
straints. The optimal value of Z is 518 km. The map of desire lines from the so-
lution is shown in Figure 5, with four collection centers having arrows pointing 
to communities they serve. 
 

 

Figure 5. Desire lines from the solution of the capacitated p = 4 facility location model. 
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Stage 2: Simulating spatial variations. Following Equation (9), spatial varia-
tions of the four components of Z are simulated and mapped (Figures 6(a)-(l)). 
The maps show distance variations of four facilities in the study area at the pixel, 
node, or edge level. Take Facility 1 as an example to interpret the maps. Figure 
6(a) shows that to serve the 12 communities (11 locations at arrows’ points and 
Livingston where the facility is located) the total travel distance ranges from 692 
km (lightest shade of blue) to 2990 km (the darkest shade of blue). It would be 
692 km if the facility were located at Livingston but up to 2990 km if the facility 
were located in areas with the darkest shade of blue, such as in the northwestern 
or southwestern corner of the study area. Other shades of blue show the inter-
mediate total travel distance when serving the 12 communities. 

Figure 6(b) shows what the total travel distance would be to serve the 12 
communities if the facility were located at different nodes on the roads. The size 
and shade of the color indicate the total travel distance. Similarly, Figure 6(c) 
shows the total travel distance if the facility were to locate at different edges 
(mid-point of an edge) on the road. Figures 6(d)-(l) show similar information 
for the other three facilities. The total travel distance may be very different from 
those for Facility 1 since the number of communities served may be different. 
For example, in Figures 6(d)-(f), the total travel distance is low since the facility 
serves only two communities. As discussed earlier, these maps can be interpreted 
as the rising total travel distance due to shifting the facility away from a solution 
location while keeping other facility locations unchanged. 

The spatial travel distance variation at the pixel level can also be mapped by 
widely understood contour lines with color fill, as in Figure 7 which shows the 
travel distance variation if Facility 1 were to locate at various pixels in the study 
area.  

While Figure 6 and Figure 7 highlight how spatial simulation works as an 
alternative to interpolation in modeling spatial variations, there are additional 
significant points to make in the context of the location-allocation problem. 
First, maps in Figure 6 and Figure 7 give measurable information, compared 
with desire lines in the standard representation of location-allocation solutions 
as shown in Figure 1. As stated earlier, standard location-allocation modeling 
looks for a few optimum sites in isolation and does not reveal how much better 
these sites are than other sites, in any direction, or on and off the roads, in the 
study area. Furthermore, locational decision is only part of the overall deci-
sion-making which often involves trade-offs with other business and public 
goals. Without measurable comparison among alternative sites and quantifia-
ble data to assess trade-offs between the location decision and other goals, it 
would be truly difficult to determine whether the business or public interest is 
best served at these optimal sites derived from modeling. While a full assess-
ment of the facility location modeling is beyond the scope of this paper, the re-
sults discussed so far demonstrate the potential to expand the location-allocation 
modeling.  
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Figure 6. (a) Spatial variation of travel distance to Facility 1 at the pixel level where the 
closest node is Livingston; (b) Spatial variation of travel distance to Facility 1 at the node 
level. The node is Livingston; (c) Spatial variation of travel distance to Facility 1 at the 
edge (edge midpoint) level where the closest node is Livingston; (d) Spatial variation of 
travel distance to Facility 2 at the pixel level; (e) Spatial variation of travel distance to Fa-
cility 2 at the node level; (f) Spatial variation of travel distance to Facility 2 at the edge 
(edge midpoint) level; (g) Spatial variation of travel distance to Facility 3 at the pixel level; 
(h) Spatial variation of travel distance to Facility 3 at the node level; (i) Spatial variation of 
travel distance to Facility 3 at the edge (edge midpoint) level; (j) Spatial variation of travel 
distance to Facility 4 at the pixel level; (k) Spatial variation of travel distance to Facility 4 
at the node level; (l) Spatial variation of travel distance to Facility 4 at the edge (edge 
midpoint) level. 
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Figure 7. The customers’ travel distances to get service from Facility 1 if the facility is lo-
cated at different locations. The star point is the optimal facility site. 

4.2. Spatial Interpolation Errors 

To assess interpolation errors in modeling spatial variation, we re-create Figure 
6(a) using a GIS program as shown in Figure 8(a) without roads and desire 
lines. We take 30% of the pixel values from Figure 8(a) as sampled sites to per-
form kriging interpolation in order to assess interpolation errors in re-creating 
it. Figure 8(b) displays a result using ordinary kriging. Figure 8(a) and Figure 
8(b) seem to bear significant resemblances. 

To avoid bias from using only one random sample, 100 random samples are 
drawn, and interpolations performed. Thus, there are 100 individual interpo-
lated maps like the one shown in Figure 8(b). Instead of showing all individual 
maps, we created a composite interpolated map by averaging each pixel values 
over the 100 interpolations and mapped in Figure 8(c), which still seems to 
show a strong visual resemblance to the original map in Figure 8(a). 

To assess interpolation errors, we used the normalized root-mean-square-errors 
(or normalized RMSE) calculated in (10).  

( )2

1 to
interpolated pixel value original pixel value

NRMSE 100
Mean over original pixel values

M
M−

= ×
∑

(10) 

In (10), the interpolated pixel value is a pixel value obtained from an interpo-
lation; the original pixel value is taken from Figure 8(a), which is used as the 
interpolating target. The squared deviation between the interpolated and origi-
nal values is summed over M. Since we perform interpolations 100 times, M = 
100. The numerator of (10) is the RMSE (parallel to standard deviation except 
the original pixel value may vary at each pixel). Equation 10 normalizes RMSE 
by the overall mean value of the pixels in Figure 8(a). Normalized RMSE ex-
presses the deviation of interpolated value from the target, expressed as a per-
centage of the overall mean pixel value. Figure 8(d) shows the distribution of  
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 8. (a) Travel distance variations for Facility 1. The map is an alternative version of 
Figure 6(a) without desire lines and roads and generated from a GIS program. (b) A map 
generated through ordinary kriging interpolation, using 30%-pixel values randomly taken 
from (a) as sampled sites. (c) A composite map created by averaging 100 interpolated 
values for each pixel. In other words, values at each pixel are average travel distance over 
100 interpolations for that pixel. (d) Normalized RMSE at the pixel level overlaid with 
roads. For each pixel, normalized RMSE is calculated from 100 interpolation. 
 
normalized RMSE at the pixel level. The actual range of normalized RMSE is 
from 0% and all the way up to 140%. To make it easy to identify locations on the 
map, we rescaled the color scheme by using the same green shade to represent a 
wide value range from 8% to 140%. As can be seen, many areas have significant 
levels of interpolation errors. The largest interpolation errors tend to occur in 
areas between roads.  

To obtain the expected interpolation error, we calculate normalized RMSE for 
each interpolated map. In this case, M = 14,847 (the number of pixels in each 
map). The 100 normalized RMSEs constitute an empirical sampling distribution 
of sample normalized RMSE, as shown in Figure 9. The expected normalized 
RMSE is 11.33%, with a 95% confidence interval between 10.49% and 12.17%. 
This is a significant overall level of interpolation errors.  

The significant interpolations errors as shown above are obtained regardless 
of the choice of kriging techniques (simple, ordinary, IDW, etc.). Although there 
may be room to calibrate interpolation by choosing more sophisticated methods 
and/or setting parameters differently, it is unlikely to fundamentally alter the 
general pattern.  

To assess the covariance structure which should be used in interpolation, pixel 
values from Figure 8(a) are divided into four quantiles to test for the theoretical 
(or optimal) covariance structure within each. For values within the first quar-
tile, largely corresponding to the area close to the optimal site (areas with light 
shading), the optimal structure is the Matérn covariance; for values within the 
next three quartiles, the optimal covariances are Matérn, Spherical, and Matérn,  
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Figure 9. Empirical sampling distribution of sample normalized RMSE from 100 inter-
polations. 
 
respectively. While 3 out of the 4 groups are optimized by a Matérn function, 
their ranges (distance within which spatial autocorrelation is significant) and 
partial sills (measure of spatial autocorrelation) are all different indicating di-
verse spatial autocorrelation relationships. 

When dividing the study area into four spatial quadrants, the optimum theo-
retical covariance is the Matérn covariance for all four quadrants. However, the 
northwestern and southwestern quadrants have the same range and partial sills. 
Their range and partial sills are also the highest. In contrast, the southeastern 
quadrant has the least range and partial sills. The northeastern quadrant has an 
intermediate range and partial sills. It is interesting to note that for Facility 1, the 
northwestern and southwestern quadrants have quite similar travel distance 
ranges compared with the east. It is not surprising to find that these two qua-
drants have the same semi-variogram profile. However, for the entire area, the 
suggested covariance function is Matérn but with partial sills and range smaller 
than all those in four quadrants separately. The overall spatial autocorrelation is 
an average of its spatial components. This speaks to the complex and unpredict-
able nature of the spatial autocorrelation at different spatial levels. Thus, using a 
uniform or a combination of spatial covariance functions to simulate a complex 
spatial variation is bound to create significant errors. 

The above experiments highlight the problems in using a covariance structure 
to approximate spatial patterns under certain circumstances. Using the Object 
View and Field View division [27], the field view sees the world as a continuous 
space with varying values representing fields of temperature, wind speed, heights, 
etc. In contrast, the Object View sees the world in terms of point objects, line 
objects, and area objects. Spatial interpolations essentially are weighting me-
thods which assign weights to sampled values to obtain values for unsampled 

https://doi.org/10.4236/jgis.2024.161007


B. Zhou 
 

 

DOI: 10.4236/jgis.2024.161007 106 Journal of Geographic Information System 
 

sites. The unavoidable outcome is smoothing the values over a space. A signifi-
cant portion of research using raster data implicitly adopts the field view of the 
world and models the physical and ecological environment at scales where the 
impacts from line objects are non-existent (e.g., crop yields at the crop field level 
[28]) or negligible (impacts of land-use types on land surface temperature [29]). 
Under these circumstances, it would be appropriate to use a covariance function 
to approximate continuous and gradually changing landscapes. However, in this 
study, the study area is crisscrossed by roads into discontinuous spaces of odd 
shapes, essentially an Object View. The road density and thus the spatial auto-
correlation vary significantly making any spatial kernel unsuitable. In addition, 
the interpolation in the study aims at approximating the network travel cost. 
Since roads as line features extend in linear or curvilinear fashions, the trend of 
pixel values should also occur linearly or curvilinearly. In other words, this is a 
case of one-dimensional interpolation. Most existing spatial covariance func-
tions are designed for two-dimensional space and cannot correctly model linear 
positions of a road. Interpolation will fill in the missing values over a space in all 
directions (rather than along a defined line). In the direction which happens to 
coincide with a line feature, the interpolation may get it close. However, in other 
directions, the interpolation would be incorrect. This explains why the norma-
lized RMSEs tend to be lower on roads than on other spaces in Figure 8(d). The 
inaccuracy creates significant cost distortions for a facility, negating the purpose 
of the modeling. In general, one-dimensional kriging proves to be less successful 
than some other approaches [30]. Much more needs to be done in this area.  

In contrast, ABM approaches do not see the world as contrasting field versus 
object views. Patches (pixels), turtles (points), links (lines), and clusters of turtles 
or patches (areas) are all agents. Using a term from [27], these individual agents 
all have “self-definition”, meaning they have their own attributes. These agents 
interact with each other at the agent level, and an interaction needs not follow 
rules defined by a covariance function. Their local level interactions determine 
the heterogeneity and unpredictability of the autocorrelation in their behavior 
parameters. Such “random” spatial autocorrelation can hardly be described and 
generalized by covariance functions. ABM, as adopted in this study, forfeits guess-
ing the pattern of spatial autocorrelation altogether. It focuses on agents’ beha-
viors which are traveling on road networks. Certain relationships between agents, 
such as autocorrelation (e.g., relationships in travel costs between nodes on a 
graph), do not happen by design, but emerge as a result of their positions on the 
graph and destinations of their travels. While an ABM model can certainly adopt 
a global kernel function, as an option provided by the ABM software GAMA 
Platform, it has the option not to do so. This characteristic works well for situa-
tions where a spatial pattern is complex involving spatial features resembling 
both a field view and an object view.  

4.3. Impacts of Polyline Shapefiles on Routing 

As discussed earlier, to perform routing in NetLogo efficiently, the complete 
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roads polyline shapefile in Madison County (Figure 3) is simplified into a min-
imum spanning tree, as shown in Figure 4. Using this simplified polyline shape-
file to create a graph, the initial optimal solution is displayed in Figure 10.  

One prominent feature in Figure 10 is that some collection centers provide 
services in faraway communities, which are closer to other collection centers and 
thus would supposedly be in the areas of service of other collection centers. This 
feature also goes against the “First Law of Geography” which states that near 
things are related more than distant things [31]. A closer observation reveals that 
those long desire lines tend to extend along or near some long lines within the 
input shapefile. 

The result displayed in Figure 10 is not meaningful. We believe that this is at-
tributed to the topological structure of the shapefile (and the resultant graph) 
used in routing. In a road network, local roads tend to cluster in communities 
with many cycles (closed circuits where a path starts from a point, connects with 
other points, and returns to the same point) and major roads extend across long 
distances connecting local communities. In creating a shapefile reflecting such a 
structure, linear features are created by digitizing between two points over a cer-
tain distance in-between. Besides two end points of an edge, additional points 
are often needed to make the line geometry resemble the shape of an actual road, 
resulting in polylines. In addition, local communities tend to form road grids 
manifested as many short edges and nodes in closed circuits in a shapefile while 
the major roads between communities show up as long edges with fewer nodes. 
When creating a minimum spanning tree, local cycles are removed, and the 
major long links remain. This leads to a topological structure of uneven road 
lengths in the polyline shapefile. In Figure 11, the original minimum spanning 
tree polyline shapefile shows an edge length range of over 60,000 meters (60 
km). In Table 1, the original shapefile has an edge length standard deviation 
more than 1.5 times the edge average length (coefficient of variation or CV), and 
the longest edge is 30 times the edge average length. In Figure 12, fourteen roads  
 

 

Figure 10. Desire lines from the solution of the capacitated p = 4 facility model using 
unimproved minimum spanning tree polyline shapefile. 
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Figure 11. The length distributions of edges in the minimum spanning tree line shape-
files with and without improvement. 
 

 

Figure 12. Fourteen roads are in blue, each longer than 5 km and together account for 
22% of the total lengths in the road system used in modeling. 
 
Table 1. Topological characteristics of original and improved polyline shapefiles. 

Network Attributes Comparison of Polyline Shapefiles 

Original Improved 

Number of nodes 1287 1667 

Number of edges 1287 1780 

Median length of edges/Mean length of edges 0.80 0.98 

Standard deviation of length of 
edges/Mean length of edges* 

1.56 0.56 

Range of length of edges/Mean length of edges 30.2 6.15 

Inter-quartile range of length of 
edges/Mean length of edges 

0.67 0.75 

Max length of edges/Mean length of edges 30.2 6.2 

Min length of edges/Mean length of edges 0.001 0.003 

*The coefficient of variation of edge lengths. 

https://doi.org/10.4236/jgis.2024.161007


B. Zhou 
 

 

DOI: 10.4236/jgis.2024.161007 109 Journal of Geographic Information System 
 

are collectively highlighted in blue, each with a length of more than 5000 meters 
(5 km) with a total of more than 60,000 meters (60 km). These 14 polylines ac-
count for 1% of the total number of lines but 22% of the total road length within 
the minimum spanning road shapefile. Just as importantly, these long lines ex-
tend over long distances connecting communities in different regions.  

One problem with using a network with some very long links is that while an 
optimal location may occur somewhere between the two end nodes, any inter-
mediate location is not available for search since there are no nodes between the 
end points. More importantly, certain optimal search algorithms, as used in this 
study, evaluate nodes for optimization in their adjacency sequence (nodes sepa-
rated by one edge). If two adjacent nodes are the end points of a long link, this 
would send the search process to a distant region in the study area, eliminating 
nearby nodes from the sequential evaluation. The original minimum spanning 
tree line file contains lines with significantly uneven lengths. Since major roads 
tend to connect with local roads at critical junctions and extend across regions 
for long distances, they may send the optimal searches back and forth between 
distant regions, creating cross-region connections, rather than local connections. 
Nodes close to these long lines may be repeatedly searched but those far from 
long links may not get enough chance of being assessed during the searches. In 
general, uneven length distribution and the prominent positions of the long links 
in a graph may contribute to the optimal search process being dominated by the 
long links, leading to the long and cross-region serving connections along the 
long links as seen in Figure 10. 

To improve the optimal routing, we split the 14 long polylines in Figure 12, 
with all resultant lines being shorter than 1000 meters or 1 km. The road map 
looks the same, but the shapefile file now contains 380 more nodes and 493 more 
edges than the original shapefile. This significantly changed the topological 
structure of the shapefile giving it a much more even edge length distribution 
than the original polyline shapefile. As shown in Figure 11, the improved shape-
file has a length range of less than 5000 meters (5 km), which is only 8% of the 
range in the original line file. Table 1 shows that the improved shapefile has a much 
smaller coefficient of variation, a drastically smaller mean-normalized range, and a 
smaller ratio of the maximum road length to the mean, than the original shape-
file. Without an extreme line structure, the routing and the search process are 
less influenced by the long lines. In addition, there are more nodes between end 
nodes along a road. This improves the chance that a better solution can be found 
since those locations are now available for optimization. Indeed, using the im-
proved line shapefile, the total travel cost of serving all communities by four fa-
cilities is 518 km, a 14% reduction from 600 km from using the original line 
shapefile. Using the improved polyline shapefile in the study, the resultant spa-
tial pattern of location-allocation, as shown in Figure 5, is meaningful in terms 
of service areas being delineated based on distances travelled. 

In general, compared with a graph with limited numbers of edges/nodes and a 
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skewed topological structure, a graph with more edges and nodes, shorter edge 
lengths, and balanced topological organizations provides more feasible sites for 
optimal locations and allows more flexibility in routing search in terms of direc-
tions and lengths. More nodes on a network also make it easier to create a con-
nected graph for routing as origin and destination nodes can more easily snap to 
the closest available network nodes with less distortion of the network. Upon 
creation, a polyline shapefile contains nodes at intersections, ends of lines, and 
between nodes. The former two types of nodes become external when a graph is 
created. They can be used for optimal routing search. Many of the last type of 
nodes remain as internal and not available for routing search. Splitting polyline 
shapefile edges strategically creates more external nodes, which eventually im-
proves the topological structure of a graph and contributes to better routing 
performance. 

5. Summary and Concluding Remarks 

This study reveals two problems in applying GIS in spatial optimization model-
ing, using a capacitated p-median location-allocation problem. First, it shows 
that standard spatial interpolation generates significant errors with errors rising 
between roads. This occurs when the study area is segmented by roads into 
highly discontinuous and unpredictable spaces which make it difficult for any 
spatial covariance function to specify the appropriate spatial autocorrelation 
pattern. Given such a complex space, spatial interpolation is an unrealistic 
choice for the problem at hand. In contrast, using an agent-based approach eli-
minates the need for adopting any spatial covariance function. Rather than im-
posing a certain spatial autocorrelation structure on the model, the ABM focuses 
on the individual agents’ behaviors and allows spatial relationships to emerge. 
Although this does not mean ABM can create the perfect spatial variation, spa-
tial simulation does provide a viable option to model spatial variation without 
using interpolation. 

This study also shows that routing can be significantly impacted by the topo-
logical structure of a polyline shapefile. When the distribution of road lengths is 
very uneven and skewed, the routing may be dominated by long edges and the 
search for optimization may not be meaningful. This study corrects this problem 
by splitting very long edges into shorter segments, which leads to significant im-
provement in the model in terms of separating service areas for different facili-
ties following the well-known distance decay effect. While the skewed topologi-
cal structure of the original graph is a result of using an unimproved minimum 
spanning tree polyline shapefile, this still should remind the spatial modeler of 
the potential impacts of the topological structure of the polyline shapefile to 
avoid undesirable modeling outcomes. 

The above findings are related to the adoption of GIS techniques in spatial op-
timization modeling. Before GIS was integrated with facility location study, re-
searchers used distance matrices and network graphs without questioning. With 
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GIS techniques having become toolkits in locational modeling, modelers should 
be aware that many distance-related parameters (distance, shipping cost, travel 
time, etc.) in the model may be subject to the topological structure of the poly-
line shapefile used, as demonstrated in this study. To a certain extent, distance 
and routing are artefacts of the polyline shapefile topological structure. The 
modeler may benefit from exploring the best topological structure when per-
forming routing on any graph created from polyline shapefiles. 

The contributions from this study are unique in that issues addressed in the 
paper have not received much attention in the field of spatial optimization. While 
spatial interpolation remains as a significant technique used to model spatial var-
iation, other options such as ABM should be explored and made available in situ-
ations where the old procedures fail. Together with the impacts of polyline sha-
pefile topology on routing, these issues are a reminder that the integration of 
GIS with spatial optimization study is not fool proof. Caution should be exer-
cised to make sure that GIS techniques are used appropriately.  
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